skia2/tests/SerializationTest.cpp
bungeman 5ae1312c9f Revert of Font variations. (patchset #21 id:400001 of https://codereview.chromium.org/1027373002/)
Reason for revert:
Mac failing to build due to CFNumberType in Chromium Canary.

Original issue's description:
> Font variations.
>
> Multiple Master and TrueType fonts support variation axes.
> This implements back-end support for axes on platforms which
> support it.
>
> Committed: https://skia.googlesource.com/skia/+/05773ed30920c0214d1433c07cf6360a05476c97

TBR=reed@google.com,mtklein@google.com,djsollen@google.com,halcanary@google.com
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true

Review URL: https://codereview.chromium.org/1128913008
2015-05-13 12:16:41 -07:00

521 lines
19 KiB
C++

/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Resources.h"
#include "SkBitmapSource.h"
#include "SkCanvas.h"
#include "SkMallocPixelRef.h"
#include "SkOSFile.h"
#include "SkPictureRecorder.h"
#include "SkTableColorFilter.h"
#include "SkTemplates.h"
#include "SkTypeface.h"
#include "SkWriteBuffer.h"
#include "SkValidatingReadBuffer.h"
#include "SkXfermodeImageFilter.h"
#include "Test.h"
static const uint32_t kArraySize = 64;
static const int kBitmapSize = 256;
template<typename T>
static void TestAlignment(T* testObj, skiatest::Reporter* reporter) {
// Test memory read/write functions directly
unsigned char dataWritten[1024];
size_t bytesWrittenToMemory = testObj->writeToMemory(dataWritten);
REPORTER_ASSERT(reporter, SkAlign4(bytesWrittenToMemory) == bytesWrittenToMemory);
size_t bytesReadFromMemory = testObj->readFromMemory(dataWritten, bytesWrittenToMemory);
REPORTER_ASSERT(reporter, SkAlign4(bytesReadFromMemory) == bytesReadFromMemory);
}
template<typename T> struct SerializationUtils {
// Generic case for flattenables
static void Write(SkWriteBuffer& writer, const T* flattenable) {
writer.writeFlattenable(flattenable);
}
static void Read(SkValidatingReadBuffer& reader, T** flattenable) {
*flattenable = (T*)reader.readFlattenable(T::GetFlattenableType());
}
};
template<> struct SerializationUtils<SkMatrix> {
static void Write(SkWriteBuffer& writer, const SkMatrix* matrix) {
writer.writeMatrix(*matrix);
}
static void Read(SkValidatingReadBuffer& reader, SkMatrix* matrix) {
reader.readMatrix(matrix);
}
};
template<> struct SerializationUtils<SkPath> {
static void Write(SkWriteBuffer& writer, const SkPath* path) {
writer.writePath(*path);
}
static void Read(SkValidatingReadBuffer& reader, SkPath* path) {
reader.readPath(path);
}
};
template<> struct SerializationUtils<SkRegion> {
static void Write(SkWriteBuffer& writer, const SkRegion* region) {
writer.writeRegion(*region);
}
static void Read(SkValidatingReadBuffer& reader, SkRegion* region) {
reader.readRegion(region);
}
};
template<> struct SerializationUtils<SkString> {
static void Write(SkWriteBuffer& writer, const SkString* string) {
writer.writeString(string->c_str());
}
static void Read(SkValidatingReadBuffer& reader, SkString* string) {
reader.readString(string);
}
};
template<> struct SerializationUtils<unsigned char> {
static void Write(SkWriteBuffer& writer, unsigned char* data, uint32_t arraySize) {
writer.writeByteArray(data, arraySize);
}
static bool Read(SkValidatingReadBuffer& reader, unsigned char* data, uint32_t arraySize) {
return reader.readByteArray(data, arraySize);
}
};
template<> struct SerializationUtils<SkColor> {
static void Write(SkWriteBuffer& writer, SkColor* data, uint32_t arraySize) {
writer.writeColorArray(data, arraySize);
}
static bool Read(SkValidatingReadBuffer& reader, SkColor* data, uint32_t arraySize) {
return reader.readColorArray(data, arraySize);
}
};
template<> struct SerializationUtils<int32_t> {
static void Write(SkWriteBuffer& writer, int32_t* data, uint32_t arraySize) {
writer.writeIntArray(data, arraySize);
}
static bool Read(SkValidatingReadBuffer& reader, int32_t* data, uint32_t arraySize) {
return reader.readIntArray(data, arraySize);
}
};
template<> struct SerializationUtils<SkPoint> {
static void Write(SkWriteBuffer& writer, SkPoint* data, uint32_t arraySize) {
writer.writePointArray(data, arraySize);
}
static bool Read(SkValidatingReadBuffer& reader, SkPoint* data, uint32_t arraySize) {
return reader.readPointArray(data, arraySize);
}
};
template<> struct SerializationUtils<SkScalar> {
static void Write(SkWriteBuffer& writer, SkScalar* data, uint32_t arraySize) {
writer.writeScalarArray(data, arraySize);
}
static bool Read(SkValidatingReadBuffer& reader, SkScalar* data, uint32_t arraySize) {
return reader.readScalarArray(data, arraySize);
}
};
template<typename T, bool testInvalid> struct SerializationTestUtils {
static void InvalidateData(unsigned char* data) {}
};
template<> struct SerializationTestUtils<SkString, true> {
static void InvalidateData(unsigned char* data) {
data[3] |= 0x80; // Reverse sign of 1st integer
}
};
template<typename T, bool testInvalid>
static void TestObjectSerializationNoAlign(T* testObj, skiatest::Reporter* reporter) {
SkWriteBuffer writer(SkWriteBuffer::kValidation_Flag);
SerializationUtils<T>::Write(writer, testObj);
size_t bytesWritten = writer.bytesWritten();
REPORTER_ASSERT(reporter, SkAlign4(bytesWritten) == bytesWritten);
unsigned char dataWritten[1024];
writer.writeToMemory(dataWritten);
SerializationTestUtils<T, testInvalid>::InvalidateData(dataWritten);
// Make sure this fails when it should (test with smaller size, but still multiple of 4)
SkValidatingReadBuffer buffer(dataWritten, bytesWritten - 4);
T obj;
SerializationUtils<T>::Read(buffer, &obj);
REPORTER_ASSERT(reporter, !buffer.isValid());
// Make sure this succeeds when it should
SkValidatingReadBuffer buffer2(dataWritten, bytesWritten);
const unsigned char* peekBefore = static_cast<const unsigned char*>(buffer2.skip(0));
T obj2;
SerializationUtils<T>::Read(buffer2, &obj2);
const unsigned char* peekAfter = static_cast<const unsigned char*>(buffer2.skip(0));
// This should have succeeded, since there are enough bytes to read this
REPORTER_ASSERT(reporter, buffer2.isValid() == !testInvalid);
// Note: This following test should always succeed, regardless of whether the buffer is valid,
// since if it is invalid, it will simply skip to the end, as if it had read the whole buffer.
REPORTER_ASSERT(reporter, static_cast<size_t>(peekAfter - peekBefore) == bytesWritten);
}
template<typename T>
static void TestObjectSerialization(T* testObj, skiatest::Reporter* reporter) {
TestObjectSerializationNoAlign<T, false>(testObj, reporter);
TestAlignment(testObj, reporter);
}
template<typename T>
static T* TestFlattenableSerialization(T* testObj, bool shouldSucceed,
skiatest::Reporter* reporter) {
SkWriteBuffer writer(SkWriteBuffer::kValidation_Flag);
SerializationUtils<T>::Write(writer, testObj);
size_t bytesWritten = writer.bytesWritten();
REPORTER_ASSERT(reporter, SkAlign4(bytesWritten) == bytesWritten);
unsigned char dataWritten[4096];
SkASSERT(bytesWritten <= sizeof(dataWritten));
writer.writeToMemory(dataWritten);
// Make sure this fails when it should (test with smaller size, but still multiple of 4)
SkValidatingReadBuffer buffer(dataWritten, bytesWritten - 4);
T* obj = NULL;
SerializationUtils<T>::Read(buffer, &obj);
REPORTER_ASSERT(reporter, !buffer.isValid());
REPORTER_ASSERT(reporter, NULL == obj);
// Make sure this succeeds when it should
SkValidatingReadBuffer buffer2(dataWritten, bytesWritten);
const unsigned char* peekBefore = static_cast<const unsigned char*>(buffer2.skip(0));
T* obj2 = NULL;
SerializationUtils<T>::Read(buffer2, &obj2);
const unsigned char* peekAfter = static_cast<const unsigned char*>(buffer2.skip(0));
if (shouldSucceed) {
// This should have succeeded, since there are enough bytes to read this
REPORTER_ASSERT(reporter, buffer2.isValid());
REPORTER_ASSERT(reporter, static_cast<size_t>(peekAfter - peekBefore) == bytesWritten);
REPORTER_ASSERT(reporter, obj2);
} else {
// If the deserialization was supposed to fail, make sure it did
REPORTER_ASSERT(reporter, !buffer.isValid());
REPORTER_ASSERT(reporter, NULL == obj2);
}
return obj2; // Return object to perform further validity tests on it
}
template<typename T>
static void TestArraySerialization(T* data, skiatest::Reporter* reporter) {
SkWriteBuffer writer(SkWriteBuffer::kValidation_Flag);
SerializationUtils<T>::Write(writer, data, kArraySize);
size_t bytesWritten = writer.bytesWritten();
// This should write the length (in 4 bytes) and the array
REPORTER_ASSERT(reporter, (4 + kArraySize * sizeof(T)) == bytesWritten);
unsigned char dataWritten[1024];
writer.writeToMemory(dataWritten);
// Make sure this fails when it should
SkValidatingReadBuffer buffer(dataWritten, bytesWritten);
T dataRead[kArraySize];
bool success = SerializationUtils<T>::Read(buffer, dataRead, kArraySize / 2);
// This should have failed, since the provided size was too small
REPORTER_ASSERT(reporter, !success);
// Make sure this succeeds when it should
SkValidatingReadBuffer buffer2(dataWritten, bytesWritten);
success = SerializationUtils<T>::Read(buffer2, dataRead, kArraySize);
// This should have succeeded, since there are enough bytes to read this
REPORTER_ASSERT(reporter, success);
}
static void TestBitmapSerialization(const SkBitmap& validBitmap,
const SkBitmap& invalidBitmap,
bool shouldSucceed,
skiatest::Reporter* reporter) {
SkAutoTUnref<SkBitmapSource> validBitmapSource(SkBitmapSource::Create(validBitmap));
SkAutoTUnref<SkBitmapSource> invalidBitmapSource(SkBitmapSource::Create(invalidBitmap));
SkAutoTUnref<SkXfermode> mode(SkXfermode::Create(SkXfermode::kSrcOver_Mode));
SkAutoTUnref<SkXfermodeImageFilter> xfermodeImageFilter(
SkXfermodeImageFilter::Create(mode, invalidBitmapSource, validBitmapSource));
SkAutoTUnref<SkImageFilter> deserializedFilter(
TestFlattenableSerialization<SkImageFilter>(
xfermodeImageFilter, shouldSucceed, reporter));
// Try to render a small bitmap using the invalid deserialized filter
// to make sure we don't crash while trying to render it
if (shouldSucceed) {
SkBitmap bitmap;
bitmap.allocN32Pixels(24, 24);
SkCanvas canvas(bitmap);
canvas.clear(0x00000000);
SkPaint paint;
paint.setImageFilter(deserializedFilter);
canvas.clipRect(SkRect::MakeXYWH(0, 0, SkIntToScalar(24), SkIntToScalar(24)));
canvas.drawBitmap(bitmap, 0, 0, &paint);
}
}
static void TestXfermodeSerialization(skiatest::Reporter* reporter) {
for (size_t i = 0; i <= SkXfermode::kLastMode; ++i) {
if (i == SkXfermode::kSrcOver_Mode) {
// skip SrcOver, as it is allowed to return NULL from Create()
continue;
}
SkAutoTUnref<SkXfermode> mode(SkXfermode::Create(static_cast<SkXfermode::Mode>(i)));
REPORTER_ASSERT(reporter, mode.get());
SkAutoTUnref<SkXfermode> copy(
TestFlattenableSerialization<SkXfermode>(mode.get(), true, reporter));
}
}
static void TestColorFilterSerialization(skiatest::Reporter* reporter) {
uint8_t table[256];
for (int i = 0; i < 256; ++i) {
table[i] = (i * 41) % 256;
}
SkAutoTUnref<SkColorFilter> colorFilter(SkTableColorFilter::Create(table));
SkAutoTUnref<SkColorFilter> copy(
TestFlattenableSerialization<SkColorFilter>(colorFilter.get(), true, reporter));
}
static SkBitmap draw_picture(SkPicture& picture) {
SkBitmap bitmap;
bitmap.allocN32Pixels(SkScalarCeilToInt(picture.cullRect().width()),
SkScalarCeilToInt(picture.cullRect().height()));
SkCanvas canvas(bitmap);
picture.playback(&canvas);
return bitmap;
}
static void compare_bitmaps(skiatest::Reporter* reporter,
const SkBitmap& b1, const SkBitmap& b2) {
REPORTER_ASSERT(reporter, b1.width() == b2.width());
REPORTER_ASSERT(reporter, b1.height() == b2.height());
SkAutoLockPixels autoLockPixels1(b1);
SkAutoLockPixels autoLockPixels2(b2);
if ((b1.width() != b2.width()) ||
(b1.height() != b2.height())) {
return;
}
int pixelErrors = 0;
for (int y = 0; y < b2.height(); ++y) {
for (int x = 0; x < b2.width(); ++x) {
if (b1.getColor(x, y) != b2.getColor(x, y))
++pixelErrors;
}
}
REPORTER_ASSERT(reporter, 0 == pixelErrors);
}
static void TestPictureTypefaceSerialization(skiatest::Reporter* reporter) {
// Load typeface form file to test CreateFromFile with index.
SkString filename = GetResourcePath("/fonts/test.ttc");
SkTypeface* typeface = SkTypeface::CreateFromFile(filename.c_str(), 1);
if (!typeface) {
SkDebugf("Could not run fontstream test because test.ttc not found.");
return;
}
// Create a paint with the typeface we loaded.
SkPaint paint;
paint.setColor(SK_ColorGRAY);
paint.setTextSize(SkIntToScalar(30));
SkSafeUnref(paint.setTypeface(typeface));
// Paint some text.
SkPictureRecorder recorder;
SkIRect canvasRect = SkIRect::MakeWH(kBitmapSize, kBitmapSize);
SkCanvas* canvas = recorder.beginRecording(SkIntToScalar(canvasRect.width()),
SkIntToScalar(canvasRect.height()),
NULL, 0);
canvas->drawColor(SK_ColorWHITE);
canvas->drawText("A!", 2, 24, 32, paint);
SkAutoTUnref<SkPicture> picture(recorder.endRecording());
// Serlialize picture and create its clone from stream.
SkDynamicMemoryWStream stream;
picture->serialize(&stream);
SkAutoTDelete<SkStream> inputStream(stream.detachAsStream());
SkAutoTUnref<SkPicture> loadedPicture(SkPicture::CreateFromStream(inputStream.get()));
// Draw both original and clone picture and compare bitmaps -- they should be identical.
SkBitmap origBitmap = draw_picture(*picture);
SkBitmap destBitmap = draw_picture(*loadedPicture);
compare_bitmaps(reporter, origBitmap, destBitmap);
}
static void setup_bitmap_for_canvas(SkBitmap* bitmap) {
bitmap->allocN32Pixels(kBitmapSize, kBitmapSize);
}
static void make_checkerboard_bitmap(SkBitmap& bitmap) {
setup_bitmap_for_canvas(&bitmap);
SkCanvas canvas(bitmap);
canvas.clear(0x00000000);
SkPaint darkPaint;
darkPaint.setColor(0xFF804020);
SkPaint lightPaint;
lightPaint.setColor(0xFF244484);
const int i = kBitmapSize / 8;
const SkScalar f = SkIntToScalar(i);
for (int y = 0; y < kBitmapSize; y += i) {
for (int x = 0; x < kBitmapSize; x += i) {
canvas.save();
canvas.translate(SkIntToScalar(x), SkIntToScalar(y));
canvas.drawRect(SkRect::MakeXYWH(0, 0, f, f), darkPaint);
canvas.drawRect(SkRect::MakeXYWH(f, 0, f, f), lightPaint);
canvas.drawRect(SkRect::MakeXYWH(0, f, f, f), lightPaint);
canvas.drawRect(SkRect::MakeXYWH(f, f, f, f), darkPaint);
canvas.restore();
}
}
}
static void draw_something(SkCanvas* canvas) {
SkPaint paint;
SkBitmap bitmap;
make_checkerboard_bitmap(bitmap);
canvas->save();
canvas->scale(0.5f, 0.5f);
canvas->drawBitmap(bitmap, 0, 0, NULL);
canvas->restore();
paint.setAntiAlias(true);
paint.setColor(SK_ColorRED);
canvas->drawCircle(SkIntToScalar(kBitmapSize/2), SkIntToScalar(kBitmapSize/2), SkIntToScalar(kBitmapSize/3), paint);
paint.setColor(SK_ColorBLACK);
paint.setTextSize(SkIntToScalar(kBitmapSize/3));
canvas->drawText("Picture", 7, SkIntToScalar(kBitmapSize/2), SkIntToScalar(kBitmapSize/4), paint);
}
DEF_TEST(Serialization, reporter) {
// Test matrix serialization
{
SkMatrix matrix = SkMatrix::I();
TestObjectSerialization(&matrix, reporter);
}
// Test path serialization
{
SkPath path;
TestObjectSerialization(&path, reporter);
}
// Test region serialization
{
SkRegion region;
TestObjectSerialization(&region, reporter);
}
// Test xfermode serialization
{
TestXfermodeSerialization(reporter);
}
// Test color filter serialization
{
TestColorFilterSerialization(reporter);
}
// Test string serialization
{
SkString string("string");
TestObjectSerializationNoAlign<SkString, false>(&string, reporter);
TestObjectSerializationNoAlign<SkString, true>(&string, reporter);
}
// Test rrect serialization
{
// SkRRect does not initialize anything.
// An uninitialized SkRRect can be serialized,
// but will branch on uninitialized data when deserialized.
SkRRect rrect;
SkRect rect = SkRect::MakeXYWH(1, 2, 20, 30);
SkVector corners[4] = { {1, 2}, {2, 3}, {3,4}, {4,5} };
rrect.setRectRadii(rect, corners);
TestAlignment(&rrect, reporter);
}
// Test readByteArray
{
unsigned char data[kArraySize] = { 1, 2, 3 };
TestArraySerialization(data, reporter);
}
// Test readColorArray
{
SkColor data[kArraySize] = { SK_ColorBLACK, SK_ColorWHITE, SK_ColorRED };
TestArraySerialization(data, reporter);
}
// Test readIntArray
{
int32_t data[kArraySize] = { 1, 2, 4, 8 };
TestArraySerialization(data, reporter);
}
// Test readPointArray
{
SkPoint data[kArraySize] = { {6, 7}, {42, 128} };
TestArraySerialization(data, reporter);
}
// Test readScalarArray
{
SkScalar data[kArraySize] = { SK_Scalar1, SK_ScalarHalf, SK_ScalarMax };
TestArraySerialization(data, reporter);
}
// Test invalid deserializations
{
SkImageInfo info = SkImageInfo::MakeN32Premul(kBitmapSize, kBitmapSize);
SkBitmap validBitmap;
validBitmap.setInfo(info);
// Create a bitmap with a really large height
SkBitmap invalidBitmap;
invalidBitmap.setInfo(info.makeWH(info.width(), 1000000000));
// The deserialization should succeed, and the rendering shouldn't crash,
// even when the device fails to initialize, due to its size
TestBitmapSerialization(validBitmap, invalidBitmap, true, reporter);
}
// Test simple SkPicture serialization
{
SkPictureRecorder recorder;
draw_something(recorder.beginRecording(SkIntToScalar(kBitmapSize),
SkIntToScalar(kBitmapSize),
NULL, 0));
SkAutoTUnref<SkPicture> pict(recorder.endRecording());
// Serialize picture
SkWriteBuffer writer(SkWriteBuffer::kValidation_Flag);
pict->flatten(writer);
size_t size = writer.bytesWritten();
SkAutoTMalloc<unsigned char> data(size);
writer.writeToMemory(static_cast<void*>(data.get()));
// Deserialize picture
SkValidatingReadBuffer reader(static_cast<void*>(data.get()), size);
SkAutoTUnref<SkPicture> readPict(
SkPicture::CreateFromBuffer(reader));
REPORTER_ASSERT(reporter, readPict.get());
}
TestPictureTypefaceSerialization(reporter);
}