a8b326c01a
BUG=skia:3203 TBR=caryclark Review URL: https://codereview.chromium.org/785933003
159 lines
5.4 KiB
C++
159 lines
5.4 KiB
C++
|
|
/*
|
|
* Copyright 2011 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
// Unit tests for src/core/SkPoint.cpp and its header
|
|
|
|
#include "SkPoint.h"
|
|
#include "SkRect.h"
|
|
#include "Test.h"
|
|
|
|
static void test_casts(skiatest::Reporter* reporter) {
|
|
SkPoint p = { 0, 0 };
|
|
SkRect r = { 0, 0, 0, 0 };
|
|
|
|
const SkScalar* pPtr = SkTCast<const SkScalar*>(&p);
|
|
const SkScalar* rPtr = SkTCast<const SkScalar*>(&r);
|
|
|
|
REPORTER_ASSERT(reporter, p.asScalars() == pPtr);
|
|
REPORTER_ASSERT(reporter, r.asScalars() == rPtr);
|
|
}
|
|
|
|
// Tests SkPoint::Normalize() for this (x,y)
|
|
static void test_Normalize(skiatest::Reporter* reporter,
|
|
SkScalar x, SkScalar y) {
|
|
SkPoint point;
|
|
point.set(x, y);
|
|
SkScalar oldLength = point.length();
|
|
SkScalar returned = SkPoint::Normalize(&point);
|
|
SkScalar newLength = point.length();
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(returned, oldLength));
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(newLength, SK_Scalar1));
|
|
}
|
|
|
|
// Tests that SkPoint::length() and SkPoint::Length() both return
|
|
// approximately expectedLength for this (x,y).
|
|
static void test_length(skiatest::Reporter* reporter, SkScalar x, SkScalar y,
|
|
SkScalar expectedLength) {
|
|
SkPoint point;
|
|
point.set(x, y);
|
|
SkScalar s1 = point.length();
|
|
SkScalar s2 = SkPoint::Length(x, y);
|
|
//The following should be exactly the same, but need not be.
|
|
//See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=323
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(s1, s2));
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(s1, expectedLength));
|
|
|
|
test_Normalize(reporter, x, y);
|
|
}
|
|
|
|
// Ugh. Windows compiler can dive into other .cpp files, and sometimes
|
|
// notices that I will generate an overflow... which is exactly the point
|
|
// of this test!
|
|
//
|
|
// To avoid this warning, I need to convince the compiler that I might not
|
|
// use that big value, hence this hacky helper function: reporter is
|
|
// ALWAYS non-null. (shhhhhh, don't tell the compiler that).
|
|
template <typename T> T get_value(skiatest::Reporter* reporter, T value) {
|
|
return reporter ? value : 0;
|
|
}
|
|
|
|
// On linux gcc, 32bit, we are seeing the compiler propagate up the value
|
|
// of SkPoint::length() as a double (which we use sometimes to avoid overflow
|
|
// during the computation), even though the signature says float (SkScalar).
|
|
//
|
|
// force_as_float is meant to capture our latest technique (horrible as
|
|
// it is) to force the value to be a float, so we can test whether it was
|
|
// finite or not.
|
|
static float force_as_float(skiatest::Reporter* reporter, float value) {
|
|
uint32_t storage;
|
|
memcpy(&storage, &value, 4);
|
|
// even the pair of memcpy calls are not sufficient, since those seem to
|
|
// be no-op'd, so we add a runtime tests (just like get_value) to force
|
|
// the compiler to give us an actual float.
|
|
if (NULL == reporter) {
|
|
storage = ~storage;
|
|
}
|
|
memcpy(&value, &storage, 4);
|
|
return value;
|
|
}
|
|
|
|
// test that we handle very large values correctly. i.e. that we can
|
|
// successfully normalize something whose mag overflows a float.
|
|
static void test_overflow(skiatest::Reporter* reporter) {
|
|
SkScalar bigFloat = get_value(reporter, 3.4e38f);
|
|
SkPoint pt = { bigFloat, bigFloat };
|
|
|
|
SkScalar length = pt.length();
|
|
length = force_as_float(reporter, length);
|
|
|
|
// expect this to be non-finite, but dump the results if not.
|
|
if (SkScalarIsFinite(length)) {
|
|
SkDebugf("length(%g, %g) == %g\n", pt.fX, pt.fY, length);
|
|
REPORTER_ASSERT(reporter, !SkScalarIsFinite(length));
|
|
}
|
|
|
|
// this should succeed, even though we can't represent length
|
|
REPORTER_ASSERT(reporter, pt.setLength(SK_Scalar1));
|
|
|
|
// now that pt is normalized, we check its length
|
|
length = pt.length();
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(length, SK_Scalar1));
|
|
}
|
|
|
|
// test that we handle very small values correctly. i.e. that we can
|
|
// report failure if we try to normalize them.
|
|
static void test_underflow(skiatest::Reporter* reporter) {
|
|
SkPoint pt = { 1.0e-37f, 1.0e-37f };
|
|
const SkPoint empty = { 0, 0 };
|
|
|
|
REPORTER_ASSERT(reporter, 0 == SkPoint::Normalize(&pt));
|
|
REPORTER_ASSERT(reporter, pt == empty);
|
|
|
|
REPORTER_ASSERT(reporter, !pt.setLength(SK_Scalar1));
|
|
REPORTER_ASSERT(reporter, pt == empty);
|
|
}
|
|
|
|
DEF_TEST(Point, reporter) {
|
|
test_casts(reporter);
|
|
|
|
static const struct {
|
|
SkScalar fX;
|
|
SkScalar fY;
|
|
SkScalar fLength;
|
|
} gRec[] = {
|
|
{ SkIntToScalar(3), SkIntToScalar(4), SkIntToScalar(5) },
|
|
{ 0.6f, 0.8f, SK_Scalar1 },
|
|
};
|
|
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) {
|
|
test_length(reporter, gRec[i].fX, gRec[i].fY, gRec[i].fLength);
|
|
}
|
|
|
|
test_underflow(reporter);
|
|
test_overflow(reporter);
|
|
}
|
|
|
|
DEF_TEST(Point_setLengthFast, reporter) {
|
|
// Scale a (1,1) point to a bunch of different lengths,
|
|
// making sure the slow and fast paths are within 0.1%.
|
|
const float tests[] = { 1.0f, 0.0f, 1.0e-37f, 3.4e38f, 42.0f, 0.00012f };
|
|
|
|
const SkPoint kOne = {1.0f, 1.0f};
|
|
for (unsigned i = 0; i < SK_ARRAY_COUNT(tests); i++) {
|
|
SkPoint slow = kOne, fast = kOne;
|
|
|
|
slow.setLength(tests[i]);
|
|
fast.setLengthFast(tests[i]);
|
|
|
|
if (slow.length() < FLT_MIN && fast.length() < FLT_MIN) continue;
|
|
|
|
SkScalar ratio = slow.length() / fast.length();
|
|
REPORTER_ASSERT(reporter, ratio > 0.999f);
|
|
REPORTER_ASSERT(reporter, ratio < 1.001f);
|
|
}
|
|
}
|