skia2/include/gpu/GrPaint.h
dvonbeck 9b03e7b29d GrFP can express distance vector field req., program builder declares variable for it
This update allows fragment processors to require a field of vectors to the nearest edge. This requirement propagates:

- from child FPs to their parent
- from parent FPs to the GrPaint
- from GrPaint through the PipelineBuilder into GrPipeline
- acessed from GrPipeline by GrGLSLProgramBuilder

GrGLSL generates a variable for the distance vector and passes it down to the GeometryProcessor->emitCode() method.

This CL's base is the CL for adding the BevelNormalSource API: https://codereview.chromium.org/2080993002

BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2114993002

Committed: https://skia.googlesource.com/skia/+/4ef6dfa7089c092c67b0d5ec34e89c1e319af196
Review-Url: https://codereview.chromium.org/2114993002
2016-08-01 11:01:56 -07:00

185 lines
6.9 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrPaint_DEFINED
#define GrPaint_DEFINED
#include "GrColor.h"
#include "GrColorSpaceXform.h"
#include "GrXferProcessor.h"
#include "effects/GrPorterDuffXferProcessor.h"
#include "GrFragmentProcessor.h"
#include "SkRefCnt.h"
#include "SkRegion.h"
#include "SkXfermode.h"
/**
* The paint describes how color and coverage are computed at each pixel by GrContext draw
* functions and the how color is blended with the destination pixel.
*
* The paint allows installation of custom color and coverage stages. New types of stages are
* created by subclassing GrProcessor.
*
* The primitive color computation starts with the color specified by setColor(). This color is the
* input to the first color stage. Each color stage feeds its output to the next color stage.
*
* Fractional pixel coverage follows a similar flow. The coverage is initially the value specified
* by setCoverage(). This is input to the first coverage stage. Coverage stages are chained
* together in the same manner as color stages. The output of the last stage is modulated by any
* fractional coverage produced by anti-aliasing. This last step produces the final coverage, C.
*
* setXPFactory is used to control blending between the output color and dest. It also implements
* the application of fractional coverage from the coverage pipeline.
*/
class GrPaint {
public:
GrPaint();
GrPaint(const GrPaint& paint) { *this = paint; }
~GrPaint() { }
/**
* The initial color of the drawn primitive. Defaults to solid white.
*/
void setColor4f(const GrColor4f& color) { fColor = color; }
const GrColor4f& getColor4f() const { return fColor; }
/**
* Legacy getter, until all code handles 4f directly.
*/
GrColor getColor() const { return fColor.toGrColor(); }
/**
* Should primitives be anti-aliased or not. Defaults to false.
*/
void setAntiAlias(bool aa) { fAntiAlias = aa; }
bool isAntiAlias() const { return fAntiAlias; }
/**
* Should shader output conversion from linear to sRGB be disabled.
* Only relevant if the destination is sRGB. Defaults to false.
*/
void setDisableOutputConversionToSRGB(bool srgb) { fDisableOutputConversionToSRGB = srgb; }
bool getDisableOutputConversionToSRGB() const { return fDisableOutputConversionToSRGB; }
/**
* Should sRGB inputs be allowed to perform sRGB to linear conversion. With this flag
* set to false, sRGB textures will be treated as linear (including filtering).
*/
void setAllowSRGBInputs(bool allowSRGBInputs) { fAllowSRGBInputs = allowSRGBInputs; }
bool getAllowSRGBInputs() const { return fAllowSRGBInputs; }
/**
* Does one of the fragment processors need a field of distance vectors to the nearest edge?
*/
bool usesDistanceVectorField() const { return fUsesDistanceVectorField; }
/**
* Should rendering be gamma-correct, end-to-end. Causes sRGB render targets to behave
* as such (with linear blending), and sRGB inputs to be filtered and decoded correctly.
*/
void setGammaCorrect(bool gammaCorrect) {
setDisableOutputConversionToSRGB(!gammaCorrect);
setAllowSRGBInputs(gammaCorrect);
}
void setXPFactory(sk_sp<GrXPFactory> xpFactory) {
fXPFactory = std::move(xpFactory);
}
void setPorterDuffXPFactory(SkXfermode::Mode mode) {
fXPFactory = GrPorterDuffXPFactory::Make(mode);
}
void setCoverageSetOpXPFactory(SkRegion::Op regionOp, bool invertCoverage = false);
/**
* Appends an additional color processor to the color computation.
*/
void addColorFragmentProcessor(sk_sp<GrFragmentProcessor> fp) {
SkASSERT(fp);
fUsesDistanceVectorField |= fp->usesDistanceVectorField();
fColorFragmentProcessors.push_back(std::move(fp));
}
/**
* Appends an additional coverage processor to the coverage computation.
*/
void addCoverageFragmentProcessor(sk_sp<GrFragmentProcessor> fp) {
SkASSERT(fp);
fUsesDistanceVectorField |= fp->usesDistanceVectorField();
fCoverageFragmentProcessors.push_back(std::move(fp));
}
/**
* Helpers for adding color or coverage effects that sample a texture. The matrix is applied
* to the src space position to compute texture coordinates.
*/
void addColorTextureProcessor(GrTexture*, sk_sp<GrColorSpaceXform>, const SkMatrix&);
void addCoverageTextureProcessor(GrTexture*, const SkMatrix&);
void addColorTextureProcessor(GrTexture*, sk_sp<GrColorSpaceXform>, const SkMatrix&,
const GrTextureParams&);
void addCoverageTextureProcessor(GrTexture*, const SkMatrix&, const GrTextureParams&);
int numColorFragmentProcessors() const { return fColorFragmentProcessors.count(); }
int numCoverageFragmentProcessors() const { return fCoverageFragmentProcessors.count(); }
int numTotalFragmentProcessors() const { return this->numColorFragmentProcessors() +
this->numCoverageFragmentProcessors(); }
GrXPFactory* getXPFactory() const {
return fXPFactory.get();
}
GrFragmentProcessor* getColorFragmentProcessor(int i) const {
return fColorFragmentProcessors[i].get();
}
GrFragmentProcessor* getCoverageFragmentProcessor(int i) const {
return fCoverageFragmentProcessors[i].get();
}
GrPaint& operator=(const GrPaint& paint) {
fAntiAlias = paint.fAntiAlias;
fDisableOutputConversionToSRGB = paint.fDisableOutputConversionToSRGB;
fAllowSRGBInputs = paint.fAllowSRGBInputs;
fUsesDistanceVectorField = paint.fUsesDistanceVectorField;
fColor = paint.fColor;
fColorFragmentProcessors = paint.fColorFragmentProcessors;
fCoverageFragmentProcessors = paint.fCoverageFragmentProcessors;
fXPFactory = paint.fXPFactory;
return *this;
}
/**
* Returns true if the paint's output color will be constant after blending. If the result is
* true, constantColor will be updated to contain the constant color. Note that we can conflate
* coverage and color, so the actual values written to pixels with partial coverage may still
* not seem constant, even if this function returns true.
*/
bool isConstantBlendedColor(GrColor* constantColor) const;
private:
mutable sk_sp<GrXPFactory> fXPFactory;
SkSTArray<4, sk_sp<GrFragmentProcessor>> fColorFragmentProcessors;
SkSTArray<2, sk_sp<GrFragmentProcessor>> fCoverageFragmentProcessors;
bool fAntiAlias;
bool fDisableOutputConversionToSRGB;
bool fAllowSRGBInputs;
bool fUsesDistanceVectorField;
GrColor4f fColor;
};
#endif