skia2/tests/ProcessorTest.cpp
John Stiles 52cb1d059d Rename GrXferProcessor::DstProxyView to GrDstProxyView.
At present, only Xfer processors allow reading back from the destination
image since they are in charge of blending. However, we'd like to expose
the destination color to fragment processors and Runtime Effects in the
future. To make this possible, the DstProxyView will need to be
accessible outside of Xfer processors.

This CL migrates DstProxyView to be a top-level Ganesh class and fixes
up the references to it throughout Skia. It's interesting to note that
several call sites were already using typedefs to hide the class
nesting anyway.

Change-Id: I93a294aa097f9319a968503c4f2f7e4f388ff033
Bug: skia:12066
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/414899
Auto-Submit: John Stiles <johnstiles@google.com>
Reviewed-by: Greg Daniel <egdaniel@google.com>
Commit-Queue: John Stiles <johnstiles@google.com>
2021-06-02 18:00:47 +00:00

982 lines
46 KiB
C++

/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "tests/Test.h"
#include "include/gpu/GrDirectContext.h"
#include "src/gpu/GrClip.h"
#include "src/gpu/GrDirectContextPriv.h"
#include "src/gpu/GrGpuResource.h"
#include "src/gpu/GrImageInfo.h"
#include "src/gpu/GrMemoryPool.h"
#include "src/gpu/GrProxyProvider.h"
#include "src/gpu/GrResourceProvider.h"
#include "src/gpu/GrSurfaceDrawContext.h"
#include "src/gpu/SkGr.h"
#include "src/gpu/glsl/GrGLSLFragmentProcessor.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/ops/GrFillRectOp.h"
#include "src/gpu/ops/GrMeshDrawOp.h"
#include "tests/TestUtils.h"
#include <atomic>
#include <random>
namespace {
class TestOp : public GrMeshDrawOp {
public:
DEFINE_OP_CLASS_ID
static GrOp::Owner Make(GrRecordingContext* rContext,
std::unique_ptr<GrFragmentProcessor> fp) {
return GrOp::Make<TestOp>(rContext, std::move(fp));
}
const char* name() const override { return "TestOp"; }
void visitProxies(const VisitProxyFunc& func) const override {
fProcessors.visitProxies(func);
}
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
GrClampType clampType) override {
static constexpr GrProcessorAnalysisColor kUnknownColor;
SkPMColor4f overrideColor;
return fProcessors.finalize(
kUnknownColor, GrProcessorAnalysisCoverage::kNone, clip,
&GrUserStencilSettings::kUnused, caps, clampType, &overrideColor);
}
private:
friend class ::GrOp; // for ctor
TestOp(std::unique_ptr<GrFragmentProcessor> fp)
: INHERITED(ClassID()), fProcessors(std::move(fp)) {
this->setBounds(SkRect::MakeWH(100, 100), HasAABloat::kNo, IsHairline::kNo);
}
GrProgramInfo* programInfo() override { return nullptr; }
void onCreateProgramInfo(const GrCaps*,
SkArenaAlloc*,
const GrSurfaceProxyView& writeView,
GrAppliedClip&&,
const GrDstProxyView&,
GrXferBarrierFlags renderPassXferBarriers,
GrLoadOp colorLoadOp) override {}
void onPrePrepareDraws(GrRecordingContext*,
const GrSurfaceProxyView& writeView,
GrAppliedClip*,
const GrDstProxyView&,
GrXferBarrierFlags renderPassXferBarriers,
GrLoadOp colorLoadOp) override {}
void onPrepareDraws(Target* target) override { return; }
void onExecute(GrOpFlushState*, const SkRect&) override { return; }
GrProcessorSet fProcessors;
using INHERITED = GrMeshDrawOp;
};
/**
* FP used to test ref counts on owned GrGpuResources. Can also be a parent FP to test counts
* of resources owned by child FPs.
*/
class TestFP : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> child) {
return std::unique_ptr<GrFragmentProcessor>(new TestFP(std::move(child)));
}
static std::unique_ptr<GrFragmentProcessor> Make(const SkTArray<GrSurfaceProxyView>& views) {
return std::unique_ptr<GrFragmentProcessor>(new TestFP(views));
}
const char* name() const override { return "test"; }
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override {
static std::atomic<int32_t> nextKey{0};
b->add32(nextKey++);
}
std::unique_ptr<GrFragmentProcessor> clone() const override {
return std::unique_ptr<GrFragmentProcessor>(new TestFP(*this));
}
private:
TestFP(const SkTArray<GrSurfaceProxyView>& views)
: INHERITED(kTestFP_ClassID, kNone_OptimizationFlags) {
for (const GrSurfaceProxyView& view : views) {
this->registerChild(GrTextureEffect::Make(view, kUnknown_SkAlphaType));
}
}
TestFP(std::unique_ptr<GrFragmentProcessor> child)
: INHERITED(kTestFP_ClassID, kNone_OptimizationFlags) {
this->registerChild(std::move(child));
}
explicit TestFP(const TestFP& that) : INHERITED(kTestFP_ClassID, that.optimizationFlags()) {
this->cloneAndRegisterAllChildProcessors(that);
}
std::unique_ptr<GrGLSLFragmentProcessor> onMakeProgramImpl() const override {
class TestGLSLFP : public GrGLSLFragmentProcessor {
public:
TestGLSLFP() {}
void emitCode(EmitArgs& args) override {
args.fFragBuilder->codeAppendf("return half4(1);");
}
private:
};
return std::make_unique<TestGLSLFP>();
}
bool onIsEqual(const GrFragmentProcessor&) const override { return false; }
using INHERITED = GrFragmentProcessor;
};
} // namespace
DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo) {
auto context = ctxInfo.directContext();
GrProxyProvider* proxyProvider = context->priv().proxyProvider();
static constexpr SkISize kDims = {10, 10};
const GrBackendFormat format =
context->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888,
GrRenderable::kNo);
GrSwizzle swizzle = context->priv().caps()->getReadSwizzle(format, GrColorType::kRGBA_8888);
for (bool makeClone : {false, true}) {
for (int parentCnt = 0; parentCnt < 2; parentCnt++) {
auto surfaceDrawContext = GrSurfaceDrawContext::Make(
context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kApprox, {1, 1},
SkSurfaceProps());
{
sk_sp<GrTextureProxy> proxy = proxyProvider->createProxy(
format, kDims, GrRenderable::kNo, 1, GrMipmapped::kNo, SkBackingFit::kExact,
SkBudgeted::kYes, GrProtected::kNo);
{
SkTArray<GrSurfaceProxyView> views;
views.push_back({proxy, kTopLeft_GrSurfaceOrigin, swizzle});
auto fp = TestFP::Make(std::move(views));
for (int i = 0; i < parentCnt; ++i) {
fp = TestFP::Make(std::move(fp));
}
std::unique_ptr<GrFragmentProcessor> clone;
if (makeClone) {
clone = fp->clone();
}
GrOp::Owner op = TestOp::Make(context, std::move(fp));
surfaceDrawContext->addDrawOp(std::move(op));
if (clone) {
op = TestOp::Make(context, std::move(clone));
surfaceDrawContext->addDrawOp(std::move(op));
}
}
// If the fp is cloned the number of refs should increase by one (for the clone)
int expectedProxyRefs = makeClone ? 3 : 2;
CheckSingleThreadedProxyRefs(reporter, proxy.get(), expectedProxyRefs, -1);
context->flushAndSubmit();
// just one from the 'proxy' sk_sp
CheckSingleThreadedProxyRefs(reporter, proxy.get(), 1, 1);
}
}
}
}
#include "tools/flags/CommandLineFlags.h"
static DEFINE_bool(randomProcessorTest, false,
"Use non-deterministic seed for random processor tests?");
static DEFINE_int(processorSeed, 0,
"Use specific seed for processor tests. Overridden by --randomProcessorTest.");
#if GR_TEST_UTILS
static GrColor input_texel_color(int i, int j, SkScalar delta) {
// Delta must be less than 0.5 to prevent over/underflow issues with the input color
SkASSERT(delta <= 0.5);
SkColor color = SkColorSetARGB((uint8_t)(i & 0xFF),
(uint8_t)(j & 0xFF),
(uint8_t)((i + j) & 0xFF),
(uint8_t)((2 * j - i) & 0xFF));
SkColor4f color4f = SkColor4f::FromColor(color);
// We only apply delta to the r,g, and b channels. This is because we're using this
// to test the canTweakAlphaForCoverage() optimization. A processor is allowed
// to use the input color's alpha in its calculation and report this optimization.
for (int i = 0; i < 3; i++) {
if (color4f[i] > 0.5) {
color4f[i] -= delta;
} else {
color4f[i] += delta;
}
}
return color4f.premul().toBytes_RGBA();
}
void test_draw_op(GrRecordingContext* rContext,
GrSurfaceDrawContext* rtc,
std::unique_ptr<GrFragmentProcessor> fp) {
GrPaint paint;
paint.setColorFragmentProcessor(std::move(fp));
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
auto op = GrFillRectOp::MakeNonAARect(rContext, std::move(paint), SkMatrix::I(),
SkRect::MakeWH(rtc->width(), rtc->height()));
rtc->addDrawOp(std::move(op));
}
// The output buffer must be the same size as the render-target context.
void render_fp(GrDirectContext* dContext,
GrSurfaceDrawContext* rtc,
std::unique_ptr<GrFragmentProcessor> fp,
GrColor* outBuffer) {
test_draw_op(dContext, rtc, std::move(fp));
std::fill_n(outBuffer, rtc->width() * rtc->height(), 0);
auto ii = SkImageInfo::Make(rtc->dimensions(), kRGBA_8888_SkColorType, kPremul_SkAlphaType);
GrPixmap resultPM(ii, outBuffer, rtc->width()*sizeof(uint32_t));
rtc->readPixels(dContext, resultPM, {0, 0});
}
// This class is responsible for reproducibly generating a random fragment processor.
// An identical randomly-designed FP can be generated as many times as needed.
class TestFPGenerator {
public:
TestFPGenerator() = delete;
TestFPGenerator(GrDirectContext* context, GrResourceProvider* resourceProvider)
: fContext(context)
, fResourceProvider(resourceProvider)
, fInitialSeed(synthesizeInitialSeed())
, fRandomSeed(fInitialSeed) {}
uint32_t initialSeed() { return fInitialSeed; }
bool init() {
// Initializes the two test texture proxies that are available to the FP test factories.
SkRandom random{fRandomSeed};
static constexpr int kTestTextureSize = 256;
{
// Put premul data into the RGBA texture that the test FPs can optionally use.
GrColor* rgbaData = new GrColor[kTestTextureSize * kTestTextureSize];
for (int y = 0; y < kTestTextureSize; ++y) {
for (int x = 0; x < kTestTextureSize; ++x) {
rgbaData[kTestTextureSize * y + x] = input_texel_color(
random.nextULessThan(256), random.nextULessThan(256), 0.0f);
}
}
SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize,
kRGBA_8888_SkColorType, kPremul_SkAlphaType);
SkBitmap bitmap;
bitmap.installPixels(
ii, rgbaData, ii.minRowBytes(),
[](void* addr, void* context) { delete[](GrColor*) addr; }, nullptr);
bitmap.setImmutable();
auto view = std::get<0>(GrMakeUncachedBitmapProxyView(fContext, bitmap));
if (!view || !view.proxy()->instantiate(fResourceProvider)) {
SkDebugf("Unable to instantiate RGBA8888 test texture.");
return false;
}
fTestViews[0] = GrProcessorTestData::ViewInfo{view, GrColorType::kRGBA_8888,
kPremul_SkAlphaType};
}
{
// Put random values into the alpha texture that the test FPs can optionally use.
uint8_t* alphaData = new uint8_t[kTestTextureSize * kTestTextureSize];
for (int y = 0; y < kTestTextureSize; ++y) {
for (int x = 0; x < kTestTextureSize; ++x) {
alphaData[kTestTextureSize * y + x] = random.nextULessThan(256);
}
}
SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize,
kAlpha_8_SkColorType, kPremul_SkAlphaType);
SkBitmap bitmap;
bitmap.installPixels(
ii, alphaData, ii.minRowBytes(),
[](void* addr, void* context) { delete[](uint8_t*) addr; }, nullptr);
bitmap.setImmutable();
auto view = std::get<0>(GrMakeUncachedBitmapProxyView(fContext, bitmap));
if (!view || !view.proxy()->instantiate(fResourceProvider)) {
SkDebugf("Unable to instantiate A8 test texture.");
return false;
}
fTestViews[1] = GrProcessorTestData::ViewInfo{view, GrColorType::kAlpha_8,
kPremul_SkAlphaType};
}
return true;
}
void reroll() {
// Feed our current random seed into SkRandom to generate a new seed.
SkRandom random{fRandomSeed};
fRandomSeed = random.nextU();
}
std::unique_ptr<GrFragmentProcessor> make(int type, int randomTreeDepth,
std::unique_ptr<GrFragmentProcessor> inputFP) {
// This will generate the exact same randomized FP (of each requested type) each time
// it's called. Call `reroll` to get a different FP.
SkRandom random{fRandomSeed};
GrProcessorTestData testData{&random, fContext, randomTreeDepth,
SK_ARRAY_COUNT(fTestViews), fTestViews,
std::move(inputFP)};
return GrFragmentProcessorTestFactory::MakeIdx(type, &testData);
}
std::unique_ptr<GrFragmentProcessor> make(int type, int randomTreeDepth,
GrSurfaceProxyView view,
SkAlphaType alpha = kPremul_SkAlphaType) {
return make(type, randomTreeDepth, GrTextureEffect::Make(view, alpha));
}
private:
static uint32_t synthesizeInitialSeed() {
if (FLAGS_randomProcessorTest) {
std::random_device rd;
return rd();
} else {
return FLAGS_processorSeed;
}
}
GrDirectContext* fContext; // owned by caller
GrResourceProvider* fResourceProvider; // owned by caller
const uint32_t fInitialSeed;
uint32_t fRandomSeed;
GrProcessorTestData::ViewInfo fTestViews[2];
};
// Creates an array of color values from input_texel_color(), to be used as an input texture.
std::vector<GrColor> make_input_pixels(int width, int height, SkScalar delta) {
std::vector<GrColor> pixel(width * height);
for (int y = 0; y < width; ++y) {
for (int x = 0; x < height; ++x) {
pixel[width * y + x] = input_texel_color(x, y, delta);
}
}
return pixel;
}
// Creates a texture of premul colors used as the output of the fragment processor that precedes
// the fragment processor under test. An array of W*H colors are passed in as the texture data.
GrSurfaceProxyView make_input_texture(GrRecordingContext* context,
int width, int height, GrColor* pixel) {
SkImageInfo ii = SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
SkBitmap bitmap;
bitmap.installPixels(ii, pixel, ii.minRowBytes());
bitmap.setImmutable();
return std::get<0>(GrMakeUncachedBitmapProxyView(context, bitmap));
}
// We tag logged data as unpremul to avoid conversion when encoding as PNG. The input texture
// actually contains unpremul data. Also, even though we made the result data by rendering into
// a "unpremul" GrSurfaceDrawContext, our input texture is unpremul and outside of the random
// effect configuration, we didn't do anything to ensure the output is actually premul. We just
// don't currently allow kUnpremul GrSurfaceDrawContexts.
static constexpr auto kLogAlphaType = kUnpremul_SkAlphaType;
bool log_pixels(GrColor* pixels, int widthHeight, SkString* dst) {
SkImageInfo info =
SkImageInfo::Make(widthHeight, widthHeight, kRGBA_8888_SkColorType, kLogAlphaType);
SkBitmap bmp;
bmp.installPixels(info, pixels, widthHeight * sizeof(GrColor));
return BipmapToBase64DataURI(bmp, dst);
}
bool log_texture_view(GrDirectContext* dContext, GrSurfaceProxyView src, SkString* dst) {
SkImageInfo ii = SkImageInfo::Make(src.proxy()->dimensions(), kRGBA_8888_SkColorType,
kLogAlphaType);
auto sContext = GrSurfaceContext::Make(dContext, std::move(src), ii.colorInfo());
SkBitmap bm;
SkAssertResult(bm.tryAllocPixels(ii));
SkAssertResult(sContext->readPixels(dContext, bm.pixmap(), {0, 0}));
return BipmapToBase64DataURI(bm, dst);
}
bool fuzzy_color_equals(const SkPMColor4f& c1, const SkPMColor4f& c2) {
// With the loss of precision of rendering into 32-bit color, then estimating the FP's output
// from that, it is not uncommon for a valid output to differ from estimate by up to 0.01
// (really 1/128 ~ .0078, but frequently floating point issues make that tolerance a little
// too unforgiving).
static constexpr SkScalar kTolerance = 0.01f;
for (int i = 0; i < 4; i++) {
if (!SkScalarNearlyEqual(c1[i], c2[i], kTolerance)) {
return false;
}
}
return true;
}
// Given three input colors (color preceding the FP being tested) provided to the FP at the same
// local coord and the three corresponding FP outputs, this ensures that either:
// out[0] = fp * in[0].a, out[1] = fp * in[1].a, and out[2] = fp * in[2].a
// where fp is the pre-modulated color that should not be changing across frames (FP's state doesn't
// change), OR:
// out[0] = fp * in[0], out[1] = fp * in[1], and out[2] = fp * in[2]
// (per-channel modulation instead of modulation by just the alpha channel)
// It does this by estimating the pre-modulated fp color from one of the input/output pairs and
// confirms the conditions hold for the other two pairs.
// It is required that the three input colors have the same alpha as fp is allowed to be a function
// of the input alpha (but not r, g, or b).
bool legal_modulation(const GrColor in[3], const GrColor out[3]) {
// Convert to floating point, which is the number space the FP operates in (more or less)
SkPMColor4f inf[3], outf[3];
for (int i = 0; i < 3; ++i) {
inf[i] = SkPMColor4f::FromBytes_RGBA(in[i]);
outf[i] = SkPMColor4f::FromBytes_RGBA(out[i]);
}
// This test is only valid if all the input alphas are the same.
SkASSERT(inf[0].fA == inf[1].fA && inf[1].fA == inf[2].fA);
// Reconstruct the output of the FP before the shader modulated its color with the input value.
// When the original input is very small, it may cause the final output color to round
// to 0, in which case we estimate the pre-modulated color using one of the stepped frames that
// will then have a guaranteed larger channel value (since the offset will be added to it).
SkPMColor4f fpPreColorModulation = {0,0,0,0};
SkPMColor4f fpPreAlphaModulation = {0,0,0,0};
for (int i = 0; i < 4; i++) {
// Use the most stepped up frame
int maxInIdx = inf[0][i] > inf[1][i] ? 0 : 1;
maxInIdx = inf[maxInIdx][i] > inf[2][i] ? maxInIdx : 2;
const SkPMColor4f& in = inf[maxInIdx];
const SkPMColor4f& out = outf[maxInIdx];
if (in[i] > 0) {
fpPreColorModulation[i] = out[i] / in[i];
}
if (in[3] > 0) {
fpPreAlphaModulation[i] = out[i] / in[3];
}
}
// With reconstructed pre-modulated FP output, derive the expected value of fp * input for each
// of the transformed input colors.
SkPMColor4f expectedForAlphaModulation[3];
SkPMColor4f expectedForColorModulation[3];
for (int i = 0; i < 3; ++i) {
expectedForAlphaModulation[i] = fpPreAlphaModulation * inf[i].fA;
expectedForColorModulation[i] = fpPreColorModulation * inf[i];
// If the input alpha is 0 then the other channels should also be zero
// since the color is assumed to be premul. Modulating zeros by anything
// should produce zeros.
if (inf[i].fA == 0) {
SkASSERT(inf[i].fR == 0 && inf[i].fG == 0 && inf[i].fB == 0);
expectedForColorModulation[i] = expectedForAlphaModulation[i] = {0, 0, 0, 0};
}
}
bool isLegalColorModulation = fuzzy_color_equals(outf[0], expectedForColorModulation[0]) &&
fuzzy_color_equals(outf[1], expectedForColorModulation[1]) &&
fuzzy_color_equals(outf[2], expectedForColorModulation[2]);
bool isLegalAlphaModulation = fuzzy_color_equals(outf[0], expectedForAlphaModulation[0]) &&
fuzzy_color_equals(outf[1], expectedForAlphaModulation[1]) &&
fuzzy_color_equals(outf[2], expectedForAlphaModulation[2]);
// This can be enabled to print the values that caused this check to fail.
if (0 && !isLegalColorModulation && !isLegalAlphaModulation) {
SkDebugf("Color modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n",
fpPreColorModulation[0],
fpPreColorModulation[1],
fpPreColorModulation[2],
fpPreColorModulation[3]);
for (int i = 0; i < 3; ++i) {
SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> "
"(%.03f, %.03f, %.03f, %.03f) | "
"(%.03f, %.03f, %.03f, %.03f), ok: %d\n",
inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA,
outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA,
expectedForColorModulation[i].fR, expectedForColorModulation[i].fG,
expectedForColorModulation[i].fB, expectedForColorModulation[i].fA,
fuzzy_color_equals(outf[i], expectedForColorModulation[i]));
}
SkDebugf("Alpha modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n",
fpPreAlphaModulation[0],
fpPreAlphaModulation[1],
fpPreAlphaModulation[2],
fpPreAlphaModulation[3]);
for (int i = 0; i < 3; ++i) {
SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> "
"(%.03f, %.03f, %.03f, %.03f) | "
"(%.03f, %.03f, %.03f, %.03f), ok: %d\n",
inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA,
outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA,
expectedForAlphaModulation[i].fR, expectedForAlphaModulation[i].fG,
expectedForAlphaModulation[i].fB, expectedForAlphaModulation[i].fA,
fuzzy_color_equals(outf[i], expectedForAlphaModulation[i]));
}
}
return isLegalColorModulation || isLegalAlphaModulation;
}
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest, reporter, ctxInfo) {
GrDirectContext* context = ctxInfo.directContext();
GrResourceProvider* resourceProvider = context->priv().resourceProvider();
using FPFactory = GrFragmentProcessorTestFactory;
TestFPGenerator fpGenerator{context, resourceProvider};
if (!fpGenerator.init()) {
ERRORF(reporter, "Could not initialize TestFPGenerator");
return;
}
// Make the destination context for the test.
static constexpr int kRenderSize = 256;
auto rtc = GrSurfaceDrawContext::Make(
context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact,
{kRenderSize, kRenderSize}, SkSurfaceProps());
// Coverage optimization uses three frames with a linearly transformed input texture. The first
// frame has no offset, second frames add .2 and .4, which should then be present as a fixed
// difference between the frame outputs if the FP is properly following the modulation
// requirements of the coverage optimization.
static constexpr SkScalar kInputDelta = 0.2f;
std::vector<GrColor> inputPixels1 = make_input_pixels(kRenderSize, kRenderSize, 0.0f);
std::vector<GrColor> inputPixels2 =
make_input_pixels(kRenderSize, kRenderSize, 1 * kInputDelta);
std::vector<GrColor> inputPixels3 =
make_input_pixels(kRenderSize, kRenderSize, 2 * kInputDelta);
GrSurfaceProxyView inputTexture1 =
make_input_texture(context, kRenderSize, kRenderSize, inputPixels1.data());
GrSurfaceProxyView inputTexture2 =
make_input_texture(context, kRenderSize, kRenderSize, inputPixels2.data());
GrSurfaceProxyView inputTexture3 =
make_input_texture(context, kRenderSize, kRenderSize, inputPixels3.data());
// Encoded images are very verbose and this tests many potential images, so only export the
// first failure (subsequent failures have a reasonable chance of being related).
bool loggedFirstFailure = false;
bool loggedFirstWarning = false;
// Storage for the three frames required for coverage compatibility optimization testing.
// Each frame uses the correspondingly numbered inputTextureX.
std::vector<GrColor> readData1(kRenderSize * kRenderSize);
std::vector<GrColor> readData2(kRenderSize * kRenderSize);
std::vector<GrColor> readData3(kRenderSize * kRenderSize);
// Because processor factories configure themselves in random ways, this is not exhaustive.
for (int i = 0; i < FPFactory::Count(); ++i) {
int optimizedForOpaqueInput = 0;
int optimizedForCoverageAsAlpha = 0;
int optimizedForConstantOutputForInput = 0;
#ifdef __MSVC_RUNTIME_CHECKS
// This test is infuriatingly slow with MSVC runtime checks enabled
static constexpr int kMinimumTrials = 1;
static constexpr int kMaximumTrials = 1;
static constexpr int kExpectedSuccesses = 1;
#else
// We start by testing each fragment-processor 100 times, watching the optimization bits
// that appear. If we see an optimization bit appear in those first 100 trials, we keep
// running tests until we see at least five successful trials that have this optimization
// bit enabled. If we never see a particular optimization bit after 100 trials, we assume
// that this FP doesn't support that optimization at all.
static constexpr int kMinimumTrials = 100;
static constexpr int kMaximumTrials = 2000;
static constexpr int kExpectedSuccesses = 5;
#endif
for (int trial = 0;; ++trial) {
// Create a randomly-configured FP.
fpGenerator.reroll();
std::unique_ptr<GrFragmentProcessor> fp =
fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture1);
// If we have iterated enough times and seen a sufficient number of successes on each
// optimization bit that can be returned, stop running trials.
if (trial >= kMinimumTrials) {
bool moreTrialsNeeded = (optimizedForOpaqueInput > 0 &&
optimizedForOpaqueInput < kExpectedSuccesses) ||
(optimizedForCoverageAsAlpha > 0 &&
optimizedForCoverageAsAlpha < kExpectedSuccesses) ||
(optimizedForConstantOutputForInput > 0 &&
optimizedForConstantOutputForInput < kExpectedSuccesses);
if (!moreTrialsNeeded) break;
if (trial >= kMaximumTrials) {
SkDebugf("Abandoning ProcessorOptimizationValidationTest after %d trials. "
"Seed: 0x%08x, processor:\n%s",
kMaximumTrials, fpGenerator.initialSeed(), fp->dumpTreeInfo().c_str());
break;
}
}
// Skip further testing if this trial has no optimization bits enabled.
if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() &&
!fp->compatibleWithCoverageAsAlpha()) {
continue;
}
// We can make identical copies of the test FP in order to test coverage-as-alpha.
if (fp->compatibleWithCoverageAsAlpha()) {
// Create and render two identical versions of this FP, but using different input
// textures, to check coverage optimization. We don't need to do this step for
// constant-output or preserving-opacity tests.
render_fp(context, rtc.get(),
fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture2),
readData2.data());
render_fp(context, rtc.get(),
fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture3),
readData3.data());
++optimizedForCoverageAsAlpha;
}
if (fp->hasConstantOutputForConstantInput()) {
++optimizedForConstantOutputForInput;
}
if (fp->preservesOpaqueInput()) {
++optimizedForOpaqueInput;
}
// Draw base frame last so that rtc holds the original FP behavior if we need to dump
// the image to the log.
render_fp(context, rtc.get(), fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture1),
readData1.data());
// This test has a history of being flaky on a number of devices. If an FP is logically
// violating the optimizations, it's reasonable to expect it to violate requirements on
// a large number of pixels in the image. Sporadic pixel violations are more indicative
// of device errors and represents a separate problem.
#if defined(SK_BUILD_FOR_SKQP)
static constexpr int kMaxAcceptableFailedPixels = 0; // Strict when running as SKQP
#else
static constexpr int kMaxAcceptableFailedPixels = 2 * kRenderSize; // ~0.7% of the image
#endif
// Collect first optimization failure message, to be output later as a warning or an
// error depending on whether the rendering "passed" or failed.
int failedPixelCount = 0;
SkString coverageMessage;
SkString opaqueMessage;
SkString constMessage;
for (int y = 0; y < kRenderSize; ++y) {
for (int x = 0; x < kRenderSize; ++x) {
bool passing = true;
GrColor input = inputPixels1[y * kRenderSize + x];
GrColor output = readData1[y * kRenderSize + x];
if (fp->compatibleWithCoverageAsAlpha()) {
GrColor ins[3];
ins[0] = input;
ins[1] = inputPixels2[y * kRenderSize + x];
ins[2] = inputPixels3[y * kRenderSize + x];
GrColor outs[3];
outs[0] = output;
outs[1] = readData2[y * kRenderSize + x];
outs[2] = readData3[y * kRenderSize + x];
if (!legal_modulation(ins, outs)) {
passing = false;
if (coverageMessage.isEmpty()) {
coverageMessage.printf(
"\"Modulating\" processor did not match alpha-modulation "
"nor color-modulation rules.\n"
"Input: 0x%08x, Output: 0x%08x, pixel (%d, %d).",
input, output, x, y);
}
}
}
SkPMColor4f input4f = SkPMColor4f::FromBytes_RGBA(input);
SkPMColor4f output4f = SkPMColor4f::FromBytes_RGBA(output);
SkPMColor4f expected4f;
if (fp->hasConstantOutputForConstantInput(input4f, &expected4f)) {
float rDiff = fabsf(output4f.fR - expected4f.fR);
float gDiff = fabsf(output4f.fG - expected4f.fG);
float bDiff = fabsf(output4f.fB - expected4f.fB);
float aDiff = fabsf(output4f.fA - expected4f.fA);
static constexpr float kTol = 4 / 255.f;
if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) {
if (constMessage.isEmpty()) {
passing = false;
constMessage.printf(
"Processor claimed output for const input doesn't match "
"actual output.\n"
"Error: %f, Tolerance: %f, input: (%f, %f, %f, %f), "
"actual: (%f, %f, %f, %f), expected(%f, %f, %f, %f).",
std::max(rDiff, std::max(gDiff, std::max(bDiff, aDiff))),
kTol, input4f.fR, input4f.fG, input4f.fB, input4f.fA,
output4f.fR, output4f.fG, output4f.fB, output4f.fA,
expected4f.fR, expected4f.fG, expected4f.fB, expected4f.fA);
}
}
}
if (input4f.isOpaque() && fp->preservesOpaqueInput() && !output4f.isOpaque()) {
passing = false;
if (opaqueMessage.isEmpty()) {
opaqueMessage.printf(
"Processor claimed opaqueness is preserved but "
"it is not. Input: 0x%08x, Output: 0x%08x.",
input, output);
}
}
if (!passing) {
// Regardless of how many optimizations the pixel violates, count it as a
// single bad pixel.
failedPixelCount++;
}
}
}
// Finished analyzing the entire image, see if the number of pixel failures meets the
// threshold for an FP violating the optimization requirements.
if (failedPixelCount > kMaxAcceptableFailedPixels) {
ERRORF(reporter,
"Processor violated %d of %d pixels, seed: 0x%08x.\n"
"Processor:\n%s\nFirst failing pixel details are below:",
failedPixelCount, kRenderSize * kRenderSize, fpGenerator.initialSeed(),
fp->dumpTreeInfo().c_str());
// Print first failing pixel's details.
if (!coverageMessage.isEmpty()) {
ERRORF(reporter, coverageMessage.c_str());
}
if (!constMessage.isEmpty()) {
ERRORF(reporter, constMessage.c_str());
}
if (!opaqueMessage.isEmpty()) {
ERRORF(reporter, opaqueMessage.c_str());
}
if (!loggedFirstFailure) {
// Print with ERRORF to make sure the encoded image is output
SkString input;
log_texture_view(context, inputTexture1, &input);
SkString output;
log_pixels(readData1.data(), kRenderSize, &output);
ERRORF(reporter, "Input image: %s\n\n"
"===========================================================\n\n"
"Output image: %s\n", input.c_str(), output.c_str());
loggedFirstFailure = true;
}
} else if (failedPixelCount > 0) {
// Don't trigger an error, but don't just hide the failures either.
INFOF(reporter, "Processor violated %d of %d pixels (below error threshold), seed: "
"0x%08x, processor: %s", failedPixelCount, kRenderSize * kRenderSize,
fpGenerator.initialSeed(), fp->dumpInfo().c_str());
if (!coverageMessage.isEmpty()) {
INFOF(reporter, coverageMessage.c_str());
}
if (!constMessage.isEmpty()) {
INFOF(reporter, constMessage.c_str());
}
if (!opaqueMessage.isEmpty()) {
INFOF(reporter, opaqueMessage.c_str());
}
if (!loggedFirstWarning) {
SkString input;
log_texture_view(context, inputTexture1, &input);
SkString output;
log_pixels(readData1.data(), kRenderSize, &output);
INFOF(reporter, "Input image: %s\n\n"
"===========================================================\n\n"
"Output image: %s\n", input.c_str(), output.c_str());
loggedFirstWarning = true;
}
}
}
}
}
static void assert_processor_equality(skiatest::Reporter* reporter,
const GrFragmentProcessor& fp,
const GrFragmentProcessor& clone) {
REPORTER_ASSERT(reporter, !strcmp(fp.name(), clone.name()),
"\n%s", fp.dumpTreeInfo().c_str());
REPORTER_ASSERT(reporter, fp.compatibleWithCoverageAsAlpha() ==
clone.compatibleWithCoverageAsAlpha(),
"\n%s", fp.dumpTreeInfo().c_str());
REPORTER_ASSERT(reporter, fp.isEqual(clone),
"\n%s", fp.dumpTreeInfo().c_str());
REPORTER_ASSERT(reporter, fp.preservesOpaqueInput() == clone.preservesOpaqueInput(),
"\n%s", fp.dumpTreeInfo().c_str());
REPORTER_ASSERT(reporter, fp.hasConstantOutputForConstantInput() ==
clone.hasConstantOutputForConstantInput(),
"\n%s", fp.dumpTreeInfo().c_str());
REPORTER_ASSERT(reporter, fp.numChildProcessors() == clone.numChildProcessors(),
"\n%s", fp.dumpTreeInfo().c_str());
REPORTER_ASSERT(reporter, fp.usesVaryingCoords() == clone.usesVaryingCoords(),
"\n%s", fp.dumpTreeInfo().c_str());
REPORTER_ASSERT(reporter, fp.referencesSampleCoords() == clone.referencesSampleCoords(),
"\n%s", fp.dumpTreeInfo().c_str());
}
static bool verify_identical_render(skiatest::Reporter* reporter, int renderSize,
const char* processorType,
const GrColor readData1[], const GrColor readData2[]) {
// The ProcessorClone test has a history of being flaky on a number of devices. If an FP clone
// is logically wrong, it's reasonable to expect it produce a large number of pixel differences
// in the image. Sporadic pixel violations are more indicative device errors and represents a
// separate problem.
#if defined(SK_BUILD_FOR_SKQP)
const int maxAcceptableFailedPixels = 0; // Strict when running as SKQP
#else
const int maxAcceptableFailedPixels = 2 * renderSize; // ~0.002% of the pixels (size 1024*1024)
#endif
int failedPixelCount = 0;
int firstWrongX = 0;
int firstWrongY = 0;
int idx = 0;
for (int y = 0; y < renderSize; ++y) {
for (int x = 0; x < renderSize; ++x, ++idx) {
if (readData1[idx] != readData2[idx]) {
if (!failedPixelCount) {
firstWrongX = x;
firstWrongY = y;
}
++failedPixelCount;
}
if (failedPixelCount > maxAcceptableFailedPixels) {
idx = firstWrongY * renderSize + firstWrongX;
ERRORF(reporter,
"%s produced different output at (%d, %d). "
"Input color: 0x%08x, Original Output Color: 0x%08x, "
"Clone Output Color: 0x%08x.",
processorType, firstWrongX, firstWrongY, input_texel_color(x, y, 0.0f),
readData1[idx], readData2[idx]);
return false;
}
}
}
return true;
}
static void log_clone_failure(skiatest::Reporter* reporter, int renderSize,
GrDirectContext* context, const GrSurfaceProxyView& inputTexture,
GrColor pixelsFP[], GrColor pixelsClone[], GrColor pixelsRegen[]) {
// Write the images out as data URLs for inspection.
SkString inputURL, origURL, cloneURL, regenURL;
if (log_texture_view(context, inputTexture, &inputURL) &&
log_pixels(pixelsFP, renderSize, &origURL) &&
log_pixels(pixelsClone, renderSize, &cloneURL) &&
log_pixels(pixelsRegen, renderSize, &regenURL)) {
ERRORF(reporter,
"\nInput image:\n%s\n\n"
"==========================================================="
"\n\n"
"Orig output image:\n%s\n"
"==========================================================="
"\n\n"
"Clone output image:\n%s\n"
"==========================================================="
"\n\n"
"Regen output image:\n%s\n",
inputURL.c_str(), origURL.c_str(), cloneURL.c_str(), regenURL.c_str());
}
}
// Tests that a fragment processor returned by GrFragmentProcessor::clone() is equivalent to its
// progenitor.
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest, reporter, ctxInfo) {
GrDirectContext* context = ctxInfo.directContext();
GrResourceProvider* resourceProvider = context->priv().resourceProvider();
TestFPGenerator fpGenerator{context, resourceProvider};
if (!fpGenerator.init()) {
ERRORF(reporter, "Could not initialize TestFPGenerator");
return;
}
// Make the destination context for the test.
static constexpr int kRenderSize = 1024;
auto rtc = GrSurfaceDrawContext::Make(
context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact,
{kRenderSize, kRenderSize}, SkSurfaceProps());
std::vector<GrColor> inputPixels = make_input_pixels(kRenderSize, kRenderSize, 0.0f);
GrSurfaceProxyView inputTexture =
make_input_texture(context, kRenderSize, kRenderSize, inputPixels.data());
// On failure we write out images, but just write the first failing set as the print is very
// large.
bool loggedFirstFailure = false;
// Storage for the original frame's readback and the readback of its clone.
std::vector<GrColor> readDataFP(kRenderSize * kRenderSize);
std::vector<GrColor> readDataClone(kRenderSize * kRenderSize);
std::vector<GrColor> readDataRegen(kRenderSize * kRenderSize);
// Because processor factories configure themselves in random ways, this is not exhaustive.
for (int i = 0; i < GrFragmentProcessorTestFactory::Count(); ++i) {
static constexpr int kTimesToInvokeFactory = 10;
for (int j = 0; j < kTimesToInvokeFactory; ++j) {
fpGenerator.reroll();
std::unique_ptr<GrFragmentProcessor> fp =
fpGenerator.make(i, /*randomTreeDepth=*/1, /*inputFP=*/nullptr);
std::unique_ptr<GrFragmentProcessor> regen =
fpGenerator.make(i, /*randomTreeDepth=*/1, /*inputFP=*/nullptr);
std::unique_ptr<GrFragmentProcessor> clone = fp->clone();
if (!clone) {
ERRORF(reporter, "Clone of processor %s failed.", fp->dumpTreeInfo().c_str());
continue;
}
assert_processor_equality(reporter, *fp, *clone);
// Draw with original and read back the results.
render_fp(context, rtc.get(), std::move(fp), readDataFP.data());
// Draw with clone and read back the results.
render_fp(context, rtc.get(), std::move(clone), readDataClone.data());
// Check that the results are the same.
if (!verify_identical_render(reporter, kRenderSize, "Processor clone",
readDataFP.data(), readDataClone.data())) {
// Dump a description from the regenerated processor (since the original FP has
// already been consumed).
ERRORF(reporter, "FP hierarchy:\n%s", regen->dumpTreeInfo().c_str());
// Render and readback output from the regenerated FP. If this also mismatches, the
// FP itself doesn't generate consistent output. This could happen if:
// - the FP's TestCreate() does not always generate the same FP from a given seed
// - the FP's Make() does not always generate the same FP when given the same inputs
// - the FP itself generates inconsistent pixels (shader UB?)
// - the driver has a bug
render_fp(context, rtc.get(), std::move(regen), readDataRegen.data());
if (!verify_identical_render(reporter, kRenderSize, "Regenerated processor",
readDataFP.data(), readDataRegen.data())) {
ERRORF(reporter, "Output from regen did not match original!\n");
} else {
ERRORF(reporter, "Regenerated processor output matches original results.\n");
}
// If this is the first time we've encountered a cloning failure, log the generated
// images to the reporter as data URLs.
if (!loggedFirstFailure) {
log_clone_failure(reporter, kRenderSize, context, inputTexture,
readDataFP.data(), readDataClone.data(),
readDataRegen.data());
loggedFirstFailure = true;
}
}
}
}
}
#endif // GR_TEST_UTILS