skia2/include/core/SkString.h
joshualitt 4dabf83cbe Revert of Add config options to run different GPU APIs to dm and nanobench (patchset #18 id:340001 of https://codereview.chromium.org/1490113005/ )
Reason for revert:
This CL changed 1200 images on gold, when I wouldn't expect any diffs from the description.

Original issue's description:
> Add config options to run different GPU APIs to dm and nanobench
>
> Add extended config specification form that can be used to run different
> gpu backend with different APIs.
>
> The configs can be specified with the form:
> gpu(api=string,dit=bool,nvpr=bool,samples=int)
>
> This replaces and removes the --gpuAPI flag.
>
> All existing configs should still work.
>
> Adds following documentation:
>
> out/Debug/dm --help config
>
> Flags:
>     --config:	type: string	default: 565 8888 gpu nonrendering
>         Options: 565 8888 debug gpu gpudebug gpudft gpunull msaa16 msaa4
>         nonrendering null nullgpu nvprmsaa16 nvprmsaa4 pdf pdf_poppler skp svg
>         xps or use extended form 'backend(option=value,...)'.
>
>         Extended form: 'backend(option=value,...)'
>
>         Possible backends and options:
>
>         gpu(api=string,dit=bool,nvpr=bool,samples=int)	GPU backend
>         	api	type: string	default: native.
>         	    Select graphics API to use with gpu backend.
>         	    Options:
>         		native			Use platform default OpenGL or OpenGL ES backend.
>         		gl    			Use OpenGL.
>         		gles  			Use OpenGL ES.
>         		debug 			Use debug OpenGL.
>         		null  			Use null OpenGL.
>         	dit	type: bool	default: false.
>         	    Use device independent text.
>         	nvpr	type: bool	default: false.
>         	    Use NV_path_rendering OpenGL and OpenGL ES extension.
>         	samples	type: int	default: 0.
>         	    Use multisampling with N samples.
>
>         Predefined configs:
>
>         	gpu      	= gpu()
>         	msaa4    	= gpu(samples=4)
>         	msaa16   	= gpu(samples=16)
>         	nvprmsaa4	= gpu(nvpr=true,samples=4)
>         	nvprmsaa16	= gpu(nvpr=true,samples=16)
>         	gpudft    	= gpu(dit=true)
>         	gpudebug  	= gpu(api=debug)
>         	gpunull   	= gpu(api=null)
>         	debug     	= gpu(api=debug)
>         	nullgpu   	= gpu(api=null)
>
> BUG=skia:2992
>
> Committed: https://skia.googlesource.com/skia/+/e13ca329fca4c28cf4e078561f591ab27b743d23
> GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1490113005
>
> Committed: https://skia.googlesource.com/skia/+/c8b4336444e7b90382e04e33665fb3b8490b825b

TBR=mtklein@google.com,bsalomon@google.com,scroggo@google.com,kkinnunen@nvidia.com
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=skia:2992

Review URL: https://codereview.chromium.org/1536963002
2015-12-18 06:02:18 -08:00

274 lines
10 KiB
C++

/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkString_DEFINED
#define SkString_DEFINED
#include "SkScalar.h"
#include "SkTArray.h"
#include <stdarg.h>
/* Some helper functions for C strings
*/
static bool SkStrStartsWith(const char string[], const char prefixStr[]) {
SkASSERT(string);
SkASSERT(prefixStr);
return !strncmp(string, prefixStr, strlen(prefixStr));
}
static bool SkStrStartsWith(const char string[], const char prefixChar) {
SkASSERT(string);
return (prefixChar == *string);
}
bool SkStrEndsWith(const char string[], const char suffixStr[]);
bool SkStrEndsWith(const char string[], const char suffixChar);
int SkStrStartsWithOneOf(const char string[], const char prefixes[]);
static int SkStrFind(const char string[], const char substring[]) {
const char *first = strstr(string, substring);
if (NULL == first) return -1;
return SkToS32(first - &string[0]);
}
static int SkStrFindLastOf(const char string[], const char subchar) {
const char* last = strrchr(string, subchar);
if (NULL == last) return -1;
return SkToS32(last - &string[0]);
}
static bool SkStrContains(const char string[], const char substring[]) {
SkASSERT(string);
SkASSERT(substring);
return (-1 != SkStrFind(string, substring));
}
static bool SkStrContains(const char string[], const char subchar) {
SkASSERT(string);
char tmp[2];
tmp[0] = subchar;
tmp[1] = '\0';
return (-1 != SkStrFind(string, tmp));
}
static inline char *SkStrDup(const char string[]) {
char *ret = (char *) sk_malloc_throw(strlen(string)+1);
memcpy(ret,string,strlen(string)+1);
return ret;
}
/*
* The SkStrAppend... methods will write into the provided buffer, assuming it is large enough.
* Each method has an associated const (e.g. SkStrAppendU32_MaxSize) which will be the largest
* value needed for that method's buffer.
*
* char storage[SkStrAppendU32_MaxSize];
* SkStrAppendU32(storage, value);
*
* Note : none of the SkStrAppend... methods write a terminating 0 to their buffers. Instead,
* the methods return the ptr to the end of the written part of the buffer. This can be used
* to compute the length, and/or know where to write a 0 if that is desired.
*
* char storage[SkStrAppendU32_MaxSize + 1];
* char* stop = SkStrAppendU32(storage, value);
* size_t len = stop - storage;
* *stop = 0; // valid, since storage was 1 byte larger than the max.
*/
#define SkStrAppendU32_MaxSize 10
char* SkStrAppendU32(char buffer[], uint32_t);
#define SkStrAppendU64_MaxSize 20
char* SkStrAppendU64(char buffer[], uint64_t, int minDigits);
#define SkStrAppendS32_MaxSize (SkStrAppendU32_MaxSize + 1)
char* SkStrAppendS32(char buffer[], int32_t);
#define SkStrAppendS64_MaxSize (SkStrAppendU64_MaxSize + 1)
char* SkStrAppendS64(char buffer[], int64_t, int minDigits);
/**
* Floats have at most 8 significant digits, so we limit our %g to that.
* However, the total string could be 15 characters: -1.2345678e-005
*
* In theory we should only expect up to 2 digits for the exponent, but on
* some platforms we have seen 3 (as in the example above).
*/
#define SkStrAppendScalar_MaxSize 15
/**
* Write the scaler in decimal format into buffer, and return a pointer to
* the next char after the last one written. Note: a terminating 0 is not
* written into buffer, which must be at least SkStrAppendScalar_MaxSize.
* Thus if the caller wants to add a 0 at the end, buffer must be at least
* SkStrAppendScalar_MaxSize + 1 bytes large.
*/
#define SkStrAppendScalar SkStrAppendFloat
char* SkStrAppendFloat(char buffer[], float);
char* SkStrAppendFixed(char buffer[], SkFixed);
/** \class SkString
Light weight class for managing strings. Uses reference
counting to make string assignments and copies very fast
with no extra RAM cost. Assumes UTF8 encoding.
*/
class SK_API SkString {
public:
SkString();
explicit SkString(size_t len);
explicit SkString(const char text[]);
SkString(const char text[], size_t len);
SkString(const SkString&);
~SkString();
bool isEmpty() const { return 0 == fRec->fLength; }
size_t size() const { return (size_t) fRec->fLength; }
const char* c_str() const { return fRec->data(); }
char operator[](size_t n) const { return this->c_str()[n]; }
bool equals(const SkString&) const;
bool equals(const char text[]) const;
bool equals(const char text[], size_t len) const;
bool startsWith(const char prefixStr[]) const {
return SkStrStartsWith(fRec->data(), prefixStr);
}
bool startsWith(const char prefixChar) const {
return SkStrStartsWith(fRec->data(), prefixChar);
}
bool endsWith(const char suffixStr[]) const {
return SkStrEndsWith(fRec->data(), suffixStr);
}
bool endsWith(const char suffixChar) const {
return SkStrEndsWith(fRec->data(), suffixChar);
}
bool contains(const char substring[]) const {
return SkStrContains(fRec->data(), substring);
}
bool contains(const char subchar) const {
return SkStrContains(fRec->data(), subchar);
}
int find(const char substring[]) const {
return SkStrFind(fRec->data(), substring);
}
int findLastOf(const char subchar) const {
return SkStrFindLastOf(fRec->data(), subchar);
}
friend bool operator==(const SkString& a, const SkString& b) {
return a.equals(b);
}
friend bool operator!=(const SkString& a, const SkString& b) {
return !a.equals(b);
}
// these methods edit the string
SkString& operator=(const SkString&);
SkString& operator=(const char text[]);
char* writable_str();
char& operator[](size_t n) { return this->writable_str()[n]; }
void reset();
/** Destructive resize, does not preserve contents. */
void resize(size_t len) { this->set(NULL, len); }
void set(const SkString& src) { *this = src; }
void set(const char text[]);
void set(const char text[], size_t len);
void setUTF16(const uint16_t[]);
void setUTF16(const uint16_t[], size_t len);
void insert(size_t offset, const SkString& src) { this->insert(offset, src.c_str(), src.size()); }
void insert(size_t offset, const char text[]);
void insert(size_t offset, const char text[], size_t len);
void insertUnichar(size_t offset, SkUnichar);
void insertS32(size_t offset, int32_t value);
void insertS64(size_t offset, int64_t value, int minDigits = 0);
void insertU32(size_t offset, uint32_t value);
void insertU64(size_t offset, uint64_t value, int minDigits = 0);
void insertHex(size_t offset, uint32_t value, int minDigits = 0);
void insertScalar(size_t offset, SkScalar);
void append(const SkString& str) { this->insert((size_t)-1, str); }
void append(const char text[]) { this->insert((size_t)-1, text); }
void append(const char text[], size_t len) { this->insert((size_t)-1, text, len); }
void appendUnichar(SkUnichar uni) { this->insertUnichar((size_t)-1, uni); }
void appendS32(int32_t value) { this->insertS32((size_t)-1, value); }
void appendS64(int64_t value, int minDigits = 0) { this->insertS64((size_t)-1, value, minDigits); }
void appendU32(uint32_t value) { this->insertU32((size_t)-1, value); }
void appendU64(uint64_t value, int minDigits = 0) { this->insertU64((size_t)-1, value, minDigits); }
void appendHex(uint32_t value, int minDigits = 0) { this->insertHex((size_t)-1, value, minDigits); }
void appendScalar(SkScalar value) { this->insertScalar((size_t)-1, value); }
void prepend(const SkString& str) { this->insert(0, str); }
void prepend(const char text[]) { this->insert(0, text); }
void prepend(const char text[], size_t len) { this->insert(0, text, len); }
void prependUnichar(SkUnichar uni) { this->insertUnichar(0, uni); }
void prependS32(int32_t value) { this->insertS32(0, value); }
void prependS64(int32_t value, int minDigits = 0) { this->insertS64(0, value, minDigits); }
void prependHex(uint32_t value, int minDigits = 0) { this->insertHex(0, value, minDigits); }
void prependScalar(SkScalar value) { this->insertScalar((size_t)-1, value); }
void printf(const char format[], ...) SK_PRINTF_LIKE(2, 3);
void appendf(const char format[], ...) SK_PRINTF_LIKE(2, 3);
void appendVAList(const char format[], va_list);
void prependf(const char format[], ...) SK_PRINTF_LIKE(2, 3);
void prependVAList(const char format[], va_list);
void remove(size_t offset, size_t length);
SkString& operator+=(const SkString& s) { this->append(s); return *this; }
SkString& operator+=(const char text[]) { this->append(text); return *this; }
SkString& operator+=(const char c) { this->append(&c, 1); return *this; }
/**
* Swap contents between this and other. This function is guaranteed
* to never fail or throw.
*/
void swap(SkString& other);
private:
struct Rec {
public:
uint32_t fLength; // logically size_t, but we want it to stay 32bits
int32_t fRefCnt;
char fBeginningOfData;
char* data() { return &fBeginningOfData; }
const char* data() const { return &fBeginningOfData; }
};
Rec* fRec;
#ifdef SK_DEBUG
void validate() const;
#else
void validate() const {}
#endif
static const Rec gEmptyRec;
static Rec* AllocRec(const char text[], size_t len);
static Rec* RefRec(Rec*);
};
/// Creates a new string and writes into it using a printf()-style format.
SkString SkStringPrintf(const char* format, ...);
// Specialized to take advantage of SkString's fast swap path. The unspecialized function is
// declared in SkTypes.h and called by SkTSort.
template <> inline void SkTSwap(SkString& a, SkString& b) {
a.swap(b);
}
// Split str on any characters in delimiters into out. (Think, strtok with a sane API.)
void SkStrSplit(const char* str, const char* delimiters, SkTArray<SkString>* out);
#endif