skia2/include/gpu/GrFragmentProcessor.h

147 lines
6.4 KiB
C++

/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrFragmentProcessor_DEFINED
#define GrFragmentProcessor_DEFINED
#include "GrProcessor.h"
class GrCoordTransform;
class GrGLCaps;
class GrGLFragmentProcessor;
class GrProcessorKeyBuilder;
/** Provides custom fragment shader code. Fragment processors receive an input color (vec4f) and
produce an output color. They may reference textures and uniforms. They may use
GrCoordTransforms to receive a transformation of the local coordinates that map from local space
to the fragment being processed.
*/
class GrFragmentProcessor : public GrProcessor {
public:
GrFragmentProcessor()
: INHERITED()
, fWillReadDstColor(false)
, fWillUseInputColor(true)
, fUsesLocalCoords(false) {}
/** Implemented using GLFragmentProcessor::GenKey as described in this class's comment. */
virtual void getGLProcessorKey(const GrGLCaps& caps,
GrProcessorKeyBuilder* b) const = 0;
/** Returns a new instance of the appropriate *GL* implementation class
for the given GrFragmentProcessor; caller is responsible for deleting
the object. */
virtual GrGLFragmentProcessor* createGLInstance() const = 0;
/** Human-meaningful string to identify this GrFragmentProcessor; may be embedded
in generated shader code. */
virtual const char* name() const = 0;
int numTransforms() const { return fCoordTransforms.count(); }
/** Returns the coordinate transformation at index. index must be valid according to
numTransforms(). */
const GrCoordTransform& coordTransform(int index) const { return *fCoordTransforms[index]; }
const SkTArray<const GrCoordTransform*, true>& coordTransforms() const {
return fCoordTransforms;
}
/** Will this prceossor read the destination pixel value? */
bool willReadDstColor() const { return fWillReadDstColor; }
/** Will this prceossor read the source color value? */
bool willUseInputColor() const { return fWillUseInputColor; }
/** Do any of the coordtransforms for this processor require local coords? */
bool usesLocalCoords() const { return fUsesLocalCoords; }
/** Returns true if this and other processor conservatively draw identically. It can only return
true when the two processor are of the same subclass (i.e. they return the same object from
from getFactory()).
A return value of true from isEqual() should not be used to test whether the processor would
generate the same shader code. To test for identical code generation use getGLProcessorKey*/
bool isEqual(const GrFragmentProcessor& that) const {
if (this->classID() != that.classID() ||
!this->hasSameTransforms(that) ||
!this->hasSameTextureAccesses(that)) {
return false;
}
return this->onIsEqual(that);
}
/**
* This function is used to perform optimizations. When called the invarientOuput param
* indicate whether the input components to this processor in the FS will have known values.
* In inout the validFlags member is a bitfield of GrColorComponentFlags. The isSingleComponent
* member indicates whether the input will be 1 or 4 bytes. The function updates the members of
* inout to indicate known values of its output. A component of the color member only has
* meaning if the corresponding bit in validFlags is set.
*/
void computeInvariantOutput(GrInvariantOutput* inout) const;
protected:
/**
* Fragment Processor subclasses call this from their constructor to register coordinate
* transformations. Coord transforms provide a mechanism for a processor to receive coordinates
* in their FS code. The matrix expresses a transformation from local space. For a given
* fragment the matrix will be applied to the local coordinate that maps to the fragment.
*
* When the transformation has perspective, the transformed coordinates will have
* 3 components. Otherwise they'll have 2.
*
* This must only be called from the constructor because GrProcessors are immutable. The
* processor subclass manages the lifetime of the transformations (this function only stores a
* pointer). The GrCoordTransform is typically a member field of the GrProcessor subclass.
*
* A processor subclass that has multiple methods of construction should always add its coord
* transforms in a consistent order. The non-virtual implementation of isEqual() automatically
* compares transforms and will assume they line up across the two processor instances.
*/
void addCoordTransform(const GrCoordTransform*);
/**
* If the prceossor subclass will read the destination pixel value then it must call this
* function from its constructor. Otherwise, when its generated backend-specific prceossor class
* attempts to generate code that reads the destination pixel it will fail.
*/
void setWillReadDstColor() { fWillReadDstColor = true; }
/**
* If the prceossor will generate a result that does not depend on the input color value then it
* must call this function from its constructor. Otherwise, when its generated backend-specific
* code might fail during variable binding due to unused variables.
*/
void setWillNotUseInputColor() { fWillUseInputColor = false; }
/**
* Subclass implements this to support getConstantColorComponents(...).
*/
virtual void onComputeInvariantOutput(GrInvariantOutput* inout) const = 0;
private:
/**
* Subclass implements this to support isEqual(). It will only be called if it is known that
* the two processors are of the same subclass (i.e. they return the same object from
* getFactory()). The processor subclass should not compare its coord transforms as that will
* be performed automatically in the non-virtual isEqual().
*/
virtual bool onIsEqual(const GrFragmentProcessor&) const = 0;
bool hasSameTransforms(const GrFragmentProcessor&) const;
SkSTArray<4, const GrCoordTransform*, true> fCoordTransforms;
bool fWillReadDstColor;
bool fWillUseInputColor;
bool fUsesLocalCoords;
typedef GrProcessor INHERITED;
};
#endif