skia2/include/core/SkTArray.h
bsalomon@google.com 4fa6694c58 Resubmit 2289 with fix for glsl version
git-svn-id: http://skia.googlecode.com/svn/trunk@2291 2bbb7eff-a529-9590-31e7-b0007b416f81
2011-09-20 19:06:12 +00:00

441 lines
12 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkTArray_DEFINED
#define SkTArray_DEFINED
#include <new>
#include "SkTypes.h"
#include "SkTemplates.h"
// DATA_TYPE indicates that T has a trivial cons, destructor
// and can be shallow-copied
template <typename T, bool DATA_TYPE = false> class SkTArray {
public:
/**
* Creates an empty array with no initial storage
*/
SkTArray() {
fCount = 0;
fReserveCount = gMIN_ALLOC_COUNT;
fAllocCount = 0;
fMemArray = NULL;
fPreAllocMemArray = NULL;
}
/**
* Creates an empty array that will preallocate space for reserveCount
* elements.
*/
explicit SkTArray(int reserveCount) {
SkASSERT(reserveCount >= 0);
fCount = 0;
fReserveCount = reserveCount > gMIN_ALLOC_COUNT ? reserveCount :
gMIN_ALLOC_COUNT;
fAllocCount = fReserveCount;
fMemArray = sk_malloc_throw(sizeof(T) * fReserveCount);
fPreAllocMemArray = NULL;
}
/**
* Creates an empty array that will use the passed storage block until it
* is insufficiently large to hold the entire array.
*/
template <int N>
SkTArray(SkAlignedSTStorage<N,T>* storage) {
SkASSERT(N > 0);
fCount = 0;
fReserveCount = N;
fAllocCount = N;
fMemArray = storage->get();
fPreAllocMemArray = storage->get();
}
/**
* Creates an empty array that will use the passed memory block until the
* count exceeds preAllocCount. Be careful not to use this constructor
* when you really want the (T*, int) version.
*/
SkTArray(void* preAllocStorage, int preAllocCount) {
SkASSERT(preAllocCount >= 0);
// we allow NULL,0 args and revert to the default cons. behavior
// this makes it possible for a owner-object to use same constructor
// to get either prealloc or nonprealloc behavior based using same line
SkASSERT((NULL == preAllocStorage) == !preAllocCount);
fCount = 0;
fReserveCount = preAllocCount > 0 ? preAllocCount :
gMIN_ALLOC_COUNT;
fAllocCount = preAllocCount;
fMemArray = preAllocStorage;
fPreAllocMemArray = preAllocStorage;
}
/**
* Copies one array to another. The new array will be heap allocated.
*/
explicit SkTArray(const SkTArray& array) {
fCount = array.count();
fReserveCount = gMIN_ALLOC_COUNT;
fAllocCount = SkMax32(fReserveCount, fCount);
fMemArray = sk_malloc_throw(sizeof(T) * fAllocCount);
fPreAllocMemArray = NULL;
if (DATA_TYPE) {
memcpy(fMemArray, array.fMemArray, sizeof(T) * fCount);
} else {
for (int i = 0; i < fCount; ++i) {
new (fItemArray + i) T(array[i]);
}
}
}
/**
* Creates a SkTArray by copying contents of a standard C array. The new
* array will be heap allocated. Be careful not to use this constructor
* when you really want the (void*, int) version.
*/
SkTArray(const T* array, int count) {
SkASSERT(count >= 0);
fCount = count;
fReserveCount = gMIN_ALLOC_COUNT;
fAllocCount = SkMax32(fReserveCount, fCount);
fMemArray = sk_malloc_throw(sizeof(T) * fAllocCount);
fPreAllocMemArray = NULL;
if (DATA_TYPE) {
memcpy(fMemArray, array, sizeof(T) * fCount);
} else {
for (int i = 0; i < fCount; ++i) {
new (fItemArray + i) T(array[i]);
}
}
}
/**
* Copy another array, using preallocated storage if preAllocCount >=
* array.count(). Otherwise preAllocStorage is only used if the array
* shrinks to fit.
*/
SkTArray(const SkTArray& array,
void* preAllocStorage, int preAllocCount) {
SkASSERT(preAllocCount >= 0);
// for same reason as non-copying cons we allow NULL, 0 for prealloc
SkASSERT((NULL == preAllocStorage) == !preAllocCount);
fCount = array.count();
fReserveCount = preAllocCount > 0 ? preAllocCount :
gMIN_ALLOC_COUNT;
fPreAllocMemArray = preAllocStorage;
if (fReserveCount >= fCount && preAllocCount) {
fAllocCount = fReserveCount;
fMemArray = preAllocStorage;
} else {
fAllocCount = SkMax32(fCount, fReserveCount);
fMemArray = sk_malloc_throw(fAllocCount * sizeof(T));
}
if (DATA_TYPE) {
memcpy(fMemArray, array.fMemArray, sizeof(T) * fCount);
} else {
for (int i = 0; i < fCount; ++i) {
new (fItemArray + i) T(array[i]);
}
}
}
/**
* Copy C array to SkTArray, using preallocated storage if preAllocCount >=
* preAllocCount. Otherwise preAllocStorage is only used if the array
* shrinks to fit.
*/
SkTArray(const T* array, int count,
void* preAllocStorage, int preAllocCount) {
SkASSERT(count >= 0);
SkASSERT(preAllocCount >= 0);
// for same reason as non-copying cons we allow NULL, 0 for prealloc
SkASSERT((NULL == preAllocStorage) == !preAllocCount);
fCount = count;
fReserveCount = (preAllocCount > 0) ? preAllocCount :
gMIN_ALLOC_COUNT;
fPreAllocMemArray = preAllocStorage;
if (fReserveCount >= fCount && preAllocCount) {
fAllocCount = fReserveCount;
fMemArray = preAllocStorage;
} else {
fAllocCount = SkMax32(fCount, fReserveCount);
fMemArray = sk_malloc_throw(fAllocCount * sizeof(T));
}
if (DATA_TYPE) {
memcpy(fMemArray, array, sizeof(T) * fCount);
} else {
for (int i = 0; i < fCount; ++i) {
new (fItemArray + i) T(array[i]);
}
}
}
/**
* assign copy of array to this
*/
SkTArray& operator =(const SkTArray& array) {
for (int i = 0; i < fCount; ++i) {
fItemArray[i].~T();
}
fCount = 0;
checkRealloc((int)array.count());
fCount = array.count();
if (DATA_TYPE) {
memcpy(fMemArray, array.fMemArray, sizeof(T) * fCount);
} else {
for (int i = 0; i < fCount; ++i) {
new (fItemArray + i) T(array[i]);
}
}
return *this;
}
~SkTArray() {
for (int i = 0; i < fCount; ++i) {
fItemArray[i].~T();
}
if (fMemArray != fPreAllocMemArray) {
sk_free(fMemArray);
}
}
/**
* Resets to count() == 0
*/
void reset() { this->pop_back_n(fCount); }
/**
* Number of elements in the array.
*/
int count() const { return fCount; }
/**
* Is the array empty.
*/
bool empty() const { return !fCount; }
/**
* Adds 1 new default-constructed T value and returns in by reference. Note
* the reference only remains valid until the next call that adds or removes
* elements.
*/
T& push_back() {
checkRealloc(1);
new ((char*)fMemArray+sizeof(T)*fCount) T;
++fCount;
return fItemArray[fCount-1];
}
/**
* Version of above that uses a copy constructor to initialize the new item
*/
T& push_back(const T& t) {
checkRealloc(1);
new ((char*)fMemArray+sizeof(T)*fCount) T(t);
++fCount;
return fItemArray[fCount-1];
}
/**
* Allocates n more default T values, and returns the address of the start
* of that new range. Note: this address is only valid until the next API
* call made on the array that might add or remove elements.
*/
T* push_back_n(int n) {
SkASSERT(n >= 0);
checkRealloc(n);
for (int i = 0; i < n; ++i) {
new (fItemArray + fCount + i) T;
}
fCount += n;
return fItemArray + fCount - n;
}
/**
* Version of above that uses a copy constructor to initialize all n items
* to the same T.
*/
T* push_back_n(int n, const T& t) {
SkASSERT(n >= 0);
checkRealloc(n);
for (int i = 0; i < n; ++i) {
new (fItemArray + fCount + i) T(t);
}
fCount += n;
return fItemArray + fCount - n;
}
/**
* Version of above that uses a copy constructor to initialize the n items
* to separate T values.
*/
T* push_back_n(int n, const T t[]) {
SkASSERT(n >= 0);
checkRealloc(n);
for (int i = 0; i < n; ++i) {
new (fItemArray + fCount + i) T(t[i]);
}
fCount += n;
return fItemArray + fCount - n;
}
/**
* Removes the last element. Not safe to call when count() == 0.
*/
void pop_back() {
SkASSERT(fCount > 0);
--fCount;
fItemArray[fCount].~T();
checkRealloc(0);
}
/**
* Removes the last n elements. Not safe to call when count() < n.
*/
void pop_back_n(int n) {
SkASSERT(n >= 0);
SkASSERT(fCount >= n);
fCount -= n;
for (int i = 0; i < n; ++i) {
fItemArray[i].~T();
}
checkRealloc(0);
}
/**
* Pushes or pops from the back to resize. Pushes will be default
* initialized.
*/
void resize_back(int newCount) {
SkASSERT(newCount >= 0);
if (newCount > fCount) {
push_back_n(newCount - fCount);
} else if (newCount < fCount) {
pop_back_n(fCount - newCount);
}
}
/**
* Get the i^th element.
*/
T& operator[] (int i) {
SkASSERT(i < fCount);
SkASSERT(i >= 0);
return fItemArray[i];
}
const T& operator[] (int i) const {
SkASSERT(i < fCount);
SkASSERT(i >= 0);
return fItemArray[i];
}
/**
* equivalent to operator[](0)
*/
T& front() { SkASSERT(fCount > 0); return fItemArray[0];}
const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];}
/**
* equivalent to operator[](count() - 1)
*/
T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];}
const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];}
/**
* equivalent to operator[](count()-1-i)
*/
T& fromBack(int i) {
SkASSERT(i >= 0);
SkASSERT(i < fCount);
return fItemArray[fCount - i - 1];
}
const T& fromBack(int i) const {
SkASSERT(i >= 0);
SkASSERT(i < fCount);
return fItemArray[fCount - i - 1];
}
private:
static const int gMIN_ALLOC_COUNT = 8;
inline void checkRealloc(int delta) {
SkASSERT(fCount >= 0);
SkASSERT(fAllocCount >= 0);
SkASSERT(-delta <= fCount);
int newCount = fCount + delta;
int fNewAllocCount = fAllocCount;
if (newCount > fAllocCount) {
fNewAllocCount = SkMax32(newCount + ((newCount + 1) >> 1),
fReserveCount);
} else if (newCount < fAllocCount / 3) {
fNewAllocCount = SkMax32(fAllocCount / 2, fReserveCount);
}
if (fNewAllocCount != fAllocCount) {
fAllocCount = fNewAllocCount;
char* fNewMemArray;
if (fAllocCount == fReserveCount && NULL != fPreAllocMemArray) {
fNewMemArray = (char*) fPreAllocMemArray;
} else {
fNewMemArray = (char*) sk_malloc_throw(fAllocCount*sizeof(T));
}
if (DATA_TYPE) {
memcpy(fNewMemArray, fMemArray, fCount * sizeof(T));
} else {
for (int i = 0; i < fCount; ++i) {
new (fNewMemArray + sizeof(T) * i) T(fItemArray[i]);
fItemArray[i].~T();
}
}
if (fMemArray != fPreAllocMemArray) {
sk_free(fMemArray);
}
fMemArray = fNewMemArray;
}
}
int fReserveCount;
int fCount;
int fAllocCount;
void* fPreAllocMemArray;
union {
T* fItemArray;
void* fMemArray;
};
};
#endif