skia2/include/core/SkImage.h
reed 85d9178832 Use SkImageCacherator in SkImages
Possible follow-up changes to consider

1. Roll SkImage_Raster and _Gpu into _Generator, where the generator (or cacherator) is backed by a pre-existing texture or raster.
2. Evolve SkImageUsageType into a verb requiring stretching, and have the caller (common code) digest the caps() and usage, so that subclasses are just told what to do (stretch or not)
3. Common code/utility to convert an unstretched texture into a stretch one (and cache it) if the generator can only make an unstretched one.

BUG=skia:

Review URL: https://codereview.chromium.org/1282363002
2015-09-10 14:33:38 -07:00

341 lines
14 KiB
C++

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkImage_DEFINED
#define SkImage_DEFINED
#include "SkFilterQuality.h"
#include "SkImageInfo.h"
#include "SkImageEncoder.h"
#include "SkRefCnt.h"
#include "SkScalar.h"
#include "SkShader.h"
class SkData;
class SkCanvas;
class SkColorTable;
class SkImageGenerator;
class SkPaint;
class SkPicture;
class SkPixelSerializer;
class SkString;
class SkSurface;
class SkSurfaceProps;
class GrContext;
class GrTexture;
/**
* SkImage is an abstraction for drawing a rectagle of pixels, though the
* particular type of image could be actually storing its data on the GPU, or
* as drawing commands (picture or PDF or otherwise), ready to be played back
* into another canvas.
*
* The content of SkImage is always immutable, though the actual storage may
* change, if for example that image can be re-created via encoded data or
* other means.
*
* SkImage always has a non-zero dimensions. If there is a request to create a new image, either
* directly or via SkSurface, and either of the requested dimensions are zero, then NULL will be
* returned.
*/
class SK_API SkImage : public SkRefCnt {
public:
typedef SkImageInfo Info;
typedef void* ReleaseContext;
static SkImage* NewRasterCopy(const Info&, const void* pixels, size_t rowBytes,
SkColorTable* ctable = NULL);
static SkImage* NewRasterData(const Info&, SkData* pixels, size_t rowBytes);
typedef void (*RasterReleaseProc)(const void* pixels, ReleaseContext);
/**
* Return a new Image referencing the specified pixels. These must remain valid and unchanged
* until the specified release-proc is called, indicating that Skia no longer has a reference
* to the pixels.
*
* Returns NULL if the requested Info is unsupported.
*/
static SkImage* NewFromRaster(const Info&, const void* pixels, size_t rowBytes,
RasterReleaseProc, ReleaseContext);
/**
* Construct a new image from the specified bitmap. If the bitmap is marked immutable, and
* its pixel memory is shareable, it may be shared instead of copied.
*/
static SkImage* NewFromBitmap(const SkBitmap&);
/**
* Construct a new SkImage based on the given ImageGenerator.
* This function will always take ownership of the passed
* ImageGenerator. Returns NULL on error.
*
* If a subset is specified, it must be contained within the generator's bounds.
*/
static SkImage* NewFromGenerator(SkImageGenerator*, const SkIRect* subset = NULL);
/**
* Construct a new SkImage based on the specified encoded data. Returns NULL on failure,
* which can mean that the format of the encoded data was not recognized/supported.
*
* If a subset is specified, it must be contained within the encoded data's bounds.
*
* Regardless of success or failure, the caller is responsible for managing their ownership
* of the data.
*/
static SkImage* NewFromEncoded(SkData* encoded, const SkIRect* subset = NULL);
/**
* Create a new image from the specified descriptor. Note - the caller is responsible for
* managing the lifetime of the underlying platform texture.
*
* Will return NULL if the specified descriptor is unsupported.
*/
static SkImage* NewFromTexture(GrContext* ctx, const GrBackendTextureDesc& desc) {
return NewFromTexture(ctx, desc, kPremul_SkAlphaType, NULL, NULL);
}
static SkImage* NewFromTexture(GrContext* ctx, const GrBackendTextureDesc& de, SkAlphaType at) {
return NewFromTexture(ctx, de, at, NULL, NULL);
}
typedef void (*TextureReleaseProc)(ReleaseContext);
/**
* Create a new image from the specified descriptor. The underlying platform texture must stay
* valid and unaltered until the specified release-proc is invoked, indicating that Skia
* no longer is holding a reference to it.
*
* Will return NULL if the specified descriptor is unsupported.
*/
static SkImage* NewFromTexture(GrContext*, const GrBackendTextureDesc&, SkAlphaType,
TextureReleaseProc, ReleaseContext);
/**
* Create a new image from the specified descriptor. Note - Skia will delete or recycle the
* texture when the image is released.
*
* Will return NULL if the specified descriptor is unsupported.
*/
static SkImage* NewFromAdoptedTexture(GrContext*, const GrBackendTextureDesc&,
SkAlphaType = kPremul_SkAlphaType);
/**
* Create a new image by copying the pixels from the specified descriptor. No reference is
* kept to the original platform texture.
*
* Will return NULL if the specified descriptor is unsupported.
*/
static SkImage* NewFromTextureCopy(GrContext*, const GrBackendTextureDesc&,
SkAlphaType = kPremul_SkAlphaType);
/**
* Create a new image by copying the pixels from the specified y, u, v textures. The data
* from the textures is immediately ingested into the image and the textures can be modified or
* deleted after the function returns. The image will have the dimensions of the y texture.
*/
static SkImage* NewFromYUVTexturesCopy(GrContext*, SkYUVColorSpace,
const GrBackendObject yuvTextureHandles[3],
const SkISize yuvSizes[3],
GrSurfaceOrigin);
static SkImage* NewFromPicture(const SkPicture*, const SkISize& dimensions,
const SkMatrix*, const SkPaint*);
///////////////////////////////////////////////////////////////////////////////////////////////
int width() const { return fWidth; }
int height() const { return fHeight; }
SkISize dimensions() const { return SkISize::Make(fWidth, fHeight); }
SkIRect bounds() const { return SkIRect::MakeWH(fWidth, fHeight); }
uint32_t uniqueID() const { return fUniqueID; }
virtual bool isOpaque() const { return false; }
virtual SkShader* newShader(SkShader::TileMode,
SkShader::TileMode,
const SkMatrix* localMatrix = NULL) const;
/**
* If the image has direct access to its pixels (i.e. they are in local
* RAM) return the (const) address of those pixels, and if not null, return
* the ImageInfo and rowBytes. The returned address is only valid while
* the image object is in scope.
*
* On failure, returns NULL and the info and rowBytes parameters are
* ignored.
*/
const void* peekPixels(SkImageInfo* info, size_t* rowBytes) const;
/**
* If the image has direct access to its pixels (i.e. they are in local
* RAM) return the (const) address of those pixels, and if not null, return
* true, and if pixmap is not NULL, set it to point into the image.
*
* On failure, return false and ignore the pixmap parameter.
*/
bool peekPixels(SkPixmap* pixmap) const;
/**
* Some images have to perform preliminary work in preparation for drawing. This can be
* decoding, uploading to a GPU, or other tasks. These happen automatically when an image
* is drawn, and often they are cached so that the cost is only paid the first time.
*
* Preroll() can be called before drawing to try to perform this prepatory work ahead of time.
* For images that have no such work, this returns instantly. Others may do some thing to
* prepare their cache and then return.
*
* If the image will drawn to a GPU-backed canvas or surface, pass the associated GrContext.
* If the image will be drawn to any other type of canvas or surface, pass null.
*/
void preroll(GrContext* = nullptr) const;
// DEPRECATED
GrTexture* getTexture() const;
/**
* Returns true if the image is texture backed.
*/
bool isTextureBacked() const;
/**
* Retrieves the backend API handle of the texture. If flushPendingGrContextIO then the
* GrContext will issue to the backend API any deferred IO operations on the texture before
* returning.
*/
GrBackendObject getTextureHandle(bool flushPendingGrContextIO) const;
/**
* Copy the pixels from the image into the specified buffer (pixels + rowBytes),
* converting them into the requested format (dstInfo). The image pixels are read
* starting at the specified (srcX,srcY) location.
*
* The specified ImageInfo and (srcX,srcY) offset specifies a source rectangle
*
* srcR.setXYWH(srcX, srcY, dstInfo.width(), dstInfo.height());
*
* srcR is intersected with the bounds of the image. If this intersection is not empty,
* then we have two sets of pixels (of equal size). Replace the dst pixels with the
* corresponding src pixels, performing any colortype/alphatype transformations needed
* (in the case where the src and dst have different colortypes or alphatypes).
*
* This call can fail, returning false, for several reasons:
* - If srcR does not intersect the image bounds.
* - If the requested colortype/alphatype cannot be converted from the image's types.
*/
bool readPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes,
int srcX, int srcY) const;
bool readPixels(const SkPixmap& dst, int srcX, int srcY) const;
/**
* Encode the image's pixels and return the result as a new SkData, which
* the caller must manage (i.e. call unref() when they are done).
*
* If the image type cannot be encoded, or the requested encoder type is
* not supported, this will return NULL.
*
* Note: this will attempt to encode the image's pixels in the specified format,
* even if the image returns a data from refEncoded(). That data will be ignored.
*/
SkData* encode(SkImageEncoder::Type, int quality) const;
/**
* Encode the image and return the result as a caller-managed SkData. This will
* attempt to reuse existing encoded data (as returned by refEncoded).
*
* We defer to the SkPixelSerializer both for vetting existing encoded data
* (useEncodedData) and for encoding the image (encodePixels) when no such data is
* present or is rejected by the serializer.
*
* If not specified, we use a default serializer which 1) always accepts existing data
* (in any format) and 2) encodes to PNG.
*
* If no compatible encoded data exists and encoding fails, this method will also
* fail (return NULL).
*/
SkData* encode(SkPixelSerializer* = nullptr) const;
/**
* If the image already has its contents in encoded form (e.g. PNG or JPEG), return a ref
* to that data (which the caller must call unref() on). The caller is responsible for calling
* unref on the data when they are done.
*
* If the image does not already has its contents in encoded form, return NULL.
*
* Note: to force the image to return its contents as encoded data, try calling encode(...).
*/
SkData* refEncoded() const;
/**
* Return a new surface that is compatible with this image's internal representation
* (e.g. raster or gpu).
*
* If no surfaceprops are specified, the image will attempt to match the props of when it
* was created (if it came from a surface).
*/
SkSurface* newSurface(const SkImageInfo&, const SkSurfaceProps* = NULL) const;
const char* toString(SkString*) const;
/**
* Return an image that is a rescale of this image (using newWidth, newHeight).
*
* If subset is NULL, then the entire original image is used as the src for the scaling.
* If subset is not NULL, then it specifies subset of src-pixels used for scaling. If
* subset extends beyond the bounds of the original image, then NULL is returned.
*
* Notes:
* - newWidth and newHeight must be > 0 or NULL will be returned.
*
* - it is legal for the returned image to be the same instance as the src image
* (if the new dimensions == the src dimensions and subset is NULL or == src dimensions).
*
* - it is legal for the "scaled" image to have changed its SkAlphaType from unpremul
* to premul (as required by the impl). The image should draw (nearly) identically,
* since during drawing we will "apply the alpha" to the pixels. Future optimizations
* may take away this caveat, preserving unpremul.
*/
SkImage* newImage(int newWidth, int newHeight, const SkIRect* subset = NULL,
SkFilterQuality = kNone_SkFilterQuality) const;
// Helper functions to convert to SkBitmap
enum LegacyBitmapMode {
kRO_LegacyBitmapMode,
kRW_LegacyBitmapMode,
};
/**
* Attempt to create a bitmap with the same pixels as the image. The result will always be
* a raster-backed bitmap (texture-backed bitmaps are DEPRECATED, and not supported here).
*
* If the mode is kRO (read-only), the resulting bitmap will be marked as immutable.
*
* On succcess, returns true. On failure, returns false and the bitmap parameter will be reset
* to empty.
*/
bool asLegacyBitmap(SkBitmap*, LegacyBitmapMode) const;
/**
* Returns true if the image is backed by an image-generator or other src that creates
* (and caches) its pixels / texture on-demand.
*/
bool isLazyGenerated() const;
protected:
SkImage(int width, int height, uint32_t uniqueID);
private:
const int fWidth;
const int fHeight;
const uint32_t fUniqueID;
typedef SkRefCnt INHERITED;
};
#endif