skia2/experimental/skotty/Skotty.cpp
Florin Malita 5f9102f291 [skotty,sksg] Initial matte layer support
TBR=
Change-Id: I5b689f5d7b0d147fa200cf5bffe476077085cb19
Reviewed-on: https://skia-review.googlesource.com/93300
Reviewed-by: Florin Malita <fmalita@chromium.org>
Commit-Queue: Florin Malita <fmalita@chromium.org>
2018-01-11 19:32:45 +00:00

985 lines
33 KiB
C++

/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Skotty.h"
#include "SkCanvas.h"
#include "SkottyAnimator.h"
#include "SkottyPriv.h"
#include "SkottyProperties.h"
#include "SkData.h"
#include "SkImage.h"
#include "SkMakeUnique.h"
#include "SkOSPath.h"
#include "SkPaint.h"
#include "SkParse.h"
#include "SkPath.h"
#include "SkPoint.h"
#include "SkSGColor.h"
#include "SkSGDraw.h"
#include "SkSGGroup.h"
#include "SkSGImage.h"
#include "SkSGInvalidationController.h"
#include "SkSGMaskEffect.h"
#include "SkSGMerge.h"
#include "SkSGOpacityEffect.h"
#include "SkSGPath.h"
#include "SkSGRect.h"
#include "SkSGTransform.h"
#include "SkSGTrimEffect.h"
#include "SkStream.h"
#include "SkTArray.h"
#include "SkTHash.h"
#include <cmath>
#include <unordered_map>
#include <vector>
#include "stdlib.h"
namespace skotty {
namespace {
using AssetMap = SkTHashMap<SkString, const Json::Value*>;
struct AttachContext {
const ResourceProvider& fResources;
const AssetMap& fAssets;
SkTArray<std::unique_ptr<AnimatorBase>>& fAnimators;
};
bool LogFail(const Json::Value& json, const char* msg) {
const auto dump = json.toStyledString();
LOG("!! %s: %s", msg, dump.c_str());
return false;
}
// This is the workhorse for binding properties: depending on whether the property is animated,
// it will either apply immediately or instantiate and attach a keyframe animator.
template <typename ValT, typename NodeT>
bool BindProperty(const Json::Value& jprop, AttachContext* ctx, const sk_sp<NodeT>& node,
typename Animator<ValT, NodeT>::ApplyFuncT&& apply) {
if (!jprop.isObject())
return false;
const auto& jpropA = jprop["a"];
const auto& jpropK = jprop["k"];
// Older Json versions don't have an "a" animation marker.
// For those, we attempt to parse both ways.
if (jpropA.isNull() || !ParseBool(jpropA, "false")) {
ValT val;
if (ValueTraits<ValT>::Parse(jpropK, &val)) {
// Static property.
apply(node.get(), val);
return true;
}
if (!jpropA.isNull()) {
return LogFail(jprop, "Could not parse (explicit) static property");
}
}
// Keyframe property.
using AnimatorT = Animator<ValT, NodeT>;
auto animator = AnimatorT::Make(ParseFrames<ValT>(jpropK), node, std::move(apply));
if (!animator) {
return LogFail(jprop, "Could not parse keyframed property");
}
ctx->fAnimators.push_back(std::move(animator));
return true;
}
sk_sp<sksg::Matrix> AttachMatrix(const Json::Value& t, AttachContext* ctx,
sk_sp<sksg::Matrix> parentMatrix) {
if (!t.isObject())
return nullptr;
auto matrix = sksg::Matrix::Make(SkMatrix::I(), std::move(parentMatrix));
auto composite = sk_make_sp<CompositeTransform>(matrix);
auto anchor_attached = BindProperty<VectorValue>(t["a"], ctx, composite,
[](CompositeTransform* node, const VectorValue& a) {
node->setAnchorPoint(ValueTraits<VectorValue>::As<SkPoint>(a));
});
auto position_attached = BindProperty<VectorValue>(t["p"], ctx, composite,
[](CompositeTransform* node, const VectorValue& p) {
node->setPosition(ValueTraits<VectorValue>::As<SkPoint>(p));
});
auto scale_attached = BindProperty<VectorValue>(t["s"], ctx, composite,
[](CompositeTransform* node, const VectorValue& s) {
node->setScale(ValueTraits<VectorValue>::As<SkVector>(s));
});
auto rotation_attached = BindProperty<ScalarValue>(t["r"], ctx, composite,
[](CompositeTransform* node, const ScalarValue& r) {
node->setRotation(r);
});
auto skew_attached = BindProperty<ScalarValue>(t["sk"], ctx, composite,
[](CompositeTransform* node, const ScalarValue& sk) {
node->setSkew(sk);
});
auto skewaxis_attached = BindProperty<ScalarValue>(t["sa"], ctx, composite,
[](CompositeTransform* node, const ScalarValue& sa) {
node->setSkewAxis(sa);
});
if (!anchor_attached &&
!position_attached &&
!scale_attached &&
!rotation_attached &&
!skew_attached &&
!skewaxis_attached) {
LogFail(t, "Could not parse transform");
return nullptr;
}
return matrix;
}
sk_sp<sksg::RenderNode> AttachOpacity(const Json::Value& jtransform, AttachContext* ctx,
sk_sp<sksg::RenderNode> childNode) {
if (!jtransform.isObject() || !childNode)
return childNode;
// This is more peeky than other attachers, because we want to avoid redundant opacity
// nodes for the extremely common case of static opaciy == 100.
const auto& opacity = jtransform["o"];
if (opacity.isObject() &&
!ParseBool(opacity["a"], true) &&
ParseScalar(opacity["k"], -1) == 100) {
// Ignoring static full opacity.
return childNode;
}
auto opacityNode = sksg::OpacityEffect::Make(childNode);
BindProperty<ScalarValue>(opacity, ctx, opacityNode,
[](sksg::OpacityEffect* node, const ScalarValue& o) {
// BM opacity is [0..100]
node->setOpacity(o * 0.01f);
});
return opacityNode;
}
sk_sp<sksg::RenderNode> AttachShape(const Json::Value&, AttachContext* ctx);
sk_sp<sksg::RenderNode> AttachComposition(const Json::Value&, AttachContext* ctx);
sk_sp<sksg::RenderNode> AttachShapeGroup(const Json::Value& jgroup, AttachContext* ctx) {
SkASSERT(jgroup.isObject());
return AttachShape(jgroup["it"], ctx);
}
sk_sp<sksg::GeometryNode> AttachPathGeometry(const Json::Value& jpath, AttachContext* ctx) {
SkASSERT(jpath.isObject());
auto path_node = sksg::Path::Make();
auto path_attached = BindProperty<ShapeValue>(jpath["ks"], ctx, path_node,
[](sksg::Path* node, const ShapeValue& p) { node->setPath(p); });
if (path_attached)
LOG("** Attached path geometry - verbs: %d\n", path_node->getPath().countVerbs());
return path_attached ? path_node : nullptr;
}
sk_sp<sksg::GeometryNode> AttachRRectGeometry(const Json::Value& jrect, AttachContext* ctx) {
SkASSERT(jrect.isObject());
auto rect_node = sksg::RRect::Make();
auto composite = sk_make_sp<CompositeRRect>(rect_node);
auto p_attached = BindProperty<VectorValue>(jrect["p"], ctx, composite,
[](CompositeRRect* node, const VectorValue& p) {
node->setPosition(ValueTraits<VectorValue>::As<SkPoint>(p));
});
auto s_attached = BindProperty<VectorValue>(jrect["s"], ctx, composite,
[](CompositeRRect* node, const VectorValue& s) {
node->setSize(ValueTraits<VectorValue>::As<SkSize>(s));
});
auto r_attached = BindProperty<ScalarValue>(jrect["r"], ctx, composite,
[](CompositeRRect* node, const ScalarValue& r) {
node->setRadius(SkSize::Make(r, r));
});
if (!p_attached && !s_attached && !r_attached) {
return nullptr;
}
LOG("** Attached (r)rect geometry\n");
return rect_node;
}
sk_sp<sksg::GeometryNode> AttachEllipseGeometry(const Json::Value& jellipse, AttachContext* ctx) {
SkASSERT(jellipse.isObject());
auto rect_node = sksg::RRect::Make();
auto composite = sk_make_sp<CompositeRRect>(rect_node);
auto p_attached = BindProperty<VectorValue>(jellipse["p"], ctx, composite,
[](CompositeRRect* node, const VectorValue& p) {
node->setPosition(ValueTraits<VectorValue>::As<SkPoint>(p));
});
auto s_attached = BindProperty<VectorValue>(jellipse["s"], ctx, composite,
[](CompositeRRect* node, const VectorValue& s) {
const auto sz = ValueTraits<VectorValue>::As<SkSize>(s);
node->setSize(sz);
node->setRadius(SkSize::Make(sz.width() / 2, sz.height() / 2));
});
if (!p_attached && !s_attached) {
return nullptr;
}
LOG("** Attached ellipse geometry\n");
return rect_node;
}
sk_sp<sksg::GeometryNode> AttachPolystarGeometry(const Json::Value& jstar, AttachContext* ctx) {
SkASSERT(jstar.isObject());
static constexpr CompositePolyStar::Type gTypes[] = {
CompositePolyStar::Type::kStar, // "sy": 1
CompositePolyStar::Type::kPoly, // "sy": 2
};
const auto type = ParseInt(jstar["sy"], 0) - 1;
if (type < 0 || type >= SkTo<int>(SK_ARRAY_COUNT(gTypes))) {
LogFail(jstar, "Unknown polystar type");
return nullptr;
}
auto path_node = sksg::Path::Make();
auto composite = sk_make_sp<CompositePolyStar>(path_node, gTypes[type]);
BindProperty<VectorValue>(jstar["p"], ctx, composite,
[](CompositePolyStar* node, const VectorValue& p) {
node->setPosition(ValueTraits<VectorValue>::As<SkPoint>(p));
});
BindProperty<ScalarValue>(jstar["pt"], ctx, composite,
[](CompositePolyStar* node, const ScalarValue& pt) {
node->setPointCount(pt);
});
BindProperty<ScalarValue>(jstar["ir"], ctx, composite,
[](CompositePolyStar* node, const ScalarValue& ir) {
node->setInnerRadius(ir);
});
BindProperty<ScalarValue>(jstar["or"], ctx, composite,
[](CompositePolyStar* node, const ScalarValue& otr) {
node->setOuterRadius(otr);
});
BindProperty<ScalarValue>(jstar["is"], ctx, composite,
[](CompositePolyStar* node, const ScalarValue& is) {
node->setInnerRoundness(is);
});
BindProperty<ScalarValue>(jstar["os"], ctx, composite,
[](CompositePolyStar* node, const ScalarValue& os) {
node->setOuterRoundness(os);
});
BindProperty<ScalarValue>(jstar["r"], ctx, composite,
[](CompositePolyStar* node, const ScalarValue& r) {
node->setRotation(r);
});
return path_node;
}
sk_sp<sksg::Color> AttachColorPaint(const Json::Value& obj, AttachContext* ctx) {
SkASSERT(obj.isObject());
auto color_node = sksg::Color::Make(SK_ColorBLACK);
color_node->setAntiAlias(true);
auto composite = sk_make_sp<CompositeColor>(color_node);
auto color_attached = BindProperty<VectorValue>(obj["c"], ctx, composite,
[](CompositeColor* node, const VectorValue& c) {
node->setColor(ValueTraits<VectorValue>::As<SkColor>(c));
});
auto opacity_attached = BindProperty<ScalarValue>(obj["o"], ctx, composite,
[](CompositeColor* node, const ScalarValue& o) {
node->setOpacity(o);
});
return (color_attached || opacity_attached) ? color_node : nullptr;
}
sk_sp<sksg::PaintNode> AttachFillPaint(const Json::Value& jfill, AttachContext* ctx) {
SkASSERT(jfill.isObject());
auto color = AttachColorPaint(jfill, ctx);
if (color) {
LOG("** Attached color fill: 0x%x\n", color->getColor());
}
return color;
}
sk_sp<sksg::PaintNode> AttachStrokePaint(const Json::Value& jstroke, AttachContext* ctx) {
SkASSERT(jstroke.isObject());
auto stroke_node = AttachColorPaint(jstroke, ctx);
if (!stroke_node)
return nullptr;
LOG("** Attached color stroke: 0x%x\n", stroke_node->getColor());
stroke_node->setStyle(SkPaint::kStroke_Style);
auto width_attached = BindProperty<ScalarValue>(jstroke["w"], ctx, stroke_node,
[](sksg::Color* node, const ScalarValue& w) {
node->setStrokeWidth(w);
});
if (!width_attached)
return nullptr;
stroke_node->setStrokeMiter(ParseScalar(jstroke["ml"], 4));
static constexpr SkPaint::Join gJoins[] = {
SkPaint::kMiter_Join,
SkPaint::kRound_Join,
SkPaint::kBevel_Join,
};
stroke_node->setStrokeJoin(gJoins[SkTPin<int>(ParseInt(jstroke["lj"], 1) - 1,
0, SK_ARRAY_COUNT(gJoins) - 1)]);
static constexpr SkPaint::Cap gCaps[] = {
SkPaint::kButt_Cap,
SkPaint::kRound_Cap,
SkPaint::kSquare_Cap,
};
stroke_node->setStrokeCap(gCaps[SkTPin<int>(ParseInt(jstroke["lc"], 1) - 1,
0, SK_ARRAY_COUNT(gCaps) - 1)]);
return stroke_node;
}
std::vector<sk_sp<sksg::GeometryNode>> AttachMergeGeometryEffect(
const Json::Value& jmerge, AttachContext* ctx, std::vector<sk_sp<sksg::GeometryNode>>&& geos) {
std::vector<sk_sp<sksg::GeometryNode>> merged;
static constexpr sksg::Merge::Mode gModes[] = {
sksg::Merge::Mode::kMerge, // "mm": 1
sksg::Merge::Mode::kUnion, // "mm": 2
sksg::Merge::Mode::kDifference, // "mm": 3
sksg::Merge::Mode::kIntersect, // "mm": 4
sksg::Merge::Mode::kXOR , // "mm": 5
};
const auto mode = gModes[SkTPin<int>(ParseInt(jmerge["mm"], 1) - 1,
0, SK_ARRAY_COUNT(gModes) - 1)];
merged.push_back(sksg::Merge::Make(std::move(geos), mode));
LOG("** Attached merge path effect, mode: %d\n", mode);
return merged;
}
std::vector<sk_sp<sksg::GeometryNode>> AttachTrimGeometryEffect(
const Json::Value& jtrim, AttachContext* ctx, std::vector<sk_sp<sksg::GeometryNode>>&& geos) {
enum class Mode {
kMerged, // "m": 1
kSeparate, // "m": 2
} gModes[] = { Mode::kMerged, Mode::kSeparate };
const auto mode = gModes[SkTPin<int>(ParseInt(jtrim["m"], 1) - 1,
0, SK_ARRAY_COUNT(gModes) - 1)];
std::vector<sk_sp<sksg::GeometryNode>> inputs;
if (mode == Mode::kMerged) {
inputs.push_back(sksg::Merge::Make(std::move(geos), sksg::Merge::Mode::kMerge));
} else {
inputs = std::move(geos);
}
std::vector<sk_sp<sksg::GeometryNode>> trimmed;
trimmed.reserve(inputs.size());
for (const auto& i : inputs) {
const auto trim = sksg::TrimEffect::Make(i);
trimmed.push_back(trim);
BindProperty<ScalarValue>(jtrim["s"], ctx, trim,
[](sksg::TrimEffect* node, const ScalarValue& s) {
node->setStart(s * 0.01f);
});
BindProperty<ScalarValue>(jtrim["e"], ctx, trim,
[](sksg::TrimEffect* node, const ScalarValue& e) {
node->setEnd(e * 0.01f);
});
// TODO: "offset" doesn't currently work the same as BM - figure out what's going on.
BindProperty<ScalarValue>(jtrim["o"], ctx, trim,
[](sksg::TrimEffect* node, const ScalarValue& o) {
node->setOffset(o * 0.01f);
});
}
return trimmed;
}
using GeometryAttacherT = sk_sp<sksg::GeometryNode> (*)(const Json::Value&, AttachContext*);
static constexpr GeometryAttacherT gGeometryAttachers[] = {
AttachPathGeometry,
AttachRRectGeometry,
AttachEllipseGeometry,
AttachPolystarGeometry,
};
using PaintAttacherT = sk_sp<sksg::PaintNode> (*)(const Json::Value&, AttachContext*);
static constexpr PaintAttacherT gPaintAttachers[] = {
AttachFillPaint,
AttachStrokePaint,
};
using GroupAttacherT = sk_sp<sksg::RenderNode> (*)(const Json::Value&, AttachContext*);
static constexpr GroupAttacherT gGroupAttachers[] = {
AttachShapeGroup,
};
using GeometryEffectAttacherT =
std::vector<sk_sp<sksg::GeometryNode>> (*)(const Json::Value&,
AttachContext*,
std::vector<sk_sp<sksg::GeometryNode>>&&);
static constexpr GeometryEffectAttacherT gGeometryEffectAttachers[] = {
AttachMergeGeometryEffect,
AttachTrimGeometryEffect,
};
enum class ShapeType {
kGeometry,
kGeometryEffect,
kPaint,
kGroup,
kTransform,
};
struct ShapeInfo {
const char* fTypeString;
ShapeType fShapeType;
uint32_t fAttacherIndex; // index into respective attacher tables
};
const ShapeInfo* FindShapeInfo(const Json::Value& shape) {
static constexpr ShapeInfo gShapeInfo[] = {
{ "el", ShapeType::kGeometry , 2 }, // ellipse -> AttachEllipseGeometry
{ "fl", ShapeType::kPaint , 0 }, // fill -> AttachFillPaint
{ "gr", ShapeType::kGroup , 0 }, // group -> AttachShapeGroup
{ "mm", ShapeType::kGeometryEffect, 0 }, // merge -> AttachMergeGeometryEffect
{ "rc", ShapeType::kGeometry , 1 }, // rrect -> AttachRRectGeometry
{ "sh", ShapeType::kGeometry , 0 }, // shape -> AttachPathGeometry
{ "sr", ShapeType::kGeometry , 3 }, // polystar -> AttachPolyStarGeometry
{ "st", ShapeType::kPaint , 1 }, // stroke -> AttachStrokePaint
{ "tm", ShapeType::kGeometryEffect, 1 }, // trim -> AttachTrimGeometryEffect
{ "tr", ShapeType::kTransform , 0 }, // transform -> In-place handler
};
if (!shape.isObject())
return nullptr;
const auto& type = shape["ty"];
if (!type.isString())
return nullptr;
const auto* info = bsearch(type.asCString(),
gShapeInfo,
SK_ARRAY_COUNT(gShapeInfo),
sizeof(ShapeInfo),
[](const void* key, const void* info) {
return strcmp(static_cast<const char*>(key),
static_cast<const ShapeInfo*>(info)->fTypeString);
});
return static_cast<const ShapeInfo*>(info);
}
sk_sp<sksg::RenderNode> AttachShape(const Json::Value& shapeArray, AttachContext* ctx) {
if (!shapeArray.isArray())
return nullptr;
// (https://helpx.adobe.com/after-effects/using/overview-shape-layers-paths-vector.html#groups_and_render_order_for_shapes_and_shape_attributes)
//
// Render order for shapes within a shape layer
//
// The rules for rendering a shape layer are similar to the rules for rendering a composition
// that contains nested compositions:
//
// * Within a group, the shape at the bottom of the Timeline panel stacking order is rendered
// first.
//
// * All path operations within a group are performed before paint operations. This means,
// for example, that the stroke follows the distortions in the path made by the Wiggle Paths
// path operation. Path operations within a group are performed from top to bottom.
//
// * Paint operations within a group are performed from the bottom to the top in the Timeline
// panel stacking order. This means, for example, that a stroke is rendered on top of
// (in front of) a stroke that appears after it in the Timeline panel.
//
sk_sp<sksg::Group> shape_group = sksg::Group::Make();
sk_sp<sksg::RenderNode> xformed_group = shape_group;
std::vector<sk_sp<sksg::GeometryNode>> geos;
std::vector<sk_sp<sksg::RenderNode>> draws;
for (const auto& s : shapeArray) {
const auto* info = FindShapeInfo(s);
if (!info) {
LogFail(s.isObject() ? s["ty"] : s, "Unknown shape");
continue;
}
switch (info->fShapeType) {
case ShapeType::kGeometry: {
SkASSERT(info->fAttacherIndex < SK_ARRAY_COUNT(gGeometryAttachers));
if (auto geo = gGeometryAttachers[info->fAttacherIndex](s, ctx)) {
geos.push_back(std::move(geo));
}
} break;
case ShapeType::kGeometryEffect: {
SkASSERT(info->fAttacherIndex < SK_ARRAY_COUNT(gGeometryEffectAttachers));
geos = gGeometryEffectAttachers[info->fAttacherIndex](s, ctx, std::move(geos));
} break;
case ShapeType::kPaint: {
SkASSERT(info->fAttacherIndex < SK_ARRAY_COUNT(gPaintAttachers));
if (auto paint = gPaintAttachers[info->fAttacherIndex](s, ctx)) {
for (const auto& geo : geos) {
draws.push_back(sksg::Draw::Make(geo, paint));
}
}
} break;
case ShapeType::kGroup: {
SkASSERT(info->fAttacherIndex < SK_ARRAY_COUNT(gGroupAttachers));
if (auto group = gGroupAttachers[info->fAttacherIndex](s, ctx)) {
draws.push_back(std::move(group));
}
} break;
case ShapeType::kTransform: {
// TODO: BM appears to transform the geometry, not the draw op itself.
if (auto matrix = AttachMatrix(s, ctx, nullptr)) {
xformed_group = sksg::Transform::Make(std::move(xformed_group),
std::move(matrix));
}
xformed_group = AttachOpacity(s, ctx, std::move(xformed_group));
} break;
}
}
if (draws.empty()) {
return nullptr;
}
for (auto draw = draws.rbegin(); draw != draws.rend(); ++draw) {
shape_group->addChild(std::move(*draw));
}
LOG("** Attached shape: %zd draws.\n", draws.size());
return xformed_group;
}
sk_sp<sksg::RenderNode> AttachCompLayer(const Json::Value& layer, AttachContext* ctx) {
SkASSERT(layer.isObject());
auto refId = ParseString(layer["refId"], "");
if (refId.isEmpty()) {
LOG("!! Comp layer missing refId\n");
return nullptr;
}
const auto* comp = ctx->fAssets.find(refId);
if (!comp) {
LOG("!! Pre-comp not found: '%s'\n", refId.c_str());
return nullptr;
}
// TODO: cycle detection
return AttachComposition(**comp, ctx);
}
sk_sp<sksg::RenderNode> AttachSolidLayer(const Json::Value& jlayer, AttachContext*) {
SkASSERT(jlayer.isObject());
const auto size = SkSize::Make(ParseScalar(jlayer["sw"], -1),
ParseScalar(jlayer["sh"], -1));
const auto hex = ParseString(jlayer["sc"], "");
uint32_t c;
if (size.isEmpty() ||
!hex.startsWith("#") ||
!SkParse::FindHex(hex.c_str() + 1, &c)) {
LogFail(jlayer, "Could not parse solid layer");
return nullptr;
}
const SkColor color = 0xff000000 | c;
return sksg::Draw::Make(sksg::Rect::Make(SkRect::MakeSize(size)),
sksg::Color::Make(color));
}
sk_sp<sksg::RenderNode> AttachImageAsset(const Json::Value& jimage, AttachContext* ctx) {
SkASSERT(jimage.isObject());
const auto name = ParseString(jimage["p"], ""),
path = ParseString(jimage["u"], "");
if (name.isEmpty())
return nullptr;
// TODO: plumb resource paths explicitly to ResourceProvider?
const auto resName = path.isEmpty() ? name : SkOSPath::Join(path.c_str(), name.c_str());
const auto resStream = ctx->fResources.openStream(resName.c_str());
if (!resStream || !resStream->hasLength()) {
LOG("!! Could not load image resource: %s\n", resName.c_str());
return nullptr;
}
// TODO: non-intrisic image sizing
return sksg::Image::Make(
SkImage::MakeFromEncoded(SkData::MakeFromStream(resStream.get(), resStream->getLength())));
}
sk_sp<sksg::RenderNode> AttachImageLayer(const Json::Value& layer, AttachContext* ctx) {
SkASSERT(layer.isObject());
auto refId = ParseString(layer["refId"], "");
if (refId.isEmpty()) {
LOG("!! Image layer missing refId\n");
return nullptr;
}
const auto* jimage = ctx->fAssets.find(refId);
if (!jimage) {
LOG("!! Image asset not found: '%s'\n", refId.c_str());
return nullptr;
}
return AttachImageAsset(**jimage, ctx);
}
sk_sp<sksg::RenderNode> AttachNullLayer(const Json::Value& layer, AttachContext*) {
SkASSERT(layer.isObject());
// Null layers are used solely to drive dependent transforms,
// but we use free-floating sksg::Matrices for that purpose.
return nullptr;
}
sk_sp<sksg::RenderNode> AttachShapeLayer(const Json::Value& layer, AttachContext* ctx) {
SkASSERT(layer.isObject());
LOG("** Attaching shape layer ind: %d\n", ParseInt(layer["ind"], 0));
return AttachShape(layer["shapes"], ctx);
}
sk_sp<sksg::RenderNode> AttachTextLayer(const Json::Value& layer, AttachContext*) {
SkASSERT(layer.isObject());
LOG("?? Text layer stub\n");
return nullptr;
}
struct AttachLayerContext {
AttachLayerContext(const Json::Value& jlayers, AttachContext* ctx)
: fLayerList(jlayers), fCtx(ctx) {}
const Json::Value& fLayerList;
AttachContext* fCtx;
std::unordered_map<const Json::Value*, sk_sp<sksg::Matrix>> fLayerMatrixCache;
std::unordered_map<int, const Json::Value*> fLayerIndexCache;
sk_sp<sksg::RenderNode> fCurrentMatte;
const Json::Value* findLayer(int index) {
SkASSERT(fLayerList.isArray());
if (index < 0) {
return nullptr;
}
const auto cached = fLayerIndexCache.find(index);
if (cached != fLayerIndexCache.end()) {
return cached->second;
}
for (const auto& l : fLayerList) {
if (!l.isObject()) {
continue;
}
if (ParseInt(l["ind"], -1) == index) {
fLayerIndexCache.insert(std::make_pair(index, &l));
return &l;
}
}
return nullptr;
}
sk_sp<sksg::Matrix> AttachLayerMatrix(const Json::Value& jlayer) {
SkASSERT(jlayer.isObject());
const auto cached = fLayerMatrixCache.find(&jlayer);
if (cached != fLayerMatrixCache.end()) {
return cached->second;
}
const auto* parentLayer = this->findLayer(ParseInt(jlayer["parent"], -1));
// TODO: cycle detection?
auto parentMatrix = (parentLayer && parentLayer != &jlayer)
? this->AttachLayerMatrix(*parentLayer) : nullptr;
auto layerMatrix = AttachMatrix(jlayer["ks"], fCtx, std::move(parentMatrix));
fLayerMatrixCache.insert(std::make_pair(&jlayer, layerMatrix));
return layerMatrix;
}
};
sk_sp<sksg::RenderNode> AttachLayer(const Json::Value& jlayer,
AttachLayerContext* layerCtx) {
if (!jlayer.isObject())
return nullptr;
using LayerAttacher = sk_sp<sksg::RenderNode> (*)(const Json::Value&, AttachContext*);
static constexpr LayerAttacher gLayerAttachers[] = {
AttachCompLayer, // 'ty': 0
AttachSolidLayer, // 'ty': 1
AttachImageLayer, // 'ty': 2
AttachNullLayer, // 'ty': 3
AttachShapeLayer, // 'ty': 4
AttachTextLayer, // 'ty': 5
};
int type = ParseInt(jlayer["ty"], -1);
if (type < 0 || type >= SkTo<int>(SK_ARRAY_COUNT(gLayerAttachers))) {
return nullptr;
}
// Layer content.
auto layer = gLayerAttachers[type](jlayer, layerCtx->fCtx);
if (auto layerMatrix = layerCtx->AttachLayerMatrix(jlayer)) {
// Optional layer transform.
layer = sksg::Transform::Make(std::move(layer), std::move(layerMatrix));
}
// Optional layer opacity.
layer = AttachOpacity(jlayer["ks"], layerCtx->fCtx, std::move(layer));
// TODO: we should also disable related/inactive animators.
class Activator final : public AnimatorBase {
public:
Activator(sk_sp<sksg::OpacityEffect> controlNode, float in, float out)
: fControlNode(std::move(controlNode))
, fIn(in)
, fOut(out) {}
void tick(float t) override {
// Keep the layer fully transparent except for its [in..out] lifespan.
// (note: opacity == 0 disables rendering, while opacity == 1 is a noop)
fControlNode->setOpacity(t >= fIn && t <= fOut ? 1 : 0);
}
private:
const sk_sp<sksg::OpacityEffect> fControlNode;
const float fIn,
fOut;
};
auto layerControl = sksg::OpacityEffect::Make(std::move(layer));
const auto in = ParseScalar(jlayer["ip"], 0),
out = ParseScalar(jlayer["op"], in);
if (in >= out || ! layerControl)
return nullptr;
layerCtx->fCtx->fAnimators.push_back(skstd::make_unique<Activator>(layerControl, in, out));
if (ParseBool(jlayer["td"], false)) {
// This layer is a matte. We apply it as a mask to the next layer.
layerCtx->fCurrentMatte = std::move(layerControl);
return nullptr;
}
if (layerCtx->fCurrentMatte) {
// There is a pending matte. Apply and reset.
return sksg::MaskEffect::Make(std::move(layerControl), std::move(layerCtx->fCurrentMatte));
}
return layerControl;
}
sk_sp<sksg::RenderNode> AttachComposition(const Json::Value& comp, AttachContext* ctx) {
if (!comp.isObject())
return nullptr;
const auto& jlayers = comp["layers"];
if (!jlayers.isArray())
return nullptr;
SkSTArray<16, sk_sp<sksg::RenderNode>, true> layers;
AttachLayerContext layerCtx(jlayers, ctx);
for (const auto& l : jlayers) {
if (auto layer_fragment = AttachLayer(l, &layerCtx)) {
layers.push_back(std::move(layer_fragment));
}
}
if (layers.empty()) {
return nullptr;
}
// Layers are painted in bottom->top order.
auto comp_group = sksg::Group::Make();
for (int i = layers.count() - 1; i >= 0; --i) {
comp_group->addChild(std::move(layers[i]));
}
LOG("** Attached composition '%s': %d layers.\n",
ParseString(comp["id"], "").c_str(), layers.count());
return comp_group;
}
} // namespace
std::unique_ptr<Animation> Animation::Make(SkStream* stream, const ResourceProvider& res) {
if (!stream->hasLength()) {
// TODO: handle explicit buffering?
LOG("!! cannot parse streaming content\n");
return nullptr;
}
Json::Value json;
{
auto data = SkData::MakeFromStream(stream, stream->getLength());
if (!data) {
LOG("!! could not read stream\n");
return nullptr;
}
Json::Reader reader;
auto dataStart = static_cast<const char*>(data->data());
if (!reader.parse(dataStart, dataStart + data->size(), json, false) || !json.isObject()) {
LOG("!! failed to parse json: %s\n", reader.getFormattedErrorMessages().c_str());
return nullptr;
}
}
const auto version = ParseString(json["v"], "");
const auto size = SkSize::Make(ParseScalar(json["w"], -1), ParseScalar(json["h"], -1));
const auto fps = ParseScalar(json["fr"], -1);
if (size.isEmpty() || version.isEmpty() || fps < 0) {
LOG("!! invalid animation params (version: %s, size: [%f %f], frame rate: %f)",
version.c_str(), size.width(), size.height(), fps);
return nullptr;
}
return std::unique_ptr<Animation>(new Animation(res, std::move(version), size, fps, json));
}
std::unique_ptr<Animation> Animation::MakeFromFile(const char path[], const ResourceProvider* res) {
class DirectoryResourceProvider final : public ResourceProvider {
public:
explicit DirectoryResourceProvider(SkString dir) : fDir(std::move(dir)) {}
std::unique_ptr<SkStream> openStream(const char resource[]) const override {
const auto resPath = SkOSPath::Join(fDir.c_str(), resource);
return SkStream::MakeFromFile(resPath.c_str());
}
private:
const SkString fDir;
};
const auto jsonStream = SkStream::MakeFromFile(path);
if (!jsonStream)
return nullptr;
std::unique_ptr<ResourceProvider> defaultProvider;
if (!res) {
defaultProvider = skstd::make_unique<DirectoryResourceProvider>(SkOSPath::Dirname(path));
}
return Make(jsonStream.get(), res ? *res : *defaultProvider);
}
Animation::Animation(const ResourceProvider& resources,
SkString version, const SkSize& size, SkScalar fps, const Json::Value& json)
: fVersion(std::move(version))
, fSize(size)
, fFrameRate(fps)
, fInPoint(ParseScalar(json["ip"], 0))
, fOutPoint(SkTMax(ParseScalar(json["op"], SK_ScalarMax), fInPoint)) {
AssetMap assets;
for (const auto& asset : json["assets"]) {
if (!asset.isObject()) {
continue;
}
assets.set(ParseString(asset["id"], ""), &asset);
}
AttachContext ctx = { resources, assets, fAnimators };
fDom = AttachComposition(json, &ctx);
// In case the client calls render before the first tick.
this->animationTick(0);
LOG("** Attached %d animators\n", fAnimators.count());
}
Animation::~Animation() = default;
void Animation::render(SkCanvas* canvas, const SkRect* dstR) const {
if (!fDom)
return;
sksg::InvalidationController ic;
fDom->revalidate(&ic, SkMatrix::I());
// TODO: proper inval
SkAutoCanvasRestore restore(canvas, true);
const SkRect srcR = SkRect::MakeSize(this->size());
if (dstR) {
canvas->concat(SkMatrix::MakeRectToRect(srcR, *dstR, SkMatrix::kCenter_ScaleToFit));
}
canvas->clipRect(srcR);
fDom->render(canvas);
if (!fShowInval)
return;
SkPaint fill, stroke;
fill.setAntiAlias(true);
fill.setColor(0x40ff0000);
stroke.setAntiAlias(true);
stroke.setColor(0xffff0000);
stroke.setStyle(SkPaint::kStroke_Style);
for (const auto& r : ic) {
canvas->drawRect(r, fill);
canvas->drawRect(r, stroke);
}
}
void Animation::animationTick(SkMSec ms) {
// 't' in the BM model really means 'frame #'
auto t = static_cast<float>(ms) * fFrameRate / 1000;
t = fInPoint + std::fmod(t, fOutPoint - fInPoint);
// TODO: this can be optimized quite a bit with some sorting/state tracking.
for (const auto& a : fAnimators) {
a->tick(t);
}
}
} // namespace skotty