215d2b0fa4
Inlining shift=8 is trivial for any compiler. This eliminates the need to unit test the two functions are the same. Change-Id: Icd181ff11eab73fba26755a9fbecd57260c38bbf Reviewed-on: https://skia-review.googlesource.com/c/skia/+/315887 Commit-Queue: Mike Reed <reed@google.com> Auto-Submit: Mike Klein <mtklein@google.com> Reviewed-by: Mike Reed <reed@google.com>
791 lines
25 KiB
C++
791 lines
25 KiB
C++
/*
|
|
* Copyright 2011 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "include/core/SkPoint.h"
|
|
#include "include/private/SkColorData.h"
|
|
#include "include/private/SkFixed.h"
|
|
#include "include/private/SkHalf.h"
|
|
#include "include/private/SkTo.h"
|
|
#include "include/utils/SkRandom.h"
|
|
#include "src/core/SkEndian.h"
|
|
#include "src/core/SkFDot6.h"
|
|
#include "src/core/SkMathPriv.h"
|
|
#include "tests/Test.h"
|
|
|
|
#include <cinttypes>
|
|
|
|
static void test_clz(skiatest::Reporter* reporter) {
|
|
REPORTER_ASSERT(reporter, 32 == SkCLZ(0));
|
|
REPORTER_ASSERT(reporter, 31 == SkCLZ(1));
|
|
REPORTER_ASSERT(reporter, 1 == SkCLZ(1 << 30));
|
|
REPORTER_ASSERT(reporter, 1 == SkCLZ((1 << 30) | (1 << 24) | 1));
|
|
REPORTER_ASSERT(reporter, 0 == SkCLZ(~0U));
|
|
|
|
SkRandom rand;
|
|
for (int i = 0; i < 1000; ++i) {
|
|
uint32_t mask = rand.nextU();
|
|
// need to get some zeros for testing, but in some obscure way so the
|
|
// compiler won't "see" that, and work-around calling the functions.
|
|
mask >>= (mask & 31);
|
|
int intri = SkCLZ(mask);
|
|
int porta = SkCLZ_portable(mask);
|
|
REPORTER_ASSERT(reporter, intri == porta, "mask:%d intri:%d porta:%d", mask, intri, porta);
|
|
}
|
|
}
|
|
|
|
static void test_ctz(skiatest::Reporter* reporter) {
|
|
REPORTER_ASSERT(reporter, 32 == SkCTZ(0));
|
|
REPORTER_ASSERT(reporter, 0 == SkCTZ(1));
|
|
REPORTER_ASSERT(reporter, 30 == SkCTZ(1 << 30));
|
|
REPORTER_ASSERT(reporter, 2 == SkCTZ((1 << 30) | (1 << 24) | (1 << 2)));
|
|
REPORTER_ASSERT(reporter, 0 == SkCTZ(~0U));
|
|
|
|
SkRandom rand;
|
|
for (int i = 0; i < 1000; ++i) {
|
|
uint32_t mask = rand.nextU();
|
|
// need to get some zeros for testing, but in some obscure way so the
|
|
// compiler won't "see" that, and work-around calling the functions.
|
|
mask >>= (mask & 31);
|
|
int intri = SkCTZ(mask);
|
|
int porta = SkCTZ_portable(mask);
|
|
REPORTER_ASSERT(reporter, intri == porta, "mask:%d intri:%d porta:%d", mask, intri, porta);
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
static float sk_fsel(float pred, float result_ge, float result_lt) {
|
|
return pred >= 0 ? result_ge : result_lt;
|
|
}
|
|
|
|
static float fast_floor(float x) {
|
|
// float big = sk_fsel(x, 0x1.0p+23, -0x1.0p+23);
|
|
float big = sk_fsel(x, (float)(1 << 23), -(float)(1 << 23));
|
|
return (float)(x + big) - big;
|
|
}
|
|
|
|
static float std_floor(float x) {
|
|
return sk_float_floor(x);
|
|
}
|
|
|
|
static void test_floor_value(skiatest::Reporter* reporter, float value) {
|
|
float fast = fast_floor(value);
|
|
float std = std_floor(value);
|
|
if (std != fast) {
|
|
ERRORF(reporter, "fast_floor(%.9g) == %.9g != %.9g == std_floor(%.9g)",
|
|
value, fast, std, value);
|
|
}
|
|
}
|
|
|
|
static void test_floor(skiatest::Reporter* reporter) {
|
|
static const float gVals[] = {
|
|
0, 1, 1.1f, 1.01f, 1.001f, 1.0001f, 1.00001f, 1.000001f, 1.0000001f
|
|
};
|
|
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(gVals); ++i) {
|
|
test_floor_value(reporter, gVals[i]);
|
|
// test_floor_value(reporter, -gVals[i]);
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
static float float_blend(int src, int dst, float unit) {
|
|
return dst + (src - dst) * unit;
|
|
}
|
|
|
|
static int blend31(int src, int dst, int a31) {
|
|
return dst + ((src - dst) * a31 * 2114 >> 16);
|
|
// return dst + ((src - dst) * a31 * 33 >> 10);
|
|
}
|
|
|
|
static int blend31_slow(int src, int dst, int a31) {
|
|
int prod = src * a31 + (31 - a31) * dst + 16;
|
|
prod = (prod + (prod >> 5)) >> 5;
|
|
return prod;
|
|
}
|
|
|
|
static int blend31_round(int src, int dst, int a31) {
|
|
int prod = (src - dst) * a31 + 16;
|
|
prod = (prod + (prod >> 5)) >> 5;
|
|
return dst + prod;
|
|
}
|
|
|
|
static int blend31_old(int src, int dst, int a31) {
|
|
a31 += a31 >> 4;
|
|
return dst + ((src - dst) * a31 >> 5);
|
|
}
|
|
|
|
// suppress unused code warning
|
|
static int (*blend_functions[])(int, int, int) = {
|
|
blend31,
|
|
blend31_slow,
|
|
blend31_round,
|
|
blend31_old
|
|
};
|
|
|
|
static void test_blend31() {
|
|
int failed = 0;
|
|
int death = 0;
|
|
if (false) { // avoid bit rot, suppress warning
|
|
failed = (*blend_functions[0])(0,0,0);
|
|
}
|
|
for (int src = 0; src <= 255; src++) {
|
|
for (int dst = 0; dst <= 255; dst++) {
|
|
for (int a = 0; a <= 31; a++) {
|
|
// int r0 = blend31(src, dst, a);
|
|
// int r0 = blend31_round(src, dst, a);
|
|
// int r0 = blend31_old(src, dst, a);
|
|
int r0 = blend31_slow(src, dst, a);
|
|
|
|
float f = float_blend(src, dst, a / 31.f);
|
|
int r1 = (int)f;
|
|
int r2 = SkScalarRoundToInt(f);
|
|
|
|
if (r0 != r1 && r0 != r2) {
|
|
SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n",
|
|
src, dst, a, r0, f);
|
|
failed += 1;
|
|
}
|
|
if (r0 > 255) {
|
|
death += 1;
|
|
SkDebugf("death src:%d dst:%d a:%d result:%d float:%g\n",
|
|
src, dst, a, r0, f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
SkDebugf("---- failed %d death %d\n", failed, death);
|
|
}
|
|
|
|
static void check_length(skiatest::Reporter* reporter,
|
|
const SkPoint& p, SkScalar targetLen) {
|
|
float x = SkScalarToFloat(p.fX);
|
|
float y = SkScalarToFloat(p.fY);
|
|
float len = sk_float_sqrt(x*x + y*y);
|
|
|
|
len /= SkScalarToFloat(targetLen);
|
|
|
|
REPORTER_ASSERT(reporter, len > 0.999f && len < 1.001f);
|
|
}
|
|
|
|
static void unittest_isfinite(skiatest::Reporter* reporter) {
|
|
float nan = sk_float_asin(2);
|
|
float inf = SK_ScalarInfinity;
|
|
float big = 3.40282e+038f;
|
|
|
|
REPORTER_ASSERT(reporter, !SkScalarIsNaN(inf));
|
|
REPORTER_ASSERT(reporter, !SkScalarIsNaN(-inf));
|
|
REPORTER_ASSERT(reporter, !SkScalarIsFinite(inf));
|
|
REPORTER_ASSERT(reporter, !SkScalarIsFinite(-inf));
|
|
|
|
REPORTER_ASSERT(reporter, SkScalarIsNaN(nan));
|
|
REPORTER_ASSERT(reporter, !SkScalarIsNaN(big));
|
|
REPORTER_ASSERT(reporter, !SkScalarIsNaN(-big));
|
|
REPORTER_ASSERT(reporter, !SkScalarIsNaN(0));
|
|
|
|
REPORTER_ASSERT(reporter, !SkScalarIsFinite(nan));
|
|
REPORTER_ASSERT(reporter, SkScalarIsFinite(big));
|
|
REPORTER_ASSERT(reporter, SkScalarIsFinite(-big));
|
|
REPORTER_ASSERT(reporter, SkScalarIsFinite(0));
|
|
}
|
|
|
|
static void unittest_half(skiatest::Reporter* reporter) {
|
|
static const float gFloats[] = {
|
|
0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
|
|
-0.f, -1.f, -0.5f, -0.499999f, -0.5000001f, -1.f/3
|
|
};
|
|
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(gFloats); ++i) {
|
|
SkHalf h = SkFloatToHalf(gFloats[i]);
|
|
float f = SkHalfToFloat(h);
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, gFloats[i]));
|
|
}
|
|
|
|
// check some special values
|
|
union FloatUnion {
|
|
uint32_t fU;
|
|
float fF;
|
|
};
|
|
|
|
static const FloatUnion largestPositiveHalf = { ((142 << 23) | (1023 << 13)) };
|
|
SkHalf h = SkFloatToHalf(largestPositiveHalf.fF);
|
|
float f = SkHalfToFloat(h);
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestPositiveHalf.fF));
|
|
|
|
static const FloatUnion largestNegativeHalf = { (1u << 31) | (142u << 23) | (1023u << 13) };
|
|
h = SkFloatToHalf(largestNegativeHalf.fF);
|
|
f = SkHalfToFloat(h);
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestNegativeHalf.fF));
|
|
|
|
static const FloatUnion smallestPositiveHalf = { 102 << 23 };
|
|
h = SkFloatToHalf(smallestPositiveHalf.fF);
|
|
f = SkHalfToFloat(h);
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, smallestPositiveHalf.fF));
|
|
|
|
static const FloatUnion overflowHalf = { ((143 << 23) | (1023 << 13)) };
|
|
h = SkFloatToHalf(overflowHalf.fF);
|
|
f = SkHalfToFloat(h);
|
|
REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) );
|
|
|
|
static const FloatUnion underflowHalf = { 101 << 23 };
|
|
h = SkFloatToHalf(underflowHalf.fF);
|
|
f = SkHalfToFloat(h);
|
|
REPORTER_ASSERT(reporter, f == 0.0f );
|
|
|
|
static const FloatUnion inf32 = { 255 << 23 };
|
|
h = SkFloatToHalf(inf32.fF);
|
|
f = SkHalfToFloat(h);
|
|
REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) );
|
|
|
|
static const FloatUnion nan32 = { 255 << 23 | 1 };
|
|
h = SkFloatToHalf(nan32.fF);
|
|
f = SkHalfToFloat(h);
|
|
REPORTER_ASSERT(reporter, SkScalarIsNaN(f) );
|
|
|
|
}
|
|
|
|
template <typename RSqrtFn>
|
|
static void test_rsqrt(skiatest::Reporter* reporter, RSqrtFn rsqrt) {
|
|
const float maxRelativeError = 6.50196699e-4f;
|
|
|
|
// test close to 0 up to 1
|
|
float input = 0.000001f;
|
|
for (int i = 0; i < 1000; ++i) {
|
|
float exact = 1.0f/sk_float_sqrt(input);
|
|
float estimate = rsqrt(input);
|
|
float relativeError = sk_float_abs(exact - estimate)/exact;
|
|
REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
|
|
input += 0.001f;
|
|
}
|
|
|
|
// test 1 to ~100
|
|
input = 1.0f;
|
|
for (int i = 0; i < 1000; ++i) {
|
|
float exact = 1.0f/sk_float_sqrt(input);
|
|
float estimate = rsqrt(input);
|
|
float relativeError = sk_float_abs(exact - estimate)/exact;
|
|
REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
|
|
input += 0.01f;
|
|
}
|
|
|
|
// test some big numbers
|
|
input = 1000000.0f;
|
|
for (int i = 0; i < 100; ++i) {
|
|
float exact = 1.0f/sk_float_sqrt(input);
|
|
float estimate = rsqrt(input);
|
|
float relativeError = sk_float_abs(exact - estimate)/exact;
|
|
REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
|
|
input += 754326.f;
|
|
}
|
|
}
|
|
|
|
static void test_nextlog2(skiatest::Reporter* r) {
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(-std::numeric_limits<float>::infinity()) == 0);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(-std::numeric_limits<float>::max()) == 0);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(-1000.0f) == 0);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(-0.1f) == 0);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(-std::numeric_limits<float>::min()) == 0);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(-std::numeric_limits<float>::denorm_min()) == 0);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(0.0f) == 0);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(std::numeric_limits<float>::denorm_min()) == 0);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(std::numeric_limits<float>::min()) == 0);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(0.1f) == 0);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(1.0f) == 0);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(1.1f) == 1);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(2.0f) == 1);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(2.1f) == 2);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(3.0f) == 2);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(3.1f) == 2);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(4.0f) == 2);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(4.1f) == 3);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(5.0f) == 3);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(5.1f) == 3);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(6.0f) == 3);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(6.1f) == 3);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(7.0f) == 3);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(7.1f) == 3);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(8.0f) == 3);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(8.1f) == 4);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(9.0f) == 4);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(9.1f) == 4);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(std::numeric_limits<float>::max()) == 128);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(std::numeric_limits<float>::infinity()) > 0);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(std::numeric_limits<float>::quiet_NaN()) >= 0);
|
|
|
|
for (int i = 0; i < 100; ++i) {
|
|
float pow2 = std::ldexp(1, i);
|
|
float epsilon = std::ldexp(SK_ScalarNearlyZero, i);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(pow2) == i);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(pow2 + epsilon) == i + 1);
|
|
REPORTER_ASSERT(r, sk_float_nextlog2(pow2 - epsilon) == i);
|
|
}
|
|
}
|
|
|
|
static void test_muldiv255(skiatest::Reporter* reporter) {
|
|
for (int a = 0; a <= 255; a++) {
|
|
for (int b = 0; b <= 255; b++) {
|
|
int ab = a * b;
|
|
float s = ab / 255.0f;
|
|
int round = (int)floorf(s + 0.5f);
|
|
int trunc = (int)floorf(s);
|
|
|
|
int iround = SkMulDiv255Round(a, b);
|
|
int itrunc = SkMulDiv255Trunc(a, b);
|
|
|
|
REPORTER_ASSERT(reporter, iround == round);
|
|
REPORTER_ASSERT(reporter, itrunc == trunc);
|
|
|
|
REPORTER_ASSERT(reporter, itrunc <= iround);
|
|
REPORTER_ASSERT(reporter, iround <= a);
|
|
REPORTER_ASSERT(reporter, iround <= b);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void test_muldiv255ceiling(skiatest::Reporter* reporter) {
|
|
for (int c = 0; c <= 255; c++) {
|
|
for (int a = 0; a <= 255; a++) {
|
|
int product = (c * a + 255);
|
|
int expected_ceiling = (product + (product >> 8)) >> 8;
|
|
int webkit_ceiling = (c * a + 254) / 255;
|
|
REPORTER_ASSERT(reporter, expected_ceiling == webkit_ceiling);
|
|
int skia_ceiling = SkMulDiv255Ceiling(c, a);
|
|
REPORTER_ASSERT(reporter, skia_ceiling == webkit_ceiling);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void test_copysign(skiatest::Reporter* reporter) {
|
|
static const int32_t gTriples[] = {
|
|
// x, y, expected result
|
|
0, 0, 0,
|
|
0, 1, 0,
|
|
0, -1, 0,
|
|
1, 0, 1,
|
|
1, 1, 1,
|
|
1, -1, -1,
|
|
-1, 0, 1,
|
|
-1, 1, 1,
|
|
-1, -1, -1,
|
|
};
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(gTriples); i += 3) {
|
|
REPORTER_ASSERT(reporter,
|
|
SkCopySign32(gTriples[i], gTriples[i+1]) == gTriples[i+2]);
|
|
float x = (float)gTriples[i];
|
|
float y = (float)gTriples[i+1];
|
|
float expected = (float)gTriples[i+2];
|
|
REPORTER_ASSERT(reporter, sk_float_copysign(x, y) == expected);
|
|
}
|
|
|
|
SkRandom rand;
|
|
for (int j = 0; j < 1000; j++) {
|
|
int ix = rand.nextS();
|
|
REPORTER_ASSERT(reporter, SkCopySign32(ix, ix) == ix);
|
|
REPORTER_ASSERT(reporter, SkCopySign32(ix, -ix) == -ix);
|
|
REPORTER_ASSERT(reporter, SkCopySign32(-ix, ix) == ix);
|
|
REPORTER_ASSERT(reporter, SkCopySign32(-ix, -ix) == -ix);
|
|
|
|
SkScalar sx = rand.nextSScalar1();
|
|
REPORTER_ASSERT(reporter, SkScalarCopySign(sx, sx) == sx);
|
|
REPORTER_ASSERT(reporter, SkScalarCopySign(sx, -sx) == -sx);
|
|
REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, sx) == sx);
|
|
REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, -sx) == -sx);
|
|
}
|
|
}
|
|
|
|
static void huge_vector_normalize(skiatest::Reporter* reporter) {
|
|
// these values should fail (overflow/underflow) trying to normalize
|
|
const SkVector fail[] = {
|
|
{ 0, 0 },
|
|
{ SK_ScalarInfinity, 0 }, { 0, SK_ScalarInfinity },
|
|
{ 0, SK_ScalarNaN }, { SK_ScalarNaN, 0 },
|
|
};
|
|
for (SkVector v : fail) {
|
|
SkVector v2 = v;
|
|
if (v2.setLength(1.0f)) {
|
|
REPORTER_ASSERT(reporter, !v.setLength(1.0f));
|
|
}
|
|
}
|
|
}
|
|
|
|
DEF_TEST(Math, reporter) {
|
|
int i;
|
|
SkRandom rand;
|
|
|
|
// these should assert
|
|
#if 0
|
|
SkToS8(128);
|
|
SkToS8(-129);
|
|
SkToU8(256);
|
|
SkToU8(-5);
|
|
|
|
SkToS16(32768);
|
|
SkToS16(-32769);
|
|
SkToU16(65536);
|
|
SkToU16(-5);
|
|
|
|
if (sizeof(size_t) > 4) {
|
|
SkToS32(4*1024*1024);
|
|
SkToS32(-4*1024*1024);
|
|
SkToU32(5*1024*1024);
|
|
SkToU32(-5);
|
|
}
|
|
#endif
|
|
|
|
test_muldiv255(reporter);
|
|
test_muldiv255ceiling(reporter);
|
|
test_copysign(reporter);
|
|
|
|
{
|
|
SkScalar x = SK_ScalarNaN;
|
|
REPORTER_ASSERT(reporter, SkScalarIsNaN(x));
|
|
}
|
|
|
|
for (i = 0; i < 10000; i++) {
|
|
SkPoint p;
|
|
|
|
// These random values are being treated as 32-bit-patterns, not as
|
|
// ints; calling SkIntToScalar() here produces crashes.
|
|
p.setLength((SkScalar) rand.nextS(),
|
|
(SkScalar) rand.nextS(),
|
|
SK_Scalar1);
|
|
check_length(reporter, p, SK_Scalar1);
|
|
p.setLength((SkScalar) (rand.nextS() >> 13),
|
|
(SkScalar) (rand.nextS() >> 13),
|
|
SK_Scalar1);
|
|
check_length(reporter, p, SK_Scalar1);
|
|
}
|
|
|
|
{
|
|
SkFixed result = SkFixedDiv(100, 100);
|
|
REPORTER_ASSERT(reporter, result == SK_Fixed1);
|
|
result = SkFixedDiv(1, SK_Fixed1);
|
|
REPORTER_ASSERT(reporter, result == 1);
|
|
result = SkFixedDiv(10 - 1, SK_Fixed1 * 3);
|
|
REPORTER_ASSERT(reporter, result == 3);
|
|
}
|
|
|
|
{
|
|
REPORTER_ASSERT(reporter, (SkFixedRoundToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5);
|
|
REPORTER_ASSERT(reporter, (SkFixedFloorToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5);
|
|
REPORTER_ASSERT(reporter, (SkFixedCeilToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5);
|
|
}
|
|
|
|
huge_vector_normalize(reporter);
|
|
unittest_isfinite(reporter);
|
|
unittest_half(reporter);
|
|
test_rsqrt(reporter, sk_float_rsqrt);
|
|
test_rsqrt(reporter, sk_float_rsqrt_portable);
|
|
test_nextlog2(reporter);
|
|
|
|
for (i = 0; i < 10000; i++) {
|
|
SkFixed numer = rand.nextS();
|
|
SkFixed denom = rand.nextS();
|
|
SkFixed result = SkFixedDiv(numer, denom);
|
|
int64_t check = SkLeftShift((int64_t)numer, 16) / denom;
|
|
|
|
(void)SkCLZ(numer);
|
|
(void)SkCLZ(denom);
|
|
|
|
REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32);
|
|
if (check > SK_MaxS32) {
|
|
check = SK_MaxS32;
|
|
} else if (check < -SK_MaxS32) {
|
|
check = SK_MinS32;
|
|
}
|
|
if (result != (int32_t)check) {
|
|
ERRORF(reporter, "\nFixed Divide: %8x / %8x -> %8x %8" PRIx64 "\n", numer, denom,
|
|
result, check);
|
|
}
|
|
REPORTER_ASSERT(reporter, result == (int32_t)check);
|
|
}
|
|
|
|
if (false) test_floor(reporter);
|
|
|
|
// disable for now
|
|
if (false) test_blend31(); // avoid bit rot, suppress warning
|
|
|
|
test_clz(reporter);
|
|
test_ctz(reporter);
|
|
}
|
|
|
|
template <typename T> struct PairRec {
|
|
T fYin;
|
|
T fYang;
|
|
};
|
|
|
|
DEF_TEST(TestEndian, reporter) {
|
|
static const PairRec<uint16_t> g16[] = {
|
|
{ 0x0, 0x0 },
|
|
{ 0xFFFF, 0xFFFF },
|
|
{ 0x1122, 0x2211 },
|
|
};
|
|
static const PairRec<uint32_t> g32[] = {
|
|
{ 0x0, 0x0 },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ 0x11223344, 0x44332211 },
|
|
};
|
|
static const PairRec<uint64_t> g64[] = {
|
|
{ 0x0, 0x0 },
|
|
{ 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL },
|
|
{ 0x1122334455667788ULL, 0x8877665544332211ULL },
|
|
};
|
|
|
|
REPORTER_ASSERT(reporter, 0x1122 == SkTEndianSwap16<0x2211>::value);
|
|
REPORTER_ASSERT(reporter, 0x11223344 == SkTEndianSwap32<0x44332211>::value);
|
|
REPORTER_ASSERT(reporter, 0x1122334455667788ULL == SkTEndianSwap64<0x8877665544332211ULL>::value);
|
|
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(g16); ++i) {
|
|
REPORTER_ASSERT(reporter, g16[i].fYang == SkEndianSwap16(g16[i].fYin));
|
|
}
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(g32); ++i) {
|
|
REPORTER_ASSERT(reporter, g32[i].fYang == SkEndianSwap32(g32[i].fYin));
|
|
}
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(g64); ++i) {
|
|
REPORTER_ASSERT(reporter, g64[i].fYang == SkEndianSwap64(g64[i].fYin));
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static void test_divmod(skiatest::Reporter* r) {
|
|
#if !defined(__MSVC_RUNTIME_CHECKS)
|
|
const struct {
|
|
T numer;
|
|
T denom;
|
|
} kEdgeCases[] = {
|
|
{(T)17, (T)17},
|
|
{(T)17, (T)4},
|
|
{(T)0, (T)17},
|
|
// For unsigned T these negatives are just some large numbers. Doesn't hurt to test them.
|
|
{(T)-17, (T)-17},
|
|
{(T)-17, (T)4},
|
|
{(T)17, (T)-4},
|
|
{(T)-17, (T)-4},
|
|
};
|
|
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(kEdgeCases); i++) {
|
|
const T numer = kEdgeCases[i].numer;
|
|
const T denom = kEdgeCases[i].denom;
|
|
T div, mod;
|
|
SkTDivMod(numer, denom, &div, &mod);
|
|
REPORTER_ASSERT(r, numer/denom == div);
|
|
REPORTER_ASSERT(r, numer%denom == mod);
|
|
}
|
|
|
|
SkRandom rand;
|
|
for (size_t i = 0; i < 10000; i++) {
|
|
const T numer = (T)rand.nextS();
|
|
T denom = 0;
|
|
while (0 == denom) {
|
|
denom = (T)rand.nextS();
|
|
}
|
|
T div, mod;
|
|
SkTDivMod(numer, denom, &div, &mod);
|
|
REPORTER_ASSERT(r, numer/denom == div);
|
|
REPORTER_ASSERT(r, numer%denom == mod);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
DEF_TEST(divmod_u8, r) {
|
|
test_divmod<uint8_t>(r);
|
|
}
|
|
|
|
DEF_TEST(divmod_u16, r) {
|
|
test_divmod<uint16_t>(r);
|
|
}
|
|
|
|
DEF_TEST(divmod_u32, r) {
|
|
test_divmod<uint32_t>(r);
|
|
}
|
|
|
|
DEF_TEST(divmod_u64, r) {
|
|
test_divmod<uint64_t>(r);
|
|
}
|
|
|
|
DEF_TEST(divmod_s8, r) {
|
|
test_divmod<int8_t>(r);
|
|
}
|
|
|
|
DEF_TEST(divmod_s16, r) {
|
|
test_divmod<int16_t>(r);
|
|
}
|
|
|
|
DEF_TEST(divmod_s32, r) {
|
|
test_divmod<int32_t>(r);
|
|
}
|
|
|
|
DEF_TEST(divmod_s64, r) {
|
|
test_divmod<int64_t>(r);
|
|
}
|
|
|
|
static void test_nextsizepow2(skiatest::Reporter* r, size_t test, size_t expectedAns) {
|
|
size_t ans = GrNextSizePow2(test);
|
|
|
|
REPORTER_ASSERT(r, ans == expectedAns);
|
|
//SkDebugf("0x%zx -> 0x%zx (0x%zx)\n", test, ans, expectedAns);
|
|
}
|
|
|
|
DEF_TEST(GrNextSizePow2, reporter) {
|
|
constexpr int kNumSizeTBits = 8 * sizeof(size_t);
|
|
|
|
size_t test = 0, expectedAns = 1;
|
|
|
|
test_nextsizepow2(reporter, test, expectedAns);
|
|
|
|
test = 1; expectedAns = 1;
|
|
|
|
for (int i = 1; i < kNumSizeTBits; ++i) {
|
|
test_nextsizepow2(reporter, test, expectedAns);
|
|
|
|
test++;
|
|
expectedAns <<= 1;
|
|
|
|
test_nextsizepow2(reporter, test, expectedAns);
|
|
|
|
test = expectedAns;
|
|
}
|
|
|
|
// For the remaining three tests there is no higher power (of 2)
|
|
test = 0x1;
|
|
test <<= kNumSizeTBits-1;
|
|
test_nextsizepow2(reporter, test, test);
|
|
|
|
test++;
|
|
test_nextsizepow2(reporter, test, test);
|
|
|
|
test_nextsizepow2(reporter, SIZE_MAX, SIZE_MAX);
|
|
}
|
|
|
|
DEF_TEST(FloatSaturate32, reporter) {
|
|
const struct {
|
|
float fFloat;
|
|
int fExpectedInt;
|
|
} recs[] = {
|
|
{ 0, 0 },
|
|
{ 100.5f, 100 },
|
|
{ (float)SK_MaxS32, SK_MaxS32FitsInFloat },
|
|
{ (float)SK_MinS32, SK_MinS32FitsInFloat },
|
|
{ SK_MaxS32 * 100.0f, SK_MaxS32FitsInFloat },
|
|
{ SK_MinS32 * 100.0f, SK_MinS32FitsInFloat },
|
|
{ SK_ScalarInfinity, SK_MaxS32FitsInFloat },
|
|
{ SK_ScalarNegativeInfinity, SK_MinS32FitsInFloat },
|
|
{ SK_ScalarNaN, SK_MaxS32FitsInFloat },
|
|
};
|
|
|
|
for (auto r : recs) {
|
|
int i = sk_float_saturate2int(r.fFloat);
|
|
REPORTER_ASSERT(reporter, r.fExpectedInt == i);
|
|
|
|
// Ensure that SkTPin bounds even non-finite values (including NaN)
|
|
SkScalar p = SkTPin<SkScalar>(r.fFloat, 0, 100);
|
|
REPORTER_ASSERT(reporter, p >= 0 && p <= 100);
|
|
}
|
|
}
|
|
|
|
DEF_TEST(FloatSaturate64, reporter) {
|
|
const struct {
|
|
float fFloat;
|
|
int64_t fExpected64;
|
|
} recs[] = {
|
|
{ 0, 0 },
|
|
{ 100.5f, 100 },
|
|
{ (float)SK_MaxS64, SK_MaxS64FitsInFloat },
|
|
{ (float)SK_MinS64, SK_MinS64FitsInFloat },
|
|
{ SK_MaxS64 * 100.0f, SK_MaxS64FitsInFloat },
|
|
{ SK_MinS64 * 100.0f, SK_MinS64FitsInFloat },
|
|
{ SK_ScalarInfinity, SK_MaxS64FitsInFloat },
|
|
{ SK_ScalarNegativeInfinity, SK_MinS64FitsInFloat },
|
|
{ SK_ScalarNaN, SK_MaxS64FitsInFloat },
|
|
};
|
|
|
|
for (auto r : recs) {
|
|
int64_t i = sk_float_saturate2int64(r.fFloat);
|
|
REPORTER_ASSERT(reporter, r.fExpected64 == i);
|
|
}
|
|
}
|
|
|
|
DEF_TEST(DoubleSaturate32, reporter) {
|
|
const struct {
|
|
double fDouble;
|
|
int fExpectedInt;
|
|
} recs[] = {
|
|
{ 0, 0 },
|
|
{ 100.5, 100 },
|
|
{ SK_MaxS32, SK_MaxS32 },
|
|
{ SK_MinS32, SK_MinS32 },
|
|
{ SK_MaxS32 - 1, SK_MaxS32 - 1 },
|
|
{ SK_MinS32 + 1, SK_MinS32 + 1 },
|
|
{ SK_MaxS32 * 100.0, SK_MaxS32 },
|
|
{ SK_MinS32 * 100.0, SK_MinS32 },
|
|
{ SK_ScalarInfinity, SK_MaxS32 },
|
|
{ SK_ScalarNegativeInfinity, SK_MinS32 },
|
|
{ SK_ScalarNaN, SK_MaxS32 },
|
|
};
|
|
|
|
for (auto r : recs) {
|
|
int i = sk_double_saturate2int(r.fDouble);
|
|
REPORTER_ASSERT(reporter, r.fExpectedInt == i);
|
|
}
|
|
}
|
|
|
|
#if defined(__ARM_NEON)
|
|
#include <arm_neon.h>
|
|
|
|
DEF_TEST(NeonU16Div255, r) {
|
|
|
|
for (int v = 0; v <= 255*255; v++) {
|
|
int want = (v + 127)/255;
|
|
|
|
uint16x8_t V = vdupq_n_u16(v);
|
|
int got = vrshrq_n_u16(vrsraq_n_u16(V, V, 8), 8)[0];
|
|
|
|
if (got != want) {
|
|
SkDebugf("%d -> %d, want %d\n", v, got, want);
|
|
}
|
|
REPORTER_ASSERT(r, got == want);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
DEF_TEST(unit_floats, r) {
|
|
// pick a non-trivial, non-pow-2 value, to test the loop
|
|
float v[13];
|
|
constexpr int N = SK_ARRAY_COUNT(v);
|
|
|
|
// empty array reports true
|
|
REPORTER_ASSERT(r, sk_floats_are_unit(v, 0));
|
|
|
|
SkRandom rand;
|
|
for (int outer = 0; outer < 1000; ++outer) {
|
|
// check some good values
|
|
for (int i = 0; i < N; ++i) {
|
|
v[i] = rand.nextUScalar1();
|
|
}
|
|
const int index = rand.nextU() % N;
|
|
|
|
REPORTER_ASSERT(r, sk_floats_are_unit(v, N));
|
|
v[index] = -0.f;
|
|
REPORTER_ASSERT(r, sk_floats_are_unit(v, N));
|
|
v[index] = 1.0f;
|
|
REPORTER_ASSERT(r, sk_floats_are_unit(v, N));
|
|
|
|
// check some bad values
|
|
const float non_norms[] = {
|
|
1.0000001f, 2, SK_ScalarInfinity, SK_ScalarNaN
|
|
};
|
|
for (float bad : non_norms) {
|
|
v[index] = bad;
|
|
REPORTER_ASSERT(r, !sk_floats_are_unit(v, N));
|
|
v[index] = -bad;
|
|
REPORTER_ASSERT(r, !sk_floats_are_unit(v, N));
|
|
}
|
|
}
|
|
}
|