573923c30c
Initial data suggests that the non-rational Wang's formula does not form an upper bound for the rational case, so additional work is needed to handle them. Note this new formula is not actually due to Wang, but is an analogue. The version added in this CL is for cubic rationals because the current tessellation code promotes all curve segments to cubic rationals for ease. If we end up using this approach, it would be likely simpler and faster to implement the degree-2 version and handle conics separately during tessellation. From: J. Zheng, T. Sederberg. "Estimating Tessellation Parameter Intervals for Rational Curves and Surfaces." ACM Transactions on Graphics 19(1). 2000. Bug: skia:10419 Change-Id: Ie02e229c089541ece05c7502217b1ef5d4799b52 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/337720 Commit-Queue: Tyler Denniston <tdenniston@google.com> Reviewed-by: Chris Dalton <csmartdalton@google.com>
449 lines
18 KiB
C++
449 lines
18 KiB
C++
/*
|
|
* Copyright 2020 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "include/utils/SkRandom.h"
|
|
#include "src/core/SkGeometry.h"
|
|
#include "src/gpu/tessellate/GrWangsFormula.h"
|
|
#include "tests/Test.h"
|
|
|
|
constexpr static int kIntolerance = 4; // 1/4 pixel max error.
|
|
|
|
const SkPoint kSerp[4] = {
|
|
{285.625f, 499.687f}, {411.625f, 808.188f}, {1064.62f, 135.688f}, {1042.63f, 585.187f}};
|
|
|
|
const SkPoint kLoop[4] = {
|
|
{635.625f, 614.687f}, {171.625f, 236.188f}, {1064.62f, 135.688f}, {516.625f, 570.187f}};
|
|
|
|
const SkPoint kQuad[4] = {
|
|
{460.625f, 557.187f}, {707.121f, 209.688f}, {779.628f, 577.687f}};
|
|
|
|
static float wangs_formula_quadratic_reference_impl(float intolerance, const SkPoint p[3]) {
|
|
float k = (2 * 1) / 8.f * intolerance;
|
|
return sqrtf(k * (p[0] - p[1]*2 + p[2]).length());
|
|
}
|
|
|
|
static float wangs_formula_cubic_reference_impl(float intolerance, const SkPoint p[4]) {
|
|
float k = (3 * 2) / 8.f * intolerance;
|
|
return sqrtf(k * std::max((p[0] - p[1]*2 + p[2]).length(),
|
|
(p[1] - p[2]*2 + p[3]).length()));
|
|
}
|
|
|
|
// Returns number of segments for linearized quadratic rational. This is an analogue
|
|
// to Wang's formula, taken from:
|
|
//
|
|
// J. Zheng, T. Sederberg. "Estimating Tessellation Parameter Intervals for
|
|
// Rational Curves and Surfaces." ACM Transactions on Graphics 19(1). 2000.
|
|
// See Thm 3, Corollary 1.
|
|
//
|
|
// Input points should be in projected space.
|
|
static float wangs_formula_conic_reference_impl(float intolerance,
|
|
const SkPoint P[3],
|
|
const float w) {
|
|
// Compute center of bounding box in projected space
|
|
float min_x = P[0].fX, max_x = min_x,
|
|
min_y = P[0].fY, max_y = min_y;
|
|
for (int i = 1; i < 3; i++) {
|
|
min_x = std::min(min_x, P[i].fX);
|
|
max_x = std::max(max_x, P[i].fX);
|
|
min_y = std::min(min_y, P[i].fY);
|
|
max_y = std::max(max_y, P[i].fY);
|
|
}
|
|
const SkPoint C = SkPoint::Make(0.5f * (min_x + max_x), 0.5f * (min_y + max_y));
|
|
|
|
// Translate control points and compute max length
|
|
SkPoint tP[3] = {P[0] - C, P[1] - C, P[2] - C};
|
|
float max_len = 0;
|
|
for (int i = 0; i < 3; i++) {
|
|
max_len = std::max(max_len, tP[i].length());
|
|
}
|
|
SkASSERT(max_len > 0);
|
|
|
|
// Compute delta = parametric step size of linearization
|
|
const float eps = 1 / intolerance;
|
|
const float r_minus_eps = std::max(0.f, max_len - eps);
|
|
const float min_w = std::min(w, 1.f);
|
|
const float numer = 4 * min_w * eps;
|
|
const float denom =
|
|
(tP[2] - tP[1] * 2 * w + tP[0]).length() + r_minus_eps * std::abs(1 - 2 * w + 1);
|
|
const float delta = sqrtf(numer / denom);
|
|
|
|
// Return corresponding num segments in the interval [tmin,tmax]
|
|
constexpr float tmin = 0, tmax = 1;
|
|
SkASSERT(delta > 0);
|
|
return (tmax - tmin) / delta;
|
|
}
|
|
|
|
static void for_random_matrices(SkRandom* rand, std::function<void(const SkMatrix&)> f) {
|
|
SkMatrix m;
|
|
m.setIdentity();
|
|
f(m);
|
|
|
|
for (int i = -10; i <= 30; ++i) {
|
|
for (int j = -10; j <= 30; ++j) {
|
|
m.setScaleX(std::ldexp(1 + rand->nextF(), i));
|
|
m.setSkewX(0);
|
|
m.setSkewY(0);
|
|
m.setScaleY(std::ldexp(1 + rand->nextF(), j));
|
|
f(m);
|
|
|
|
m.setScaleX(std::ldexp(1 + rand->nextF(), i));
|
|
m.setSkewX(std::ldexp(1 + rand->nextF(), (j + i) / 2));
|
|
m.setSkewY(std::ldexp(1 + rand->nextF(), (j + i) / 2));
|
|
m.setScaleY(std::ldexp(1 + rand->nextF(), j));
|
|
f(m);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void for_random_beziers(int numPoints, SkRandom* rand,
|
|
std::function<void(const SkPoint[])> f,
|
|
int maxExponent = 30) {
|
|
SkASSERT(numPoints <= 4);
|
|
SkPoint pts[4];
|
|
for (int i = -10; i <= maxExponent; ++i) {
|
|
for (int j = 0; j < numPoints; ++j) {
|
|
pts[j].set(std::ldexp(1 + rand->nextF(), i), std::ldexp(1 + rand->nextF(), i));
|
|
}
|
|
f(pts);
|
|
}
|
|
}
|
|
|
|
// Ensure the optimized "*_log2" versions return the same value as ceil(std::log2(f)).
|
|
DEF_TEST(WangsFormula_log2, r) {
|
|
// Constructs a cubic such that the 'length' term in wang's formula == term.
|
|
//
|
|
// f = sqrt(k * length(max(abs(p0 - p1*2 + p2),
|
|
// abs(p1 - p2*2 + p3))));
|
|
auto setupCubicLengthTerm = [](int seed, SkPoint pts[], float term) {
|
|
memset(pts, 0, sizeof(SkPoint) * 4);
|
|
|
|
SkPoint term2d = (seed & 1) ?
|
|
SkPoint::Make(term, 0) : SkPoint::Make(.5f, std::sqrt(3)/2) * term;
|
|
seed >>= 1;
|
|
|
|
if (seed & 1) {
|
|
term2d.fX = -term2d.fX;
|
|
}
|
|
seed >>= 1;
|
|
|
|
if (seed & 1) {
|
|
std::swap(term2d.fX, term2d.fY);
|
|
}
|
|
seed >>= 1;
|
|
|
|
switch (seed % 4) {
|
|
case 0:
|
|
pts[0] = term2d;
|
|
pts[3] = term2d * .75f;
|
|
return;
|
|
case 1:
|
|
pts[1] = term2d * -.5f;
|
|
return;
|
|
case 2:
|
|
pts[1] = term2d * -.5f;
|
|
return;
|
|
case 3:
|
|
pts[3] = term2d;
|
|
pts[0] = term2d * .75f;
|
|
return;
|
|
}
|
|
};
|
|
|
|
// Constructs a quadratic such that the 'length' term in wang's formula == term.
|
|
//
|
|
// f = sqrt(k * length(p0 - p1*2 + p2));
|
|
auto setupQuadraticLengthTerm = [](int seed, SkPoint pts[], float term) {
|
|
memset(pts, 0, sizeof(SkPoint) * 3);
|
|
|
|
SkPoint term2d = (seed & 1) ?
|
|
SkPoint::Make(term, 0) : SkPoint::Make(.5f, std::sqrt(3)/2) * term;
|
|
seed >>= 1;
|
|
|
|
if (seed & 1) {
|
|
term2d.fX = -term2d.fX;
|
|
}
|
|
seed >>= 1;
|
|
|
|
if (seed & 1) {
|
|
std::swap(term2d.fX, term2d.fY);
|
|
}
|
|
seed >>= 1;
|
|
|
|
switch (seed % 3) {
|
|
case 0:
|
|
pts[0] = term2d;
|
|
return;
|
|
case 1:
|
|
pts[1] = term2d * -.5f;
|
|
return;
|
|
case 2:
|
|
pts[2] = term2d;
|
|
return;
|
|
}
|
|
};
|
|
|
|
// GrWangsFormula::cubic and ::quadratic both use rsqrt instead of sqrt for speed. Linearization
|
|
// is all approximate anyway, so as long as we are within ~1/2 tessellation segment of the
|
|
// reference value we are good enough.
|
|
constexpr static float kTessellationTolerance = 1/128.f;
|
|
|
|
for (int level = 0; level < 30; ++level) {
|
|
float epsilon = std::ldexp(SK_ScalarNearlyZero, level * 2);
|
|
SkPoint pts[4];
|
|
|
|
{
|
|
// Test cubic boundaries.
|
|
// f = sqrt(k * length(max(abs(p0 - p1*2 + p2),
|
|
// abs(p1 - p2*2 + p3))));
|
|
constexpr static float k = (3 * 2) / (8 * (1.f/kIntolerance));
|
|
float x = std::ldexp(1, level * 2) / k;
|
|
setupCubicLengthTerm(level << 1, pts, x - epsilon);
|
|
float referenceValue = wangs_formula_cubic_reference_impl(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level);
|
|
float c = GrWangsFormula::cubic(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(c/referenceValue, 1, kTessellationTolerance));
|
|
REPORTER_ASSERT(r, GrWangsFormula::cubic_log2(kIntolerance, pts) == level);
|
|
setupCubicLengthTerm(level << 1, pts, x + epsilon);
|
|
referenceValue = wangs_formula_cubic_reference_impl(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level + 1);
|
|
c = GrWangsFormula::cubic(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(c/referenceValue, 1, kTessellationTolerance));
|
|
REPORTER_ASSERT(r, GrWangsFormula::cubic_log2(kIntolerance, pts) == level + 1);
|
|
}
|
|
|
|
{
|
|
// Test quadratic boundaries.
|
|
// f = std::sqrt(k * Length(p0 - p1*2 + p2));
|
|
constexpr static float k = 2 / (8 * (1.f/kIntolerance));
|
|
float x = std::ldexp(1, level * 2) / k;
|
|
setupQuadraticLengthTerm(level << 1, pts, x - epsilon);
|
|
float referenceValue = wangs_formula_quadratic_reference_impl(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level);
|
|
float q = GrWangsFormula::quadratic(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(q/referenceValue, 1, kTessellationTolerance));
|
|
REPORTER_ASSERT(r, GrWangsFormula::quadratic_log2(kIntolerance, pts) == level);
|
|
setupQuadraticLengthTerm(level << 1, pts, x + epsilon);
|
|
referenceValue = wangs_formula_quadratic_reference_impl(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level+1);
|
|
q = GrWangsFormula::quadratic(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(q/referenceValue, 1, kTessellationTolerance));
|
|
REPORTER_ASSERT(r, GrWangsFormula::quadratic_log2(kIntolerance, pts) == level + 1);
|
|
}
|
|
}
|
|
|
|
auto check_cubic_log2 = [&](const SkPoint* pts) {
|
|
float f = std::max(1.f, wangs_formula_cubic_reference_impl(kIntolerance, pts));
|
|
int f_log2 = GrWangsFormula::cubic_log2(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, SkScalarCeilToInt(std::log2(f)) == f_log2);
|
|
float c = std::max(1.f, GrWangsFormula::cubic(kIntolerance, pts));
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(c/f, 1, kTessellationTolerance));
|
|
};
|
|
|
|
auto check_quadratic_log2 = [&](const SkPoint* pts) {
|
|
float f = std::max(1.f, wangs_formula_quadratic_reference_impl(kIntolerance, pts));
|
|
int f_log2 = GrWangsFormula::quadratic_log2(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, SkScalarCeilToInt(std::log2(f)) == f_log2);
|
|
float q = std::max(1.f, GrWangsFormula::quadratic(kIntolerance, pts));
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(q/f, 1, kTessellationTolerance));
|
|
};
|
|
|
|
SkRandom rand;
|
|
|
|
for_random_matrices(&rand, [&](const SkMatrix& m) {
|
|
SkPoint pts[4];
|
|
m.mapPoints(pts, kSerp, 4);
|
|
check_cubic_log2(pts);
|
|
|
|
m.mapPoints(pts, kLoop, 4);
|
|
check_cubic_log2(pts);
|
|
|
|
m.mapPoints(pts, kQuad, 3);
|
|
check_quadratic_log2(pts);
|
|
});
|
|
|
|
for_random_beziers(4, &rand, [&](const SkPoint pts[]) {
|
|
check_cubic_log2(pts);
|
|
});
|
|
|
|
for_random_beziers(3, &rand, [&](const SkPoint pts[]) {
|
|
check_quadratic_log2(pts);
|
|
});
|
|
}
|
|
|
|
// Ensure using transformations gives the same result as pre-transforming all points.
|
|
DEF_TEST(WangsFormula_vectorXforms, r) {
|
|
auto check_cubic_log2_with_transform = [&](const SkPoint* pts, const SkMatrix& m){
|
|
SkPoint ptsXformed[4];
|
|
m.mapPoints(ptsXformed, pts, 4);
|
|
int expected = GrWangsFormula::cubic_log2(kIntolerance, ptsXformed);
|
|
int actual = GrWangsFormula::cubic_log2(kIntolerance, pts, GrVectorXform(m));
|
|
REPORTER_ASSERT(r, actual == expected);
|
|
};
|
|
|
|
auto check_quadratic_log2_with_transform = [&](const SkPoint* pts, const SkMatrix& m) {
|
|
SkPoint ptsXformed[3];
|
|
m.mapPoints(ptsXformed, pts, 3);
|
|
int expected = GrWangsFormula::quadratic_log2(kIntolerance, ptsXformed);
|
|
int actual = GrWangsFormula::quadratic_log2(kIntolerance, pts, GrVectorXform(m));
|
|
REPORTER_ASSERT(r, actual == expected);
|
|
};
|
|
|
|
SkRandom rand;
|
|
|
|
for_random_matrices(&rand, [&](const SkMatrix& m) {
|
|
check_cubic_log2_with_transform(kSerp, m);
|
|
check_cubic_log2_with_transform(kLoop, m);
|
|
check_quadratic_log2_with_transform(kQuad, m);
|
|
|
|
for_random_beziers(4, &rand, [&](const SkPoint pts[]) {
|
|
check_cubic_log2_with_transform(pts, m);
|
|
});
|
|
|
|
for_random_beziers(3, &rand, [&](const SkPoint pts[]) {
|
|
check_quadratic_log2_with_transform(pts, m);
|
|
});
|
|
});
|
|
}
|
|
|
|
DEF_TEST(WangsFormula_worst_case_cubic, r) {
|
|
{
|
|
SkPoint worstP[] = {{0,0}, {100,100}, {0,0}, {0,0}};
|
|
REPORTER_ASSERT(r, GrWangsFormula::worst_case_cubic(kIntolerance, 100, 100) ==
|
|
wangs_formula_cubic_reference_impl(kIntolerance, worstP));
|
|
REPORTER_ASSERT(r, GrWangsFormula::worst_case_cubic_log2(kIntolerance, 100, 100) ==
|
|
GrWangsFormula::cubic_log2(kIntolerance, worstP));
|
|
}
|
|
{
|
|
SkPoint worstP[] = {{100,100}, {100,100}, {200,200}, {100,100}};
|
|
REPORTER_ASSERT(r, GrWangsFormula::worst_case_cubic(kIntolerance, 100, 100) ==
|
|
wangs_formula_cubic_reference_impl(kIntolerance, worstP));
|
|
REPORTER_ASSERT(r, GrWangsFormula::worst_case_cubic_log2(kIntolerance, 100, 100) ==
|
|
GrWangsFormula::cubic_log2(kIntolerance, worstP));
|
|
}
|
|
auto check_worst_case_cubic = [&](const SkPoint* pts) {
|
|
SkRect bbox;
|
|
bbox.setBoundsNoCheck(pts, 4);
|
|
float worst = GrWangsFormula::worst_case_cubic(kIntolerance, bbox.width(), bbox.height());
|
|
int worst_log2 = GrWangsFormula::worst_case_cubic_log2(kIntolerance, bbox.width(),
|
|
bbox.height());
|
|
float actual = wangs_formula_cubic_reference_impl(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, worst >= actual);
|
|
REPORTER_ASSERT(r, std::ceil(std::log2(std::max(1.f, worst))) == worst_log2);
|
|
};
|
|
SkRandom rand;
|
|
for (int i = 0; i < 100; ++i) {
|
|
for_random_beziers(4, &rand, [&](const SkPoint pts[]) {
|
|
check_worst_case_cubic(pts);
|
|
});
|
|
}
|
|
}
|
|
|
|
// Ensure Wang's formula for quads produces max error within tolerance.
|
|
DEF_TEST(WangsFormula_quad_within_tol, r) {
|
|
// Wang's formula and the quad math starts to lose precision with very large
|
|
// coordinate values, so limit the magnitude a bit to prevent test failures
|
|
// due to loss of precision.
|
|
constexpr int maxExponent = 15;
|
|
SkRandom rand;
|
|
for_random_beziers(3, &rand, [&r](const SkPoint pts[]) {
|
|
const int nsegs = static_cast<int>(
|
|
std::ceil(wangs_formula_quadratic_reference_impl(kIntolerance, pts)));
|
|
|
|
const float tdelta = 1.f / nsegs;
|
|
for (int j = 0; j < nsegs; ++j) {
|
|
const float tmin = j * tdelta, tmax = (j + 1) * tdelta;
|
|
|
|
// Get section of quad in [tmin,tmax]
|
|
const SkPoint* sectionPts;
|
|
SkPoint tmp0[5];
|
|
SkPoint tmp1[5];
|
|
if (tmin == 0) {
|
|
if (tmax == 1) {
|
|
sectionPts = pts;
|
|
} else {
|
|
SkChopQuadAt(pts, tmp0, tmax);
|
|
sectionPts = tmp0;
|
|
}
|
|
} else {
|
|
SkChopQuadAt(pts, tmp0, tmin);
|
|
if (tmax == 1) {
|
|
sectionPts = tmp0 + 2;
|
|
} else {
|
|
SkChopQuadAt(tmp0 + 2, tmp1, (tmax - tmin) / (1 - tmin));
|
|
sectionPts = tmp1;
|
|
}
|
|
}
|
|
|
|
// For quads, max distance from baseline is always at t=0.5.
|
|
SkPoint p;
|
|
p = SkEvalQuadAt(sectionPts, 0.5f);
|
|
|
|
// Get distance of p to baseline
|
|
const SkPoint n = {sectionPts[2].fY - sectionPts[0].fY,
|
|
sectionPts[0].fX - sectionPts[2].fX};
|
|
const float d = std::abs((p - sectionPts[0]).dot(n)) / n.length();
|
|
|
|
// Check distance is within specified tolerance
|
|
REPORTER_ASSERT(r, d <= (1.f / kIntolerance) + SK_ScalarNearlyZero);
|
|
}
|
|
}, maxExponent);
|
|
}
|
|
|
|
// Ensure the specialized version for rational quads reduces to regular Wang's
|
|
// formula when all weights are equal to one
|
|
DEF_TEST(WangsFormula_rational_quad_reduces, r) {
|
|
constexpr static float kTessellationTolerance = 1 / 128.f;
|
|
|
|
SkRandom rand;
|
|
for (int i = 0; i < 100; ++i) {
|
|
for_random_beziers(3, &rand, [&r](const SkPoint pts[]) {
|
|
const float rational_nsegs = wangs_formula_conic_reference_impl(kIntolerance, pts, 1.f);
|
|
const float integral_nsegs = wangs_formula_quadratic_reference_impl(kIntolerance, pts);
|
|
REPORTER_ASSERT(
|
|
r, SkScalarNearlyEqual(rational_nsegs, integral_nsegs, kTessellationTolerance));
|
|
});
|
|
}
|
|
}
|
|
|
|
// Ensure the rational quad version (used for conics) produces max error within tolerance.
|
|
DEF_TEST(WangsFormula_conic_within_tol, r) {
|
|
constexpr int maxExponent = 15;
|
|
|
|
SkRandom rand;
|
|
for (int i = -10; i <= 10; ++i) {
|
|
const float w = std::ldexp(1 + rand.nextF(), i);
|
|
for_random_beziers(
|
|
3, &rand,
|
|
[&r, w](const SkPoint pts[]) {
|
|
const SkPoint projPts[3] = {pts[0], pts[1] * (1.f / w), pts[2]};
|
|
const int nsegs = static_cast<int>(std::ceil(
|
|
wangs_formula_conic_reference_impl(kIntolerance, projPts, w)));
|
|
|
|
const SkConic conic(projPts[0], projPts[1], projPts[2], w);
|
|
const float tdelta = 1.f / nsegs;
|
|
for (int j = 0; j < nsegs; ++j) {
|
|
const float tmin = j * tdelta, tmax = (j + 1) * tdelta,
|
|
tmid = 0.5f * (tmin + tmax);
|
|
|
|
SkPoint p0, p1, p2;
|
|
conic.evalAt(tmin, &p0);
|
|
conic.evalAt(tmid, &p1);
|
|
conic.evalAt(tmax, &p2);
|
|
|
|
// Get distance of p1 to baseline (p0, p2).
|
|
const SkPoint n = {p2.fY - p0.fY, p0.fX - p2.fX};
|
|
SkASSERT(n.length() != 0);
|
|
const float d = std::abs((p1 - p0).dot(n)) / n.length();
|
|
|
|
// Check distance is within tolerance
|
|
REPORTER_ASSERT(r, d <= (1.f / kIntolerance) + SK_ScalarNearlyZero);
|
|
}
|
|
},
|
|
maxExponent);
|
|
}
|
|
}
|