skia2/dm/DMSrcSink.cpp
bungeman 6bd5284415 Remove SkAutoTUnref and SkAutoTDelete from public includes.
This also makes the required changed to src, tests, and tools. The few
public APIs modified by this change appear to be unused outside of Skia.

Removing these from the public API makes it easier to ensure users are
no longer using them.

This also updates GrGpu::wrapBackendXXX and the
::onWrapBackendXXX methods to clarify ownership.

GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2448593002

Review-Url: https://codereview.chromium.org/2448593002
2016-10-27 09:30:08 -07:00

1820 lines
71 KiB
C++

/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "DMSrcSink.h"
#include "Resources.h"
#include "SkAndroidCodec.h"
#include "SkCodec.h"
#include "SkCodecImageGenerator.h"
#include "SkColorSpace.h"
#include "SkColorSpace_XYZ.h"
#include "SkColorSpaceXform.h"
#include "SkCommonFlags.h"
#include "SkData.h"
#include "SkDebugCanvas.h"
#include "SkDeferredCanvas.h"
#include "SkDocument.h"
#include "SkImageGenerator.h"
#include "SkImageGeneratorCG.h"
#include "SkImageGeneratorWIC.h"
#include "SkLiteDL.h"
#include "SkLiteRecorder.h"
#include "SkMallocPixelRef.h"
#include "SkMultiPictureDraw.h"
#include "SkNullCanvas.h"
#include "SkOSFile.h"
#include "SkOpts.h"
#include "SkPictureData.h"
#include "SkPictureRecorder.h"
#include "SkPipe.h"
#include "SkRandom.h"
#include "SkRecordDraw.h"
#include "SkRecorder.h"
#include "SkSVGCanvas.h"
#include "SkStream.h"
#include "SkTLogic.h"
#include "SkSwizzler.h"
#include <functional>
#include <cmath>
#if defined(SK_BUILD_FOR_WIN)
#include "SkAutoCoInitialize.h"
#endif
#if defined(SK_TEST_QCMS)
#include "qcms.h"
#endif
#if defined(SK_XML)
#include "SkSVGDOM.h"
#include "SkXMLWriter.h"
#endif
DEFINE_bool(multiPage, false, "For document-type backends, render the source"
" into multiple pages");
DEFINE_bool(RAW_threading, true, "Allow RAW decodes to run on multiple threads?");
using sk_gpu_test::GrContextFactory;
namespace DM {
GMSrc::GMSrc(skiagm::GMRegistry::Factory factory) : fFactory(factory) {}
Error GMSrc::draw(SkCanvas* canvas) const {
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
canvas->concat(gm->getInitialTransform());
gm->draw(canvas);
return "";
}
SkISize GMSrc::size() const {
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
return gm->getISize();
}
Name GMSrc::name() const {
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
return gm->getName();
}
void GMSrc::modifyGrContextOptions(GrContextOptions* options) const {
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
gm->modifyGrContextOptions(options);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
BRDSrc::BRDSrc(Path path, Mode mode, CodecSrc::DstColorType dstColorType, uint32_t sampleSize)
: fPath(path)
, fMode(mode)
, fDstColorType(dstColorType)
, fSampleSize(sampleSize)
{}
bool BRDSrc::veto(SinkFlags flags) const {
// No need to test to non-raster or indirect backends.
return flags.type != SinkFlags::kRaster
|| flags.approach != SinkFlags::kDirect;
}
static SkBitmapRegionDecoder* create_brd(Path path) {
sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str()));
if (!encoded) {
return NULL;
}
return SkBitmapRegionDecoder::Create(encoded, SkBitmapRegionDecoder::kAndroidCodec_Strategy);
}
Error BRDSrc::draw(SkCanvas* canvas) const {
SkColorType colorType = canvas->imageInfo().colorType();
if (kRGB_565_SkColorType == colorType &&
CodecSrc::kGetFromCanvas_DstColorType != fDstColorType) {
return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
}
switch (fDstColorType) {
case CodecSrc::kGetFromCanvas_DstColorType:
break;
case CodecSrc::kIndex8_Always_DstColorType:
colorType = kIndex_8_SkColorType;
break;
case CodecSrc::kGrayscale_Always_DstColorType:
colorType = kGray_8_SkColorType;
break;
default:
SkASSERT(false);
break;
}
SkAutoTDelete<SkBitmapRegionDecoder> brd(create_brd(fPath));
if (nullptr == brd.get()) {
return Error::Nonfatal(SkStringPrintf("Could not create brd for %s.", fPath.c_str()));
}
if (!brd->conversionSupported(colorType)) {
return Error::Nonfatal("Cannot convert to color type.");
}
const uint32_t width = brd->width();
const uint32_t height = brd->height();
// Visually inspecting very small output images is not necessary.
if ((width / fSampleSize <= 10 || height / fSampleSize <= 10) && 1 != fSampleSize) {
return Error::Nonfatal("Scaling very small images is uninteresting.");
}
switch (fMode) {
case kFullImage_Mode: {
SkBitmap bitmap;
if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(0, 0, width, height),
fSampleSize, colorType, false)) {
return "Cannot decode (full) region.";
}
if (colorType != bitmap.colorType()) {
return Error::Nonfatal("Cannot convert to color type.");
}
canvas->drawBitmap(bitmap, 0, 0);
return "";
}
case kDivisor_Mode: {
const uint32_t divisor = 2;
if (width < divisor || height < divisor) {
return Error::Nonfatal("Divisor is larger than image dimension.");
}
// Use a border to test subsets that extend outside the image.
// We will not allow the border to be larger than the image dimensions. Allowing
// these large borders causes off by one errors that indicate a problem with the
// test suite, not a problem with the implementation.
const uint32_t maxBorder = SkTMin(width, height) / (fSampleSize * divisor);
const uint32_t scaledBorder = SkTMin(5u, maxBorder);
const uint32_t unscaledBorder = scaledBorder * fSampleSize;
// We may need to clear the canvas to avoid uninitialized memory.
// Assume we are scaling a 780x780 image with sampleSize = 8.
// The output image should be 97x97.
// Each subset will be 390x390.
// Each scaled subset be 48x48.
// Four scaled subsets will only fill a 96x96 image.
// The bottom row and last column will not be touched.
// This is an unfortunate result of our rounding rules when scaling.
// Maybe we need to consider testing scaled subsets without trying to
// combine them to match the full scaled image? Or maybe this is the
// best we can do?
canvas->clear(0);
for (uint32_t x = 0; x < divisor; x++) {
for (uint32_t y = 0; y < divisor; y++) {
// Calculate the subset dimensions
uint32_t subsetWidth = width / divisor;
uint32_t subsetHeight = height / divisor;
const int left = x * subsetWidth;
const int top = y * subsetHeight;
// Increase the size of the last subset in each row or column, when the
// divisor does not divide evenly into the image dimensions
subsetWidth += (x + 1 == divisor) ? (width % divisor) : 0;
subsetHeight += (y + 1 == divisor) ? (height % divisor) : 0;
// Increase the size of the subset in order to have a border on each side
const int decodeLeft = left - unscaledBorder;
const int decodeTop = top - unscaledBorder;
const uint32_t decodeWidth = subsetWidth + unscaledBorder * 2;
const uint32_t decodeHeight = subsetHeight + unscaledBorder * 2;
SkBitmap bitmap;
if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(decodeLeft,
decodeTop, decodeWidth, decodeHeight), fSampleSize, colorType, false)) {
return "Cannot decode region.";
}
if (colorType != bitmap.colorType()) {
return Error::Nonfatal("Cannot convert to color type.");
}
canvas->drawBitmapRect(bitmap,
SkRect::MakeXYWH((SkScalar) scaledBorder, (SkScalar) scaledBorder,
(SkScalar) (subsetWidth / fSampleSize),
(SkScalar) (subsetHeight / fSampleSize)),
SkRect::MakeXYWH((SkScalar) (left / fSampleSize),
(SkScalar) (top / fSampleSize),
(SkScalar) (subsetWidth / fSampleSize),
(SkScalar) (subsetHeight / fSampleSize)),
nullptr);
}
}
return "";
}
default:
SkASSERT(false);
return "Error: Should not be reached.";
}
}
SkISize BRDSrc::size() const {
SkAutoTDelete<SkBitmapRegionDecoder> brd(create_brd(fPath));
if (brd) {
return SkISize::Make(SkTMax(1, brd->width() / (int) fSampleSize),
SkTMax(1, brd->height() / (int) fSampleSize));
}
return SkISize::Make(0, 0);
}
static SkString get_scaled_name(const Path& path, float scale) {
return SkStringPrintf("%s_%.3f", SkOSPath::Basename(path.c_str()).c_str(), scale);
}
Name BRDSrc::name() const {
// We will replicate the names used by CodecSrc so that images can
// be compared in Gold.
if (1 == fSampleSize) {
return SkOSPath::Basename(fPath.c_str());
}
return get_scaled_name(fPath, 1.0f / (float) fSampleSize);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static bool serial_from_path_name(const SkString& path) {
if (!FLAGS_RAW_threading) {
static const char* const exts[] = {
"arw", "cr2", "dng", "nef", "nrw", "orf", "raf", "rw2", "pef", "srw",
"ARW", "CR2", "DNG", "NEF", "NRW", "ORF", "RAF", "RW2", "PEF", "SRW",
};
const char* actualExt = strrchr(path.c_str(), '.');
if (actualExt) {
actualExt++;
for (auto* ext : exts) {
if (0 == strcmp(ext, actualExt)) {
return true;
}
}
}
}
return false;
}
CodecSrc::CodecSrc(Path path, Mode mode, DstColorType dstColorType, SkAlphaType dstAlphaType,
float scale)
: fPath(path)
, fMode(mode)
, fDstColorType(dstColorType)
, fDstAlphaType(dstAlphaType)
, fScale(scale)
, fRunSerially(serial_from_path_name(path))
{}
bool CodecSrc::veto(SinkFlags flags) const {
// Test to direct raster backends (8888 and 565).
return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect;
}
// Allows us to test decodes to non-native 8888.
static void swap_rb_if_necessary(SkBitmap& bitmap, CodecSrc::DstColorType dstColorType) {
if (CodecSrc::kNonNative8888_Always_DstColorType != dstColorType) {
return;
}
for (int y = 0; y < bitmap.height(); y++) {
uint32_t* row = (uint32_t*) bitmap.getAddr(0, y);
SkOpts::RGBA_to_BGRA(row, row, bitmap.width());
}
}
// FIXME: Currently we cannot draw unpremultiplied sources. skbug.com/3338 and skbug.com/3339.
// This allows us to still test unpremultiplied decodes.
static void premultiply_if_necessary(SkBitmap& bitmap) {
if (kUnpremul_SkAlphaType != bitmap.alphaType()) {
return;
}
switch (bitmap.colorType()) {
case kN32_SkColorType:
for (int y = 0; y < bitmap.height(); y++) {
uint32_t* row = (uint32_t*) bitmap.getAddr(0, y);
SkOpts::RGBA_to_rgbA(row, row, bitmap.width());
}
break;
case kIndex_8_SkColorType: {
SkColorTable* colorTable = bitmap.getColorTable();
SkPMColor* colorPtr = const_cast<SkPMColor*>(colorTable->readColors());
SkOpts::RGBA_to_rgbA(colorPtr, colorPtr, colorTable->count());
break;
}
default:
// No need to premultiply kGray or k565 outputs.
break;
}
// In the kIndex_8 case, the canvas won't even try to draw unless we mark the
// bitmap as kPremul.
bitmap.setAlphaType(kPremul_SkAlphaType);
}
static bool get_decode_info(SkImageInfo* decodeInfo, SkColorType canvasColorType,
CodecSrc::DstColorType dstColorType, SkAlphaType dstAlphaType) {
switch (dstColorType) {
case CodecSrc::kIndex8_Always_DstColorType:
if (kRGB_565_SkColorType == canvasColorType) {
return false;
}
*decodeInfo = decodeInfo->makeColorType(kIndex_8_SkColorType);
break;
case CodecSrc::kGrayscale_Always_DstColorType:
if (kRGB_565_SkColorType == canvasColorType) {
return false;
}
*decodeInfo = decodeInfo->makeColorType(kGray_8_SkColorType);
break;
case CodecSrc::kNonNative8888_Always_DstColorType:
if (kRGB_565_SkColorType == canvasColorType) {
return false;
}
#ifdef SK_PMCOLOR_IS_RGBA
*decodeInfo = decodeInfo->makeColorType(kBGRA_8888_SkColorType);
#else
*decodeInfo = decodeInfo->makeColorType(kRGBA_8888_SkColorType);
#endif
break;
default:
if (kRGB_565_SkColorType == canvasColorType &&
kOpaque_SkAlphaType != decodeInfo->alphaType()) {
return false;
}
*decodeInfo = decodeInfo->makeColorType(canvasColorType);
break;
}
*decodeInfo = decodeInfo->makeAlphaType(dstAlphaType);
return true;
}
static void draw_to_canvas(SkCanvas* canvas, const SkImageInfo& info, void* pixels, size_t rowBytes,
SkPMColor* colorPtr, int colorCount, CodecSrc::DstColorType dstColorType,
SkScalar left = 0, SkScalar top = 0) {
SkAutoTUnref<SkColorTable> colorTable(new SkColorTable(colorPtr, colorCount));
SkBitmap bitmap;
bitmap.installPixels(info, pixels, rowBytes, colorTable.get(), nullptr, nullptr);
premultiply_if_necessary(bitmap);
swap_rb_if_necessary(bitmap, dstColorType);
canvas->drawBitmap(bitmap, left, top);
}
Error CodecSrc::draw(SkCanvas* canvas) const {
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
if (!encoded) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded));
if (nullptr == codec.get()) {
return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str());
}
SkImageInfo decodeInfo = codec->getInfo();
if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType,
fDstAlphaType)) {
return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
}
// Try to scale the image if it is desired
SkISize size = codec->getScaledDimensions(fScale);
if (size == decodeInfo.dimensions() && 1.0f != fScale) {
return Error::Nonfatal("Test without scaling is uninteresting.");
}
// Visually inspecting very small output images is not necessary. We will
// cover these cases in unit testing.
if ((size.width() <= 10 || size.height() <= 10) && 1.0f != fScale) {
return Error::Nonfatal("Scaling very small images is uninteresting.");
}
decodeInfo = decodeInfo.makeWH(size.width(), size.height());
const int bpp = SkColorTypeBytesPerPixel(decodeInfo.colorType());
const size_t rowBytes = size.width() * bpp;
const size_t safeSize = decodeInfo.getSafeSize(rowBytes);
SkAutoMalloc pixels(safeSize);
SkPMColor colorPtr[256];
int colorCount = 256;
SkCodec::Options options;
if (kCodecZeroInit_Mode == fMode) {
memset(pixels.get(), 0, size.height() * rowBytes);
options.fZeroInitialized = SkCodec::kYes_ZeroInitialized;
}
SkImageInfo bitmapInfo = decodeInfo;
if (kRGBA_8888_SkColorType == decodeInfo.colorType() ||
kBGRA_8888_SkColorType == decodeInfo.colorType()) {
bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType);
}
switch (fMode) {
case kAnimated_Mode: {
std::vector<SkCodec::FrameInfo> frameInfos = codec->getFrameInfo();
if (frameInfos.size() <= 1) {
return SkStringPrintf("%s is not an animated image.", fPath.c_str());
}
// As in CodecSrc::size(), compute a roughly square grid to draw the frames
// into. "factor" is the number of frames to draw on one row. There will be
// up to "factor" rows as well.
const float root = sqrt((float) frameInfos.size());
const int factor = sk_float_ceil2int(root);
// Used to cache a frame that future frames will depend on.
SkAutoMalloc priorFramePixels;
size_t cachedFrame = SkCodec::kNone;
for (size_t i = 0; i < frameInfos.size(); i++) {
options.fFrameIndex = i;
// Check for a prior frame
const size_t reqFrame = frameInfos[i].fRequiredFrame;
if (reqFrame != SkCodec::kNone && reqFrame == cachedFrame
&& priorFramePixels.get()) {
// Copy into pixels
memcpy(pixels.get(), priorFramePixels.get(), safeSize);
options.fHasPriorFrame = true;
} else {
options.fHasPriorFrame = false;
}
const SkCodec::Result result = codec->getPixels(decodeInfo, pixels.get(),
rowBytes, &options,
colorPtr, &colorCount);
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput: {
SkAutoCanvasRestore acr(canvas, true);
const int xTranslate = (i % factor) * decodeInfo.width();
const int yTranslate = (i / factor) * decodeInfo.height();
canvas->translate(SkIntToScalar(xTranslate), SkIntToScalar(yTranslate));
draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes,
colorPtr, colorCount, fDstColorType);
if (result == SkCodec::kIncompleteInput) {
return "";
}
break;
}
case SkCodec::kInvalidConversion:
if (i > 0 && (decodeInfo.colorType() == kRGB_565_SkColorType
|| decodeInfo.colorType() == kIndex_8_SkColorType)) {
return Error::Nonfatal(SkStringPrintf(
"Cannot decode frame %i to 565/Index8 (%s).", i, fPath.c_str()));
}
// Fall through.
default:
return SkStringPrintf("Couldn't getPixels for frame %i in %s.",
i, fPath.c_str());
}
// If a future frame depends on this one, store it in priorFrame.
// (Note that if i+1 does *not* depend on i, then no future frame can.)
if (i+1 < frameInfos.size() && frameInfos[i+1].fRequiredFrame == i) {
memcpy(priorFramePixels.reset(safeSize), pixels.get(), safeSize);
cachedFrame = i;
}
}
break;
}
case kCodecZeroInit_Mode:
case kCodec_Mode: {
switch (codec->getPixels(decodeInfo, pixels.get(), rowBytes, &options,
colorPtr, &colorCount)) {
case SkCodec::kSuccess:
// We consider incomplete to be valid, since we should still decode what is
// available.
case SkCodec::kIncompleteInput:
break;
default:
// Everything else is considered a failure.
return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str());
}
draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, colorPtr, colorCount,
fDstColorType);
break;
}
case kScanline_Mode: {
void* dst = pixels.get();
uint32_t height = decodeInfo.height();
const bool useIncremental = [this]() {
auto exts = { "png", "PNG", "gif", "GIF" };
for (auto ext : exts) {
if (fPath.endsWith(ext)) {
return true;
}
}
return false;
}();
// ico may use the old scanline method or the new one, depending on whether it
// internally holds a bmp or a png.
const bool ico = fPath.endsWith("ico");
bool useOldScanlineMethod = !useIncremental && !ico;
if (useIncremental || ico) {
if (SkCodec::kSuccess == codec->startIncrementalDecode(decodeInfo, dst,
rowBytes, nullptr, colorPtr, &colorCount)) {
int rowsDecoded;
if (SkCodec::kIncompleteInput == codec->incrementalDecode(&rowsDecoded)) {
codec->fillIncompleteImage(decodeInfo, dst, rowBytes,
SkCodec::kNo_ZeroInitialized, height,
rowsDecoded);
}
} else {
if (useIncremental) {
// Error: These should support incremental decode.
return "Could not start incremental decode";
}
// Otherwise, this is an ICO. Since incremental failed, it must contain a BMP,
// which should work via startScanlineDecode
useOldScanlineMethod = true;
}
}
if (useOldScanlineMethod) {
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr,
&colorCount)) {
return "Could not start scanline decoder";
}
switch (codec->getScanlineOrder()) {
case SkCodec::kTopDown_SkScanlineOrder:
case SkCodec::kBottomUp_SkScanlineOrder:
// We do not need to check the return value. On an incomplete
// image, memory will be filled with a default value.
codec->getScanlines(dst, height, rowBytes);
break;
}
}
draw_to_canvas(canvas, bitmapInfo, dst, rowBytes, colorPtr, colorCount, fDstColorType);
break;
}
case kStripe_Mode: {
const int height = decodeInfo.height();
// This value is chosen arbitrarily. We exercise more cases by choosing a value that
// does not align with image blocks.
const int stripeHeight = 37;
const int numStripes = (height + stripeHeight - 1) / stripeHeight;
void* dst = pixels.get();
// Decode odd stripes
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, nullptr, colorPtr,
&colorCount)) {
return "Could not start scanline decoder";
}
// This mode was designed to test the new skip scanlines API in libjpeg-turbo.
// Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting
// to run this test for image types that do not have this scanline ordering.
// We only run this on Jpeg, which is always kTopDown.
SkASSERT(SkCodec::kTopDown_SkScanlineOrder == codec->getScanlineOrder());
for (int i = 0; i < numStripes; i += 2) {
// Skip a stripe
const int linesToSkip = SkTMin(stripeHeight, height - i * stripeHeight);
codec->skipScanlines(linesToSkip);
// Read a stripe
const int startY = (i + 1) * stripeHeight;
const int linesToRead = SkTMin(stripeHeight, height - startY);
if (linesToRead > 0) {
codec->getScanlines(SkTAddOffset<void>(dst, rowBytes * startY), linesToRead,
rowBytes);
}
}
// Decode even stripes
const SkCodec::Result startResult = codec->startScanlineDecode(decodeInfo, nullptr,
colorPtr, &colorCount);
if (SkCodec::kSuccess != startResult) {
return "Failed to restart scanline decoder with same parameters.";
}
for (int i = 0; i < numStripes; i += 2) {
// Read a stripe
const int startY = i * stripeHeight;
const int linesToRead = SkTMin(stripeHeight, height - startY);
codec->getScanlines(SkTAddOffset<void>(dst, rowBytes * startY), linesToRead,
rowBytes);
// Skip a stripe
const int linesToSkip = SkTMin(stripeHeight, height - (i + 1) * stripeHeight);
if (linesToSkip > 0) {
codec->skipScanlines(linesToSkip);
}
}
draw_to_canvas(canvas, bitmapInfo, dst, rowBytes, colorPtr, colorCount, fDstColorType);
break;
}
case kCroppedScanline_Mode: {
const int width = decodeInfo.width();
const int height = decodeInfo.height();
// This value is chosen because, as we move across the image, it will sometimes
// align with the jpeg block sizes and it will sometimes not. This allows us
// to test interestingly different code paths in the implementation.
const int tileSize = 36;
SkCodec::Options opts;
SkIRect subset;
for (int x = 0; x < width; x += tileSize) {
subset = SkIRect::MakeXYWH(x, 0, SkTMin(tileSize, width - x), height);
opts.fSubset = &subset;
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, &opts,
colorPtr, &colorCount)) {
return "Could not start scanline decoder.";
}
codec->getScanlines(SkTAddOffset<void>(pixels.get(), x * bpp), height, rowBytes);
}
draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, colorPtr, colorCount,
fDstColorType);
break;
}
case kSubset_Mode: {
// Arbitrarily choose a divisor.
int divisor = 2;
// Total width/height of the image.
const int W = codec->getInfo().width();
const int H = codec->getInfo().height();
if (divisor > W || divisor > H) {
return Error::Nonfatal(SkStringPrintf("Cannot codec subset: divisor %d is too big "
"for %s with dimensions (%d x %d)", divisor,
fPath.c_str(), W, H));
}
// subset dimensions
// SkWebpCodec, the only one that supports subsets, requires even top/left boundaries.
const int w = SkAlign2(W / divisor);
const int h = SkAlign2(H / divisor);
SkIRect subset;
SkCodec::Options opts;
opts.fSubset = &subset;
SkBitmap subsetBm;
// We will reuse pixel memory from bitmap.
void* dst = pixels.get();
// Keep track of left and top (for drawing subsetBm into canvas). We could use
// fScale * x and fScale * y, but we want integers such that the next subset will start
// where the last one ended. So we'll add decodeInfo.width() and height().
int left = 0;
for (int x = 0; x < W; x += w) {
int top = 0;
for (int y = 0; y < H; y+= h) {
// Do not make the subset go off the edge of the image.
const int preScaleW = SkTMin(w, W - x);
const int preScaleH = SkTMin(h, H - y);
subset.setXYWH(x, y, preScaleW, preScaleH);
// And scale
// FIXME: Should we have a version of getScaledDimensions that takes a subset
// into account?
const int scaledW = SkTMax(1, SkScalarRoundToInt(preScaleW * fScale));
const int scaledH = SkTMax(1, SkScalarRoundToInt(preScaleH * fScale));
decodeInfo = decodeInfo.makeWH(scaledW, scaledH);
SkImageInfo subsetBitmapInfo = bitmapInfo.makeWH(scaledW, scaledH);
size_t subsetRowBytes = subsetBitmapInfo.minRowBytes();
const SkCodec::Result result = codec->getPixels(decodeInfo, dst, subsetRowBytes,
&opts, colorPtr, &colorCount);
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
break;
default:
return SkStringPrintf("subset codec failed to decode (%d, %d, %d, %d) "
"from %s with dimensions (%d x %d)\t error %d",
x, y, decodeInfo.width(), decodeInfo.height(),
fPath.c_str(), W, H, result);
}
draw_to_canvas(canvas, subsetBitmapInfo, dst, subsetRowBytes, colorPtr,
colorCount, fDstColorType, SkIntToScalar(left),
SkIntToScalar(top));
// translate by the scaled height.
top += decodeInfo.height();
}
// translate by the scaled width.
left += decodeInfo.width();
}
return "";
}
default:
SkASSERT(false);
return "Invalid fMode";
}
return "";
}
SkISize CodecSrc::size() const {
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded));
if (nullptr == codec) {
return SkISize::Make(0, 0);
}
auto imageSize = codec->getScaledDimensions(fScale);
if (fMode == kAnimated_Mode) {
// We'll draw one of each frame, so make it big enough to hold them all
// in a grid. The grid will be roughly square, with "factor" frames per
// row and up to "factor" rows.
const size_t count = codec->getFrameInfo().size();
const float root = sqrt((float) count);
const int factor = sk_float_ceil2int(root);
imageSize.fWidth = imageSize.fWidth * factor;
imageSize.fHeight = imageSize.fHeight * sk_float_ceil2int((float) count / (float) factor);
}
return imageSize;
}
Name CodecSrc::name() const {
if (1.0f == fScale) {
Name name = SkOSPath::Basename(fPath.c_str());
if (fMode == kAnimated_Mode) {
name.append("_animated");
}
return name;
}
SkASSERT(fMode != kAnimated_Mode);
return get_scaled_name(fPath, fScale);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
AndroidCodecSrc::AndroidCodecSrc(Path path, CodecSrc::DstColorType dstColorType,
SkAlphaType dstAlphaType, int sampleSize)
: fPath(path)
, fDstColorType(dstColorType)
, fDstAlphaType(dstAlphaType)
, fSampleSize(sampleSize)
, fRunSerially(serial_from_path_name(path))
{}
bool AndroidCodecSrc::veto(SinkFlags flags) const {
// No need to test decoding to non-raster or indirect backend.
return flags.type != SinkFlags::kRaster
|| flags.approach != SinkFlags::kDirect;
}
Error AndroidCodecSrc::draw(SkCanvas* canvas) const {
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
if (!encoded) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
SkAutoTDelete<SkAndroidCodec> codec(SkAndroidCodec::NewFromData(encoded));
if (nullptr == codec.get()) {
return SkStringPrintf("Couldn't create android codec for %s.", fPath.c_str());
}
SkImageInfo decodeInfo = codec->getInfo();
if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType,
fDstAlphaType)) {
return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
}
// Scale the image if it is desired.
SkISize size = codec->getSampledDimensions(fSampleSize);
// Visually inspecting very small output images is not necessary. We will
// cover these cases in unit testing.
if ((size.width() <= 10 || size.height() <= 10) && 1 != fSampleSize) {
return Error::Nonfatal("Scaling very small images is uninteresting.");
}
decodeInfo = decodeInfo.makeWH(size.width(), size.height());
int bpp = SkColorTypeBytesPerPixel(decodeInfo.colorType());
size_t rowBytes = size.width() * bpp;
SkAutoMalloc pixels(size.height() * rowBytes);
SkPMColor colorPtr[256];
int colorCount = 256;
SkBitmap bitmap;
SkImageInfo bitmapInfo = decodeInfo;
if (kRGBA_8888_SkColorType == decodeInfo.colorType() ||
kBGRA_8888_SkColorType == decodeInfo.colorType()) {
bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType);
}
// Create options for the codec.
SkAndroidCodec::AndroidOptions options;
options.fColorPtr = colorPtr;
options.fColorCount = &colorCount;
options.fSampleSize = fSampleSize;
switch (codec->getAndroidPixels(decodeInfo, pixels.get(), rowBytes, &options)) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
break;
default:
return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str());
}
draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, colorPtr, colorCount, fDstColorType);
return "";
}
SkISize AndroidCodecSrc::size() const {
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
SkAutoTDelete<SkAndroidCodec> codec(SkAndroidCodec::NewFromData(encoded));
if (nullptr == codec) {
return SkISize::Make(0, 0);
}
return codec->getSampledDimensions(fSampleSize);
}
Name AndroidCodecSrc::name() const {
// We will replicate the names used by CodecSrc so that images can
// be compared in Gold.
if (1 == fSampleSize) {
return SkOSPath::Basename(fPath.c_str());
}
return get_scaled_name(fPath, 1.0f / (float) fSampleSize);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ImageGenSrc::ImageGenSrc(Path path, Mode mode, SkAlphaType alphaType, bool isGpu)
: fPath(path)
, fMode(mode)
, fDstAlphaType(alphaType)
, fIsGpu(isGpu)
, fRunSerially(serial_from_path_name(path))
{}
bool ImageGenSrc::veto(SinkFlags flags) const {
if (fIsGpu) {
return flags.type != SinkFlags::kGPU || flags.approach != SinkFlags::kDirect;
}
return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect;
}
Error ImageGenSrc::draw(SkCanvas* canvas) const {
if (kRGB_565_SkColorType == canvas->imageInfo().colorType()) {
return Error::Nonfatal("Uninteresting to test image generator to 565.");
}
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
if (!encoded) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
#if defined(SK_BUILD_FOR_WIN)
// Initialize COM in order to test with WIC.
SkAutoCoInitialize com;
if (!com.succeeded()) {
return "Could not initialize COM.";
}
#endif
SkAutoTDelete<SkImageGenerator> gen(nullptr);
switch (fMode) {
case kCodec_Mode:
gen.reset(SkCodecImageGenerator::NewFromEncodedCodec(encoded.get()));
if (!gen) {
return "Could not create codec image generator.";
}
break;
case kPlatform_Mode: {
#if defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS)
gen.reset(SkImageGeneratorCG::NewFromEncodedCG(encoded.get()));
#elif defined(SK_BUILD_FOR_WIN)
gen.reset(SkImageGeneratorWIC::NewFromEncodedWIC(encoded.get()));
#endif
if (!gen) {
return "Could not create platform image generator.";
}
break;
}
default:
SkASSERT(false);
return "Invalid image generator mode";
}
// Test deferred decoding path on GPU
if (fIsGpu) {
sk_sp<SkImage> image(SkImage::MakeFromGenerator(gen.release(), nullptr));
if (!image) {
return "Could not create image from codec image generator.";
}
canvas->drawImage(image, 0, 0);
return "";
}
// Test various color and alpha types on CPU
SkImageInfo decodeInfo = gen->getInfo().makeAlphaType(fDstAlphaType);
int bpp = SkColorTypeBytesPerPixel(decodeInfo.colorType());
size_t rowBytes = decodeInfo.width() * bpp;
SkAutoMalloc pixels(decodeInfo.height() * rowBytes);
SkPMColor colorPtr[256];
int colorCount = 256;
if (!gen->getPixels(decodeInfo, pixels.get(), rowBytes, colorPtr, &colorCount)) {
return SkStringPrintf("Image generator could not getPixels() for %s\n", fPath.c_str());
}
draw_to_canvas(canvas, decodeInfo, pixels.get(), rowBytes, colorPtr, colorCount,
CodecSrc::kGetFromCanvas_DstColorType);
return "";
}
SkISize ImageGenSrc::size() const {
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded));
if (nullptr == codec) {
return SkISize::Make(0, 0);
}
return codec->getInfo().dimensions();
}
Name ImageGenSrc::name() const {
return SkOSPath::Basename(fPath.c_str());
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ColorCodecSrc::ColorCodecSrc(Path path, Mode mode, SkColorType colorType)
: fPath(path)
, fMode(mode)
, fColorType(colorType)
{}
bool ColorCodecSrc::veto(SinkFlags flags) const {
// Test to direct raster backends (8888 and 565).
return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect;
}
Error ColorCodecSrc::draw(SkCanvas* canvas) const {
if (kRGB_565_SkColorType == canvas->imageInfo().colorType()) {
return Error::Nonfatal("No need to test color correction to 565 backend.");
}
bool runInLegacyMode = kBaseline_Mode == fMode;
#if defined(SK_TEST_QCMS)
runInLegacyMode = runInLegacyMode || kQCMS_HPZR30w_Mode == fMode;
#endif
if (runInLegacyMode && canvas->imageInfo().colorSpace()) {
return Error::Nonfatal("Skipping tests that are only interesting in legacy mode.");
} else if (!runInLegacyMode && !canvas->imageInfo().colorSpace()) {
return Error::Nonfatal("Skipping tests that are only interesting in srgb mode.");
}
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
if (!encoded) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded));
if (nullptr == codec.get()) {
return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str());
}
// Load the dst ICC profile. This particular dst is fairly similar to Adobe RGB.
sk_sp<SkData> dstData = SkData::MakeFromFileName(
GetResourcePath("icc_profiles/HP_ZR30w.icc").c_str());
if (!dstData) {
return "Cannot read monitor profile. Is the resource path set correctly?";
}
sk_sp<SkColorSpace> dstSpace = nullptr;
if (kDst_sRGB_Mode == fMode) {
dstSpace = SkColorSpace::MakeNamed(SkColorSpace::kSRGB_Named);
} else if (kDst_HPZR30w_Mode == fMode) {
dstSpace = SkColorSpace::MakeICC(dstData->data(), dstData->size());
}
SkImageInfo decodeInfo = codec->getInfo().makeColorType(fColorType).makeColorSpace(dstSpace);
if (kUnpremul_SkAlphaType == decodeInfo.alphaType()) {
decodeInfo = decodeInfo.makeAlphaType(kPremul_SkAlphaType);
}
if (kRGBA_F16_SkColorType == fColorType) {
SkASSERT(SkColorSpace_Base::Type::kXYZ == as_CSB(decodeInfo.colorSpace())->type());
SkColorSpace_XYZ* csXYZ = static_cast<SkColorSpace_XYZ*>(decodeInfo.colorSpace());
decodeInfo = decodeInfo.makeColorSpace(csXYZ->makeLinearGamma());
}
SkImageInfo bitmapInfo = decodeInfo;
if (kRGBA_8888_SkColorType == decodeInfo.colorType() ||
kBGRA_8888_SkColorType == decodeInfo.colorType())
{
bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType);
}
SkBitmap bitmap;
if (!bitmap.tryAllocPixels(bitmapInfo)) {
return SkStringPrintf("Image(%s) is too large (%d x %d)", fPath.c_str(),
bitmapInfo.width(), bitmapInfo.height());
}
size_t rowBytes = bitmap.rowBytes();
SkCodec::Result r = codec->getPixels(decodeInfo, bitmap.getPixels(), rowBytes);
if (SkCodec::kSuccess != r && SkCodec::kIncompleteInput != r) {
// FIXME (raftias):
// This should be a fatal error. We need to add support for
// A2B images in SkColorSpaceXform.
return Error::Nonfatal(SkStringPrintf("Couldn't getPixels %s. Error code %d",
fPath.c_str(), r));
}
switch (fMode) {
case kBaseline_Mode:
case kDst_sRGB_Mode:
case kDst_HPZR30w_Mode:
canvas->drawBitmap(bitmap, 0, 0);
break;
#if defined(SK_TEST_QCMS)
case kQCMS_HPZR30w_Mode: {
sk_sp<SkData> srcData = codec->getICCData();
if (!srcData) {
return Error::Nonfatal("No ICC profile data. Cannot test with QCMS.\n");
}
SkAutoTCallVProc<qcms_profile, qcms_profile_release>
srcSpace(qcms_profile_from_memory(srcData->data(), srcData->size()));
if (!srcSpace) {
return Error::Nonfatal(SkStringPrintf("QCMS cannot create profile for %s.\n",
fPath.c_str()));
}
SkAutoTCallVProc<qcms_profile, qcms_profile_release>
dstSpace(qcms_profile_from_memory(dstData->data(), dstData->size()));
SkASSERT(dstSpace);
// Optimizes conversion by precomputing the inverse transformation to dst. Also
// causes QCMS to use a completely different codepath. This is how Chrome uses QCMS.
qcms_profile_precache_output_transform(dstSpace);
SkAutoTCallVProc<qcms_transform, qcms_transform_release>
transform (qcms_transform_create(srcSpace, QCMS_DATA_RGBA_8, dstSpace,
QCMS_DATA_RGBA_8, QCMS_INTENT_PERCEPTUAL));
if (!transform) {
return SkStringPrintf("QCMS cannot create transform for %s.\n", fPath.c_str());
}
#ifdef SK_PMCOLOR_IS_RGBA
qcms_output_type outType = QCMS_OUTPUT_RGBX;
#else
qcms_output_type outType = QCMS_OUTPUT_BGRX;
#endif
// Perform color correction.
uint32_t* row = (uint32_t*) bitmap.getPixels();
for (int y = 0; y < decodeInfo.height(); y++) {
qcms_transform_data_type(transform, row, row, decodeInfo.width(), outType);
row = SkTAddOffset<uint32_t>(row, rowBytes);
}
canvas->drawBitmap(bitmap, 0, 0);
break;
}
#endif
default:
SkASSERT(false);
return "Invalid fMode";
}
return "";
}
SkISize ColorCodecSrc::size() const {
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded));
if (nullptr == codec) {
return SkISize::Make(0, 0);
}
return SkISize::Make(codec->getInfo().width(), codec->getInfo().height());
}
Name ColorCodecSrc::name() const {
return SkOSPath::Basename(fPath.c_str());
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static const SkRect kSKPViewport = {0,0, 1000,1000};
SKPSrc::SKPSrc(Path path) : fPath(path) {}
Error SKPSrc::draw(SkCanvas* canvas) const {
std::unique_ptr<SkStream> stream = SkStream::MakeFromFile(fPath.c_str());
if (!stream) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
sk_sp<SkPicture> pic(SkPicture::MakeFromStream(stream.get()));
if (!pic) {
return SkStringPrintf("Couldn't decode %s as a picture.", fPath.c_str());
}
stream = nullptr; // Might as well drop this when we're done with it.
canvas->clipRect(kSKPViewport);
canvas->drawPicture(pic);
return "";
}
SkISize SKPSrc::size() const {
std::unique_ptr<SkStream> stream = SkStream::MakeFromFile(fPath.c_str());
if (!stream) {
return SkISize::Make(0,0);
}
SkPictInfo info;
if (!SkPicture::InternalOnly_StreamIsSKP(stream.get(), &info)) {
return SkISize::Make(0,0);
}
SkRect viewport = kSKPViewport;
if (!viewport.intersect(info.fCullRect)) {
return SkISize::Make(0,0);
}
return viewport.roundOut().size();
}
Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
#if defined(SK_XML)
// Used when the image doesn't have an intrinsic size.
static const SkSize kDefaultSVGSize = SkSize::Make(1000, 1000);
// Used to force-scale tiny fixed-size images.
static const SkSize kMinimumSVGSize = SkSize::Make(128, 128);
SVGSrc::SVGSrc(Path path) : fPath(path), fScale(1) {}
Error SVGSrc::ensureDom() const {
if (!fDom) {
SkFILEStream stream(fPath.c_str());
if (!stream.isValid()) {
return SkStringPrintf("Unable to open file: %s", fPath.c_str());
}
fDom = SkSVGDOM::MakeFromStream(stream);
if (!fDom) {
return SkStringPrintf("Unable to parse file: %s", fPath.c_str());
}
const SkSize& sz = fDom->containerSize();
if (sz.isEmpty()) {
// no intrinsic size
fDom->setContainerSize(kDefaultSVGSize);
} else {
fScale = SkTMax(1.f, SkTMax(kMinimumSVGSize.width() / sz.width(),
kMinimumSVGSize.height() / sz.height()));
}
}
return "";
}
Error SVGSrc::draw(SkCanvas* canvas) const {
Error err = this->ensureDom();
if (err.isEmpty()) {
SkAutoCanvasRestore acr(canvas, true);
canvas->scale(fScale, fScale);
fDom->render(canvas);
}
return err;
}
SkISize SVGSrc::size() const {
Error err = this->ensureDom();
if (!err.isEmpty()) {
return SkISize::Make(0, 0);
}
return SkSize::Make(fDom->containerSize().width() * fScale,
fDom->containerSize().height() * fScale).toRound();
}
Name SVGSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }
bool SVGSrc::veto(SinkFlags flags) const {
// No need to test to non-(raster||gpu) or indirect backends.
bool type_ok = flags.type == SinkFlags::kRaster
|| flags.type == SinkFlags::kGPU;
return !type_ok || flags.approach != SinkFlags::kDirect;
}
#endif // defined(SK_XML)
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
MSKPSrc::MSKPSrc(Path path) : fPath(path) {
std::unique_ptr<SkStreamAsset> stream = SkStream::MakeFromFile(fPath.c_str());
(void)fReader.init(stream.get());
}
int MSKPSrc::pageCount() const { return fReader.pageCount(); }
SkISize MSKPSrc::size() const { return this->size(0); }
SkISize MSKPSrc::size(int i) const { return fReader.pageSize(i).toCeil(); }
Error MSKPSrc::draw(SkCanvas* c) const { return this->draw(0, c); }
Error MSKPSrc::draw(int i, SkCanvas* canvas) const {
std::unique_ptr<SkStreamAsset> stream = SkStream::MakeFromFile(fPath.c_str());
if (!stream) {
return SkStringPrintf("Unable to open file: %s", fPath.c_str());
}
if (fReader.pageCount() == 0) {
return SkStringPrintf("Unable to parse MultiPictureDocument file: %s", fPath.c_str());
}
if (i >= fReader.pageCount()) {
return SkStringPrintf("MultiPictureDocument page number out of range: %d", i);
}
sk_sp<SkPicture> page = fReader.readPage(stream.get(), i);
if (!page) {
return SkStringPrintf("SkMultiPictureDocumentReader failed on page %d: %s",
i, fPath.c_str());
}
canvas->drawPicture(page);
return "";
}
Name MSKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const {
SkAutoTDelete<SkCanvas> canvas(SkCreateNullCanvas());
return src.draw(canvas);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?");
GPUSink::GPUSink(GrContextFactory::ContextType ct,
GrContextFactory::ContextOptions options,
int samples,
bool diText,
SkColorType colorType,
sk_sp<SkColorSpace> colorSpace,
bool threaded)
: fContextType(ct)
, fContextOptions(options)
, fSampleCount(samples)
, fUseDIText(diText)
, fColorType(colorType)
, fColorSpace(std::move(colorSpace))
, fThreaded(threaded) {}
DEFINE_bool(imm, false, "Run gpu configs in immediate mode.");
DEFINE_bool(batchClip, false, "Clip each GrBatch to its device bounds for testing.");
DEFINE_bool(batchBounds, false, "Draw a wireframe bounds of each GrBatch.");
DEFINE_int32(batchLookback, -1, "Maximum GrBatch lookback for combining, negative means default.");
DEFINE_int32(batchLookahead, -1, "Maximum GrBatch lookahead for combining, negative means "
"default.");
Error GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const {
GrContextOptions grOptions;
grOptions.fImmediateMode = FLAGS_imm;
grOptions.fClipBatchToBounds = FLAGS_batchClip;
grOptions.fDrawBatchBounds = FLAGS_batchBounds;
grOptions.fMaxBatchLookback = FLAGS_batchLookback;
grOptions.fMaxBatchLookahead = FLAGS_batchLookahead;
src.modifyGrContextOptions(&grOptions);
GrContextFactory factory(grOptions);
const SkISize size = src.size();
const SkImageInfo info =
SkImageInfo::Make(size.width(), size.height(), fColorType,
kPremul_SkAlphaType, fColorSpace);
#if SK_SUPPORT_GPU
GrContext* context = factory.getContextInfo(fContextType, fContextOptions).grContext();
const int maxDimension = context->caps()->maxTextureSize();
if (maxDimension < SkTMax(size.width(), size.height())) {
return Error::Nonfatal("Src too large to create a texture.\n");
}
#endif
auto surface(
NewGpuSurface(&factory, fContextType, fContextOptions, info, fSampleCount, fUseDIText));
if (!surface) {
return "Could not create a surface.";
}
if (FLAGS_preAbandonGpuContext) {
factory.abandonContexts();
}
SkCanvas* canvas = surface->getCanvas();
Error err = src.draw(canvas);
if (!err.isEmpty()) {
return err;
}
canvas->flush();
if (FLAGS_gpuStats) {
canvas->getGrContext()->dumpCacheStats(log);
canvas->getGrContext()->dumpGpuStats(log);
}
dst->allocPixels(info);
canvas->readPixels(dst, 0, 0);
if (FLAGS_abandonGpuContext) {
factory.abandonContexts();
} else if (FLAGS_releaseAndAbandonGpuContext) {
factory.releaseResourcesAndAbandonContexts();
}
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static Error draw_skdocument(const Src& src, SkDocument* doc, SkWStream* dst) {
if (src.size().isEmpty()) {
return "Source has empty dimensions";
}
SkASSERT(doc);
int pageCount = src.pageCount();
for (int i = 0; i < pageCount; ++i) {
int width = src.size(i).width(), height = src.size(i).height();
SkCanvas* canvas =
doc->beginPage(SkIntToScalar(width), SkIntToScalar(height));
if (!canvas) {
return "SkDocument::beginPage(w,h) returned nullptr";
}
Error err = src.draw(i, canvas);
if (!err.isEmpty()) {
return err;
}
doc->endPage();
}
doc->close();
dst->flush();
return "";
}
Error PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
SkDocument::PDFMetadata metadata;
metadata.fTitle = src.name();
metadata.fSubject = "rendering correctness test";
metadata.fCreator = "Skia/DM";
sk_sp<SkDocument> doc = SkDocument::MakePDF(dst, SK_ScalarDefaultRasterDPI,
metadata, nullptr, fPDFA);
if (!doc) {
return "SkDocument::MakePDF() returned nullptr";
}
return draw_skdocument(src, doc.get(), dst);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
XPSSink::XPSSink() {}
Error XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
sk_sp<SkDocument> doc(SkDocument::MakeXPS(dst));
if (!doc) {
return "SkDocument::MakeXPS() returned nullptr";
}
return draw_skdocument(src, doc.get(), dst);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
PipeSink::PipeSink() {}
Error PipeSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
return src.draw(SkPipeSerializer().beginWrite(SkRect::Make(src.size()), dst));
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
SKPSink::SKPSink() {}
Error SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
SkSize size;
size = src.size();
SkPictureRecorder recorder;
Error err = src.draw(recorder.beginRecording(size.width(), size.height()));
if (!err.isEmpty()) {
return err;
}
recorder.finishRecordingAsPicture()->serialize(dst);
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error DebugSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
SkDebugCanvas debugCanvas(src.size().width(), src.size().height());
Error err = src.draw(&debugCanvas);
if (!err.isEmpty()) {
return err;
}
sk_sp<SkCanvas> nullCanvas(SkCreateNullCanvas());
UrlDataManager dataManager(SkString("data"));
Json::Value json = debugCanvas.toJSON(
dataManager, debugCanvas.getSize(), nullCanvas.get());
std::string value = Json::StyledWriter().write(json);
return dst->write(value.c_str(), value.size()) ? "" : "SkWStream Error";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
SVGSink::SVGSink() {}
Error SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
#if defined(SK_XML)
SkAutoTDelete<SkXMLWriter> xmlWriter(new SkXMLStreamWriter(dst));
SkAutoTUnref<SkCanvas> canvas(SkSVGCanvas::Create(
SkRect::MakeWH(SkIntToScalar(src.size().width()), SkIntToScalar(src.size().height())),
xmlWriter));
return src.draw(canvas);
#else
return Error("SVG sink is disabled.");
#endif // SK_XML
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
RasterSink::RasterSink(SkColorType colorType, sk_sp<SkColorSpace> colorSpace)
: fColorType(colorType)
, fColorSpace(std::move(colorSpace)) {}
Error RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const {
const SkISize size = src.size();
// If there's an appropriate alpha type for this color type, use it, otherwise use premul.
SkAlphaType alphaType = kPremul_SkAlphaType;
(void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType);
SkMallocPixelRef::ZeroedPRFactory factory;
dst->allocPixels(SkImageInfo::Make(size.width(), size.height(),
fColorType, alphaType, fColorSpace),
&factory,
nullptr/*colortable*/);
SkCanvas canvas(*dst);
return src.draw(&canvas);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// Handy for front-patching a Src. Do whatever up-front work you need, then call draw_to_canvas(),
// passing the Sink draw() arguments, a size, and a function draws into an SkCanvas.
// Several examples below.
template <typename Fn>
static Error draw_to_canvas(Sink* sink, SkBitmap* bitmap, SkWStream* stream, SkString* log,
SkISize size, const Fn& draw) {
class ProxySrc : public Src {
public:
ProxySrc(SkISize size, const Fn& draw) : fSize(size), fDraw(draw) {}
Error draw(SkCanvas* canvas) const override { return fDraw(canvas); }
Name name() const override { return "ProxySrc"; }
SkISize size() const override { return fSize; }
private:
SkISize fSize;
const Fn& fDraw;
};
return sink->draw(ProxySrc(size, draw), bitmap, stream, log);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
DEFINE_bool(check, true, "If true, have most Via- modes fail if they affect the output.");
// Is *bitmap identical to what you get drawing src into sink?
static Error check_against_reference(const SkBitmap* bitmap, const Src& src, Sink* sink) {
// We can only check raster outputs.
// (Non-raster outputs like .pdf, .skp, .svg may differ but still draw identically.)
if (FLAGS_check && bitmap) {
SkBitmap reference;
SkString log;
SkDynamicMemoryWStream wStream;
Error err = sink->draw(src, &reference, &wStream, &log);
// If we can draw into this Sink via some pipeline, we should be able to draw directly.
SkASSERT(err.isEmpty());
if (!err.isEmpty()) {
return err;
}
// The dimensions are a property of the Src only, and so should be identical.
SkASSERT(reference.getSize() == bitmap->getSize());
if (reference.getSize() != bitmap->getSize()) {
return "Dimensions don't match reference";
}
// All SkBitmaps in DM are pre-locked and tight, so this comparison is easy.
if (0 != memcmp(reference.getPixels(), bitmap->getPixels(), reference.getSize())) {
return "Pixels don't match reference";
}
}
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) {
SkRect bounds = SkRect::MakeIWH(srcW, srcH);
matrix->mapRect(&bounds);
matrix->postTranslate(-bounds.x(), -bounds.y());
return SkISize::Make(SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height()));
}
ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {}
Error ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
SkMatrix matrix = fMatrix;
SkISize size = auto_compute_translate(&matrix, src.size().width(), src.size().height());
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) {
canvas->concat(matrix);
return src.draw(canvas);
});
}
// Undoes any flip or 90 degree rotate without changing the scale of the bitmap.
// This should be pixel-preserving.
ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {}
Error ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
Error err = fSink->draw(src, bitmap, stream, log);
if (!err.isEmpty()) {
return err;
}
SkMatrix inverse;
if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) {
return "Cannot upright --matrix.";
}
SkMatrix upright = SkMatrix::I();
upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX()));
upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY()));
upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX()));
upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY()));
SkBitmap uprighted;
SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height());
uprighted.allocPixels(bitmap->info().makeWH(size.width(), size.height()));
SkCanvas canvas(uprighted);
canvas.concat(upright);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
canvas.drawBitmap(*bitmap, 0, 0, &paint);
*bitmap = uprighted;
bitmap->lockPixels();
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error ViaSerialization::draw(
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
// Record our Src into a picture.
auto size = src.size();
SkPictureRecorder recorder;
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
SkIntToScalar(size.height())));
if (!err.isEmpty()) {
return err;
}
sk_sp<SkPicture> pic(recorder.finishRecordingAsPicture());
// Serialize it and then deserialize it.
sk_sp<SkPicture> deserialized(SkPicture::MakeFromData(pic->serialize().get()));
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) {
canvas->drawPicture(deserialized);
return check_against_reference(bitmap, src, fSink);
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ViaTiles::ViaTiles(int w, int h, SkBBHFactory* factory, Sink* sink)
: Via(sink)
, fW(w)
, fH(h)
, fFactory(factory) {}
Error ViaTiles::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
SkPictureRecorder recorder;
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
SkIntToScalar(size.height()),
fFactory.get()));
if (!err.isEmpty()) {
return err;
}
sk_sp<SkPicture> pic(recorder.finishRecordingAsPicture());
return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) {
const int xTiles = (size.width() + fW - 1) / fW,
yTiles = (size.height() + fH - 1) / fH;
SkMultiPictureDraw mpd(xTiles*yTiles);
SkTArray<sk_sp<SkSurface>> surfaces;
// surfaces.setReserve(xTiles*yTiles);
SkImageInfo info = canvas->imageInfo().makeWH(fW, fH);
for (int j = 0; j < yTiles; j++) {
for (int i = 0; i < xTiles; i++) {
// This lets our ultimate Sink determine the best kind of surface.
// E.g., if it's a GpuSink, the surfaces and images are textures.
auto s = canvas->makeSurface(info);
if (!s) {
s = SkSurface::MakeRaster(info); // Some canvases can't create surfaces.
}
surfaces.push_back(s);
SkCanvas* c = s->getCanvas();
c->translate(SkIntToScalar(-i * fW),
SkIntToScalar(-j * fH)); // Line up the canvas with this tile.
mpd.add(c, pic.get());
}
}
mpd.draw();
for (int j = 0; j < yTiles; j++) {
for (int i = 0; i < xTiles; i++) {
sk_sp<SkImage> image(surfaces[i+xTiles*j]->makeImageSnapshot());
canvas->drawImage(image, SkIntToScalar(i*fW), SkIntToScalar(j*fH));
}
}
return "";
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error ViaPicture::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
SkPictureRecorder recorder;
sk_sp<SkPicture> pic;
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
SkIntToScalar(size.height())));
if (!err.isEmpty()) {
return err;
}
pic = recorder.finishRecordingAsPicture();
canvas->drawPicture(pic);
return check_against_reference(bitmap, src, fSink);
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error ViaDefer::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
SkDeferredCanvas deferred(canvas);
return src.draw(&deferred);
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error ViaPipe::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
SkDynamicMemoryWStream tmpStream;
Error err = src.draw(SkPipeSerializer().beginWrite(SkRect::Make(size), &tmpStream));
if (!err.isEmpty()) {
return err;
}
sk_sp<SkData> data = tmpStream.detachAsData();
SkPipeDeserializer().playback(data->data(), data->size(), canvas);
return check_against_reference(bitmap, src, fSink);
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// Draw the Src into two pictures, then draw the second picture into the wrapped Sink.
// This tests that any shortcuts we may take while recording that second picture are legal.
Error ViaSecondPicture::draw(
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
SkPictureRecorder recorder;
sk_sp<SkPicture> pic;
for (int i = 0; i < 2; i++) {
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
SkIntToScalar(size.height())));
if (!err.isEmpty()) {
return err;
}
pic = recorder.finishRecordingAsPicture();
}
canvas->drawPicture(pic);
return check_against_reference(bitmap, src, fSink);
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// Draw the Src twice. This can help exercise caching.
Error ViaTwice::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) -> Error {
for (int i = 0; i < 2; i++) {
SkAutoCanvasRestore acr(canvas, true/*save now*/);
canvas->clear(SK_ColorTRANSPARENT);
Error err = src.draw(canvas);
if (err.isEmpty()) {
return err;
}
}
return check_against_reference(bitmap, src, fSink);
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// This is like SkRecords::Draw, in that it plays back SkRecords ops into a Canvas.
// Unlike SkRecords::Draw, it builds a single-op sub-picture out of each Draw-type op.
// This is an only-slightly-exaggerated simluation of Blink's Slimming Paint pictures.
struct DrawsAsSingletonPictures {
SkCanvas* fCanvas;
const SkDrawableList& fDrawables;
SkRect fBounds;
template <typename T>
void draw(const T& op, SkCanvas* canvas) {
// We must pass SkMatrix::I() as our initial matrix.
// By default SkRecords::Draw() uses the canvas' matrix as its initial matrix,
// which would have the funky effect of applying transforms over and over.
SkRecords::Draw d(canvas, nullptr, fDrawables.begin(), fDrawables.count(), &SkMatrix::I());
d(op);
}
// Draws get their own picture.
template <typename T>
SK_WHEN(T::kTags & SkRecords::kDraw_Tag, void) operator()(const T& op) {
SkPictureRecorder rec;
this->draw(op, rec.beginRecording(fBounds));
sk_sp<SkPicture> pic(rec.finishRecordingAsPicture());
fCanvas->drawPicture(pic);
}
// We'll just issue non-draws directly.
template <typename T>
skstd::enable_if_t<!(T::kTags & SkRecords::kDraw_Tag), void> operator()(const T& op) {
this->draw(op, fCanvas);
}
};
// Record Src into a picture, then record it into a macro picture with a sub-picture for each draw.
// Then play back that macro picture into our wrapped sink.
Error ViaSingletonPictures::draw(
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
// Use low-level (Skia-private) recording APIs so we can read the SkRecord.
SkRecord skr;
SkRecorder recorder(&skr, size.width(), size.height());
Error err = src.draw(&recorder);
if (!err.isEmpty()) {
return err;
}
// Record our macro-picture, with each draw op as its own sub-picture.
SkPictureRecorder macroRec;
SkCanvas* macroCanvas = macroRec.beginRecording(SkIntToScalar(size.width()),
SkIntToScalar(size.height()));
std::unique_ptr<SkDrawableList> drawables(recorder.detachDrawableList());
const SkDrawableList empty;
DrawsAsSingletonPictures drawsAsSingletonPictures = {
macroCanvas,
drawables ? *drawables : empty,
SkRect::MakeWH((SkScalar)size.width(), (SkScalar)size.height()),
};
for (int i = 0; i < skr.count(); i++) {
skr.visit(i, drawsAsSingletonPictures);
}
sk_sp<SkPicture> macroPic(macroRec.finishRecordingAsPicture());
canvas->drawPicture(macroPic);
return check_against_reference(bitmap, src, fSink);
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error ViaLite::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
SkRect bounds = {0,0, (SkScalar)size.width(), (SkScalar)size.height()};
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
sk_sp<SkLiteDL> dl = SkLiteDL::New(bounds);
SkLiteRecorder rec;
rec.reset(dl.get());
Error err = src.draw(&rec);
if (!err.isEmpty()) {
return err;
}
dl->draw(canvas);
return check_against_reference(bitmap, src, fSink);
});
}
} // namespace DM