skia2/include/private/SkNx_neon.h
Mike Klein 7dfe6d9ea7 minor Sk4px cleanup
I've removed a bunch of unused code,
inlined routines that are only used once,
removed platform code where a portable code works fine,
and renamed methods and updated comments.

I'm thinking about getting rid of Sk4px entirely, and boiling it down
instead to a couple helper methods on Sk16b/Sk16h.  This is a start.

Change-Id: I35b6c44710aa2cefe8c1e07fc2cb877a4042e8a5
Reviewed-on: https://skia-review.googlesource.com/c/178985
Auto-Submit: Mike Klein <mtklein@google.com>
Commit-Queue: Herb Derby <herb@google.com>
Reviewed-by: Herb Derby <herb@google.com>
2018-12-18 20:46:25 +00:00

736 lines
24 KiB
C++

/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkNx_neon_DEFINED
#define SkNx_neon_DEFINED
#include <arm_neon.h>
namespace { // NOLINT(google-build-namespaces)
// ARMv8 has vrndm(q)_f32 to floor floats. Here we emulate it:
// - roundtrip through integers via truncation
// - subtract 1 if that's too big (possible for negative values).
// This restricts the domain of our inputs to a maximum somehwere around 2^31. Seems plenty big.
AI static float32x4_t emulate_vrndmq_f32(float32x4_t v) {
auto roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
auto too_big = vcgtq_f32(roundtrip, v);
return vsubq_f32(roundtrip, (float32x4_t)vandq_u32(too_big, (uint32x4_t)vdupq_n_f32(1)));
}
AI static float32x2_t emulate_vrndm_f32(float32x2_t v) {
auto roundtrip = vcvt_f32_s32(vcvt_s32_f32(v));
auto too_big = vcgt_f32(roundtrip, v);
return vsub_f32(roundtrip, (float32x2_t)vand_u32(too_big, (uint32x2_t)vdup_n_f32(1)));
}
template <>
class SkNx<2, float> {
public:
AI SkNx(float32x2_t vec) : fVec(vec) {}
AI SkNx() {}
AI SkNx(float val) : fVec(vdup_n_f32(val)) {}
AI SkNx(float a, float b) { fVec = (float32x2_t) { a, b }; }
AI static SkNx Load(const void* ptr) { return vld1_f32((const float*)ptr); }
AI void store(void* ptr) const { vst1_f32((float*)ptr, fVec); }
AI static void Load2(const void* ptr, SkNx* x, SkNx* y) {
float32x2x2_t xy = vld2_f32((const float*) ptr);
*x = xy.val[0];
*y = xy.val[1];
}
AI static void Store2(void* dst, const SkNx& a, const SkNx& b) {
float32x2x2_t ab = {{
a.fVec,
b.fVec,
}};
vst2_f32((float*) dst, ab);
}
AI static void Store3(void* dst, const SkNx& a, const SkNx& b, const SkNx& c) {
float32x2x3_t abc = {{
a.fVec,
b.fVec,
c.fVec,
}};
vst3_f32((float*) dst, abc);
}
AI static void Store4(void* dst, const SkNx& a, const SkNx& b, const SkNx& c, const SkNx& d) {
float32x2x4_t abcd = {{
a.fVec,
b.fVec,
c.fVec,
d.fVec,
}};
vst4_f32((float*) dst, abcd);
}
AI SkNx invert() const {
float32x2_t est0 = vrecpe_f32(fVec),
est1 = vmul_f32(vrecps_f32(est0, fVec), est0);
return est1;
}
AI SkNx operator - () const { return vneg_f32(fVec); }
AI SkNx operator + (const SkNx& o) const { return vadd_f32(fVec, o.fVec); }
AI SkNx operator - (const SkNx& o) const { return vsub_f32(fVec, o.fVec); }
AI SkNx operator * (const SkNx& o) const { return vmul_f32(fVec, o.fVec); }
AI SkNx operator / (const SkNx& o) const {
#if defined(SK_CPU_ARM64)
return vdiv_f32(fVec, o.fVec);
#else
float32x2_t est0 = vrecpe_f32(o.fVec),
est1 = vmul_f32(vrecps_f32(est0, o.fVec), est0),
est2 = vmul_f32(vrecps_f32(est1, o.fVec), est1);
return vmul_f32(fVec, est2);
#endif
}
AI SkNx operator==(const SkNx& o) const { return vreinterpret_f32_u32(vceq_f32(fVec, o.fVec)); }
AI SkNx operator <(const SkNx& o) const { return vreinterpret_f32_u32(vclt_f32(fVec, o.fVec)); }
AI SkNx operator >(const SkNx& o) const { return vreinterpret_f32_u32(vcgt_f32(fVec, o.fVec)); }
AI SkNx operator<=(const SkNx& o) const { return vreinterpret_f32_u32(vcle_f32(fVec, o.fVec)); }
AI SkNx operator>=(const SkNx& o) const { return vreinterpret_f32_u32(vcge_f32(fVec, o.fVec)); }
AI SkNx operator!=(const SkNx& o) const {
return vreinterpret_f32_u32(vmvn_u32(vceq_f32(fVec, o.fVec)));
}
AI static SkNx Min(const SkNx& l, const SkNx& r) { return vmin_f32(l.fVec, r.fVec); }
AI static SkNx Max(const SkNx& l, const SkNx& r) { return vmax_f32(l.fVec, r.fVec); }
AI SkNx abs() const { return vabs_f32(fVec); }
AI SkNx floor() const {
#if defined(SK_CPU_ARM64)
return vrndm_f32(fVec);
#else
return emulate_vrndm_f32(fVec);
#endif
}
AI SkNx rsqrt() const {
float32x2_t est0 = vrsqrte_f32(fVec);
return vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0);
}
AI SkNx sqrt() const {
#if defined(SK_CPU_ARM64)
return vsqrt_f32(fVec);
#else
float32x2_t est0 = vrsqrte_f32(fVec),
est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0),
est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1);
return vmul_f32(fVec, est2);
#endif
}
AI float operator[](int k) const {
SkASSERT(0 <= k && k < 2);
union { float32x2_t v; float fs[2]; } pun = {fVec};
return pun.fs[k&1];
}
AI bool allTrue() const {
#if defined(SK_CPU_ARM64)
return 0 != vminv_u32(vreinterpret_u32_f32(fVec));
#else
auto v = vreinterpret_u32_f32(fVec);
return vget_lane_u32(v,0) && vget_lane_u32(v,1);
#endif
}
AI bool anyTrue() const {
#if defined(SK_CPU_ARM64)
return 0 != vmaxv_u32(vreinterpret_u32_f32(fVec));
#else
auto v = vreinterpret_u32_f32(fVec);
return vget_lane_u32(v,0) || vget_lane_u32(v,1);
#endif
}
AI SkNx thenElse(const SkNx& t, const SkNx& e) const {
return vbsl_f32(vreinterpret_u32_f32(fVec), t.fVec, e.fVec);
}
float32x2_t fVec;
};
template <>
class SkNx<4, float> {
public:
AI SkNx(float32x4_t vec) : fVec(vec) {}
AI SkNx() {}
AI SkNx(float val) : fVec(vdupq_n_f32(val)) {}
AI SkNx(float a, float b, float c, float d) { fVec = (float32x4_t) { a, b, c, d }; }
AI static SkNx Load(const void* ptr) { return vld1q_f32((const float*)ptr); }
AI void store(void* ptr) const { vst1q_f32((float*)ptr, fVec); }
AI static void Load2(const void* ptr, SkNx* x, SkNx* y) {
float32x4x2_t xy = vld2q_f32((const float*) ptr);
*x = xy.val[0];
*y = xy.val[1];
}
AI static void Load4(const void* ptr, SkNx* r, SkNx* g, SkNx* b, SkNx* a) {
float32x4x4_t rgba = vld4q_f32((const float*) ptr);
*r = rgba.val[0];
*g = rgba.val[1];
*b = rgba.val[2];
*a = rgba.val[3];
}
AI static void Store4(void* dst, const SkNx& r, const SkNx& g, const SkNx& b, const SkNx& a) {
float32x4x4_t rgba = {{
r.fVec,
g.fVec,
b.fVec,
a.fVec,
}};
vst4q_f32((float*) dst, rgba);
}
AI SkNx invert() const {
float32x4_t est0 = vrecpeq_f32(fVec),
est1 = vmulq_f32(vrecpsq_f32(est0, fVec), est0);
return est1;
}
AI SkNx operator - () const { return vnegq_f32(fVec); }
AI SkNx operator + (const SkNx& o) const { return vaddq_f32(fVec, o.fVec); }
AI SkNx operator - (const SkNx& o) const { return vsubq_f32(fVec, o.fVec); }
AI SkNx operator * (const SkNx& o) const { return vmulq_f32(fVec, o.fVec); }
AI SkNx operator / (const SkNx& o) const {
#if defined(SK_CPU_ARM64)
return vdivq_f32(fVec, o.fVec);
#else
float32x4_t est0 = vrecpeq_f32(o.fVec),
est1 = vmulq_f32(vrecpsq_f32(est0, o.fVec), est0),
est2 = vmulq_f32(vrecpsq_f32(est1, o.fVec), est1);
return vmulq_f32(fVec, est2);
#endif
}
AI SkNx operator==(const SkNx& o) const {return vreinterpretq_f32_u32(vceqq_f32(fVec, o.fVec));}
AI SkNx operator <(const SkNx& o) const {return vreinterpretq_f32_u32(vcltq_f32(fVec, o.fVec));}
AI SkNx operator >(const SkNx& o) const {return vreinterpretq_f32_u32(vcgtq_f32(fVec, o.fVec));}
AI SkNx operator<=(const SkNx& o) const {return vreinterpretq_f32_u32(vcleq_f32(fVec, o.fVec));}
AI SkNx operator>=(const SkNx& o) const {return vreinterpretq_f32_u32(vcgeq_f32(fVec, o.fVec));}
AI SkNx operator!=(const SkNx& o) const {
return vreinterpretq_f32_u32(vmvnq_u32(vceqq_f32(fVec, o.fVec)));
}
AI static SkNx Min(const SkNx& l, const SkNx& r) { return vminq_f32(l.fVec, r.fVec); }
AI static SkNx Max(const SkNx& l, const SkNx& r) { return vmaxq_f32(l.fVec, r.fVec); }
AI SkNx abs() const { return vabsq_f32(fVec); }
AI SkNx floor() const {
#if defined(SK_CPU_ARM64)
return vrndmq_f32(fVec);
#else
return emulate_vrndmq_f32(fVec);
#endif
}
AI SkNx rsqrt() const {
float32x4_t est0 = vrsqrteq_f32(fVec);
return vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0);
}
AI SkNx sqrt() const {
#if defined(SK_CPU_ARM64)
return vsqrtq_f32(fVec);
#else
float32x4_t est0 = vrsqrteq_f32(fVec),
est1 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0),
est2 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est1, est1)), est1);
return vmulq_f32(fVec, est2);
#endif
}
AI float operator[](int k) const {
SkASSERT(0 <= k && k < 4);
union { float32x4_t v; float fs[4]; } pun = {fVec};
return pun.fs[k&3];
}
AI float min() const {
#if defined(SK_CPU_ARM64)
return vminvq_f32(fVec);
#else
SkNx min = Min(*this, vrev64q_f32(fVec));
return SkTMin(min[0], min[2]);
#endif
}
AI float max() const {
#if defined(SK_CPU_ARM64)
return vmaxvq_f32(fVec);
#else
SkNx max = Max(*this, vrev64q_f32(fVec));
return SkTMax(max[0], max[2]);
#endif
}
AI bool allTrue() const {
#if defined(SK_CPU_ARM64)
return 0 != vminvq_u32(vreinterpretq_u32_f32(fVec));
#else
auto v = vreinterpretq_u32_f32(fVec);
return vgetq_lane_u32(v,0) && vgetq_lane_u32(v,1)
&& vgetq_lane_u32(v,2) && vgetq_lane_u32(v,3);
#endif
}
AI bool anyTrue() const {
#if defined(SK_CPU_ARM64)
return 0 != vmaxvq_u32(vreinterpretq_u32_f32(fVec));
#else
auto v = vreinterpretq_u32_f32(fVec);
return vgetq_lane_u32(v,0) || vgetq_lane_u32(v,1)
|| vgetq_lane_u32(v,2) || vgetq_lane_u32(v,3);
#endif
}
AI SkNx thenElse(const SkNx& t, const SkNx& e) const {
return vbslq_f32(vreinterpretq_u32_f32(fVec), t.fVec, e.fVec);
}
float32x4_t fVec;
};
#if defined(SK_CPU_ARM64)
AI static Sk4f SkNx_fma(const Sk4f& f, const Sk4f& m, const Sk4f& a) {
return vfmaq_f32(a.fVec, f.fVec, m.fVec);
}
#endif
// It's possible that for our current use cases, representing this as
// half a uint16x8_t might be better than representing it as a uint16x4_t.
// It'd make conversion to Sk4b one step simpler.
template <>
class SkNx<4, uint16_t> {
public:
AI SkNx(const uint16x4_t& vec) : fVec(vec) {}
AI SkNx() {}
AI SkNx(uint16_t val) : fVec(vdup_n_u16(val)) {}
AI SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d) {
fVec = (uint16x4_t) { a,b,c,d };
}
AI static SkNx Load(const void* ptr) { return vld1_u16((const uint16_t*)ptr); }
AI void store(void* ptr) const { vst1_u16((uint16_t*)ptr, fVec); }
AI static void Load4(const void* ptr, SkNx* r, SkNx* g, SkNx* b, SkNx* a) {
uint16x4x4_t rgba = vld4_u16((const uint16_t*)ptr);
*r = rgba.val[0];
*g = rgba.val[1];
*b = rgba.val[2];
*a = rgba.val[3];
}
AI static void Load3(const void* ptr, SkNx* r, SkNx* g, SkNx* b) {
uint16x4x3_t rgba = vld3_u16((const uint16_t*)ptr);
*r = rgba.val[0];
*g = rgba.val[1];
*b = rgba.val[2];
}
AI static void Store4(void* dst, const SkNx& r, const SkNx& g, const SkNx& b, const SkNx& a) {
uint16x4x4_t rgba = {{
r.fVec,
g.fVec,
b.fVec,
a.fVec,
}};
vst4_u16((uint16_t*) dst, rgba);
}
AI SkNx operator + (const SkNx& o) const { return vadd_u16(fVec, o.fVec); }
AI SkNx operator - (const SkNx& o) const { return vsub_u16(fVec, o.fVec); }
AI SkNx operator * (const SkNx& o) const { return vmul_u16(fVec, o.fVec); }
AI SkNx operator & (const SkNx& o) const { return vand_u16(fVec, o.fVec); }
AI SkNx operator | (const SkNx& o) const { return vorr_u16(fVec, o.fVec); }
AI SkNx operator << (int bits) const { return fVec << SkNx(bits).fVec; }
AI SkNx operator >> (int bits) const { return fVec >> SkNx(bits).fVec; }
AI static SkNx Min(const SkNx& a, const SkNx& b) { return vmin_u16(a.fVec, b.fVec); }
AI uint16_t operator[](int k) const {
SkASSERT(0 <= k && k < 4);
union { uint16x4_t v; uint16_t us[4]; } pun = {fVec};
return pun.us[k&3];
}
AI SkNx thenElse(const SkNx& t, const SkNx& e) const {
return vbsl_u16(fVec, t.fVec, e.fVec);
}
uint16x4_t fVec;
};
template <>
class SkNx<8, uint16_t> {
public:
AI SkNx(const uint16x8_t& vec) : fVec(vec) {}
AI SkNx() {}
AI SkNx(uint16_t val) : fVec(vdupq_n_u16(val)) {}
AI static SkNx Load(const void* ptr) { return vld1q_u16((const uint16_t*)ptr); }
AI SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d,
uint16_t e, uint16_t f, uint16_t g, uint16_t h) {
fVec = (uint16x8_t) { a,b,c,d, e,f,g,h };
}
AI void store(void* ptr) const { vst1q_u16((uint16_t*)ptr, fVec); }
AI SkNx operator + (const SkNx& o) const { return vaddq_u16(fVec, o.fVec); }
AI SkNx operator - (const SkNx& o) const { return vsubq_u16(fVec, o.fVec); }
AI SkNx operator * (const SkNx& o) const { return vmulq_u16(fVec, o.fVec); }
AI SkNx operator & (const SkNx& o) const { return vandq_u16(fVec, o.fVec); }
AI SkNx operator | (const SkNx& o) const { return vorrq_u16(fVec, o.fVec); }
AI SkNx operator << (int bits) const { return fVec << SkNx(bits).fVec; }
AI SkNx operator >> (int bits) const { return fVec >> SkNx(bits).fVec; }
AI static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u16(a.fVec, b.fVec); }
AI uint16_t operator[](int k) const {
SkASSERT(0 <= k && k < 8);
union { uint16x8_t v; uint16_t us[8]; } pun = {fVec};
return pun.us[k&7];
}
AI SkNx mulHi(const SkNx& m) const {
uint32x4_t hi = vmull_u16(vget_high_u16(fVec), vget_high_u16(m.fVec));
uint32x4_t lo = vmull_u16( vget_low_u16(fVec), vget_low_u16(m.fVec));
return { vcombine_u16(vshrn_n_u32(lo,16), vshrn_n_u32(hi,16)) };
}
AI SkNx thenElse(const SkNx& t, const SkNx& e) const {
return vbslq_u16(fVec, t.fVec, e.fVec);
}
uint16x8_t fVec;
};
template <>
class SkNx<4, uint8_t> {
public:
typedef uint32_t __attribute__((aligned(1))) unaligned_uint32_t;
AI SkNx(const uint8x8_t& vec) : fVec(vec) {}
AI SkNx() {}
AI SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d) {
fVec = (uint8x8_t){a,b,c,d, 0,0,0,0};
}
AI static SkNx Load(const void* ptr) {
return (uint8x8_t)vld1_dup_u32((const unaligned_uint32_t*)ptr);
}
AI void store(void* ptr) const {
return vst1_lane_u32((unaligned_uint32_t*)ptr, (uint32x2_t)fVec, 0);
}
AI uint8_t operator[](int k) const {
SkASSERT(0 <= k && k < 4);
union { uint8x8_t v; uint8_t us[8]; } pun = {fVec};
return pun.us[k&3];
}
// TODO as needed
uint8x8_t fVec;
};
template <>
class SkNx<8, uint8_t> {
public:
AI SkNx(const uint8x8_t& vec) : fVec(vec) {}
AI SkNx() {}
AI SkNx(uint8_t val) : fVec(vdup_n_u8(val)) {}
AI SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d,
uint8_t e, uint8_t f, uint8_t g, uint8_t h) {
fVec = (uint8x8_t) { a,b,c,d, e,f,g,h };
}
AI static SkNx Load(const void* ptr) { return vld1_u8((const uint8_t*)ptr); }
AI void store(void* ptr) const { vst1_u8((uint8_t*)ptr, fVec); }
AI uint8_t operator[](int k) const {
SkASSERT(0 <= k && k < 8);
union { uint8x8_t v; uint8_t us[8]; } pun = {fVec};
return pun.us[k&7];
}
uint8x8_t fVec;
};
template <>
class SkNx<16, uint8_t> {
public:
AI SkNx(const uint8x16_t& vec) : fVec(vec) {}
AI SkNx() {}
AI SkNx(uint8_t val) : fVec(vdupq_n_u8(val)) {}
AI SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d,
uint8_t e, uint8_t f, uint8_t g, uint8_t h,
uint8_t i, uint8_t j, uint8_t k, uint8_t l,
uint8_t m, uint8_t n, uint8_t o, uint8_t p) {
fVec = (uint8x16_t) { a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p };
}
AI static SkNx Load(const void* ptr) { return vld1q_u8((const uint8_t*)ptr); }
AI void store(void* ptr) const { vst1q_u8((uint8_t*)ptr, fVec); }
AI SkNx saturatedAdd(const SkNx& o) const { return vqaddq_u8(fVec, o.fVec); }
AI SkNx operator + (const SkNx& o) const { return vaddq_u8(fVec, o.fVec); }
AI SkNx operator - (const SkNx& o) const { return vsubq_u8(fVec, o.fVec); }
AI SkNx operator & (const SkNx& o) const { return vandq_u8(fVec, o.fVec); }
AI static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u8(a.fVec, b.fVec); }
AI SkNx operator < (const SkNx& o) const { return vcltq_u8(fVec, o.fVec); }
AI uint8_t operator[](int k) const {
SkASSERT(0 <= k && k < 16);
union { uint8x16_t v; uint8_t us[16]; } pun = {fVec};
return pun.us[k&15];
}
AI SkNx thenElse(const SkNx& t, const SkNx& e) const {
return vbslq_u8(fVec, t.fVec, e.fVec);
}
uint8x16_t fVec;
};
template <>
class SkNx<4, int32_t> {
public:
AI SkNx(const int32x4_t& vec) : fVec(vec) {}
AI SkNx() {}
AI SkNx(int32_t v) {
fVec = vdupq_n_s32(v);
}
AI SkNx(int32_t a, int32_t b, int32_t c, int32_t d) {
fVec = (int32x4_t){a,b,c,d};
}
AI static SkNx Load(const void* ptr) {
return vld1q_s32((const int32_t*)ptr);
}
AI void store(void* ptr) const {
return vst1q_s32((int32_t*)ptr, fVec);
}
AI int32_t operator[](int k) const {
SkASSERT(0 <= k && k < 4);
union { int32x4_t v; int32_t is[4]; } pun = {fVec};
return pun.is[k&3];
}
AI SkNx operator + (const SkNx& o) const { return vaddq_s32(fVec, o.fVec); }
AI SkNx operator - (const SkNx& o) const { return vsubq_s32(fVec, o.fVec); }
AI SkNx operator * (const SkNx& o) const { return vmulq_s32(fVec, o.fVec); }
AI SkNx operator & (const SkNx& o) const { return vandq_s32(fVec, o.fVec); }
AI SkNx operator | (const SkNx& o) const { return vorrq_s32(fVec, o.fVec); }
AI SkNx operator ^ (const SkNx& o) const { return veorq_s32(fVec, o.fVec); }
AI SkNx operator << (int bits) const { return fVec << SkNx(bits).fVec; }
AI SkNx operator >> (int bits) const { return fVec >> SkNx(bits).fVec; }
AI SkNx operator == (const SkNx& o) const {
return vreinterpretq_s32_u32(vceqq_s32(fVec, o.fVec));
}
AI SkNx operator < (const SkNx& o) const {
return vreinterpretq_s32_u32(vcltq_s32(fVec, o.fVec));
}
AI SkNx operator > (const SkNx& o) const {
return vreinterpretq_s32_u32(vcgtq_s32(fVec, o.fVec));
}
AI static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_s32(a.fVec, b.fVec); }
AI static SkNx Max(const SkNx& a, const SkNx& b) { return vmaxq_s32(a.fVec, b.fVec); }
// TODO as needed
AI SkNx thenElse(const SkNx& t, const SkNx& e) const {
return vbslq_s32(vreinterpretq_u32_s32(fVec), t.fVec, e.fVec);
}
AI SkNx abs() const { return vabsq_s32(fVec); }
int32x4_t fVec;
};
template <>
class SkNx<4, uint32_t> {
public:
AI SkNx(const uint32x4_t& vec) : fVec(vec) {}
AI SkNx() {}
AI SkNx(uint32_t v) {
fVec = vdupq_n_u32(v);
}
AI SkNx(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
fVec = (uint32x4_t){a,b,c,d};
}
AI static SkNx Load(const void* ptr) {
return vld1q_u32((const uint32_t*)ptr);
}
AI void store(void* ptr) const {
return vst1q_u32((uint32_t*)ptr, fVec);
}
AI uint32_t operator[](int k) const {
SkASSERT(0 <= k && k < 4);
union { uint32x4_t v; uint32_t us[4]; } pun = {fVec};
return pun.us[k&3];
}
AI SkNx operator + (const SkNx& o) const { return vaddq_u32(fVec, o.fVec); }
AI SkNx operator - (const SkNx& o) const { return vsubq_u32(fVec, o.fVec); }
AI SkNx operator * (const SkNx& o) const { return vmulq_u32(fVec, o.fVec); }
AI SkNx operator & (const SkNx& o) const { return vandq_u32(fVec, o.fVec); }
AI SkNx operator | (const SkNx& o) const { return vorrq_u32(fVec, o.fVec); }
AI SkNx operator ^ (const SkNx& o) const { return veorq_u32(fVec, o.fVec); }
AI SkNx operator << (int bits) const { return fVec << SkNx(bits).fVec; }
AI SkNx operator >> (int bits) const { return fVec >> SkNx(bits).fVec; }
AI SkNx operator == (const SkNx& o) const { return vceqq_u32(fVec, o.fVec); }
AI SkNx operator < (const SkNx& o) const { return vcltq_u32(fVec, o.fVec); }
AI SkNx operator > (const SkNx& o) const { return vcgtq_u32(fVec, o.fVec); }
AI static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u32(a.fVec, b.fVec); }
// TODO as needed
AI SkNx mulHi(const SkNx& m) const {
uint64x2_t hi = vmull_u32(vget_high_u32(fVec), vget_high_u32(m.fVec));
uint64x2_t lo = vmull_u32( vget_low_u32(fVec), vget_low_u32(m.fVec));
return { vcombine_u32(vshrn_n_u64(lo,32), vshrn_n_u64(hi,32)) };
}
AI SkNx thenElse(const SkNx& t, const SkNx& e) const {
return vbslq_u32(fVec, t.fVec, e.fVec);
}
uint32x4_t fVec;
};
template<> AI /*static*/ Sk4i SkNx_cast<int32_t, float>(const Sk4f& src) {
return vcvtq_s32_f32(src.fVec);
}
template<> AI /*static*/ Sk4f SkNx_cast<float, int32_t>(const Sk4i& src) {
return vcvtq_f32_s32(src.fVec);
}
template<> AI /*static*/ Sk4f SkNx_cast<float, uint32_t>(const Sk4u& src) {
return SkNx_cast<float>(Sk4i::Load(&src));
}
template<> AI /*static*/ Sk4h SkNx_cast<uint16_t, float>(const Sk4f& src) {
return vqmovn_u32(vcvtq_u32_f32(src.fVec));
}
template<> AI /*static*/ Sk4f SkNx_cast<float, uint16_t>(const Sk4h& src) {
return vcvtq_f32_u32(vmovl_u16(src.fVec));
}
template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, float>(const Sk4f& src) {
uint32x4_t _32 = vcvtq_u32_f32(src.fVec);
uint16x4_t _16 = vqmovn_u32(_32);
return vqmovn_u16(vcombine_u16(_16, _16));
}
template<> AI /*static*/ Sk4u SkNx_cast<uint32_t, uint8_t>(const Sk4b& src) {
uint16x8_t _16 = vmovl_u8(src.fVec);
return vmovl_u16(vget_low_u16(_16));
}
template<> AI /*static*/ Sk4i SkNx_cast<int32_t, uint8_t>(const Sk4b& src) {
return vreinterpretq_s32_u32(SkNx_cast<uint32_t>(src).fVec);
}
template<> AI /*static*/ Sk4f SkNx_cast<float, uint8_t>(const Sk4b& src) {
return vcvtq_f32_s32(SkNx_cast<int32_t>(src).fVec);
}
template<> AI /*static*/ Sk16b SkNx_cast<uint8_t, float>(const Sk16f& src) {
Sk8f ab, cd;
SkNx_split(src, &ab, &cd);
Sk4f a,b,c,d;
SkNx_split(ab, &a, &b);
SkNx_split(cd, &c, &d);
return vuzpq_u8(vuzpq_u8((uint8x16_t)vcvtq_u32_f32(a.fVec),
(uint8x16_t)vcvtq_u32_f32(b.fVec)).val[0],
vuzpq_u8((uint8x16_t)vcvtq_u32_f32(c.fVec),
(uint8x16_t)vcvtq_u32_f32(d.fVec)).val[0]).val[0];
}
template<> AI /*static*/ Sk8b SkNx_cast<uint8_t, int32_t>(const Sk8i& src) {
Sk4i a, b;
SkNx_split(src, &a, &b);
uint16x4_t a16 = vqmovun_s32(a.fVec);
uint16x4_t b16 = vqmovun_s32(b.fVec);
return vqmovn_u16(vcombine_u16(a16, b16));
}
template<> AI /*static*/ Sk4h SkNx_cast<uint16_t, uint8_t>(const Sk4b& src) {
return vget_low_u16(vmovl_u8(src.fVec));
}
template<> AI /*static*/ Sk8h SkNx_cast<uint16_t, uint8_t>(const Sk8b& src) {
return vmovl_u8(src.fVec);
}
template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, uint16_t>(const Sk4h& src) {
return vmovn_u16(vcombine_u16(src.fVec, src.fVec));
}
template<> AI /*static*/ Sk8b SkNx_cast<uint8_t, uint16_t>(const Sk8h& src) {
return vqmovn_u16(src.fVec);
}
template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, int32_t>(const Sk4i& src) {
uint16x4_t _16 = vqmovun_s32(src.fVec);
return vqmovn_u16(vcombine_u16(_16, _16));
}
template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, uint32_t>(const Sk4u& src) {
uint16x4_t _16 = vqmovn_u32(src.fVec);
return vqmovn_u16(vcombine_u16(_16, _16));
}
template<> AI /*static*/ Sk4i SkNx_cast<int32_t, uint16_t>(const Sk4h& src) {
return vreinterpretq_s32_u32(vmovl_u16(src.fVec));
}
template<> AI /*static*/ Sk4h SkNx_cast<uint16_t, int32_t>(const Sk4i& src) {
return vmovn_u32(vreinterpretq_u32_s32(src.fVec));
}
template<> AI /*static*/ Sk4i SkNx_cast<int32_t, uint32_t>(const Sk4u& src) {
return vreinterpretq_s32_u32(src.fVec);
}
AI static Sk4i Sk4f_round(const Sk4f& x) {
return vcvtq_s32_f32((x + 0.5f).fVec);
}
} // namespace
#endif//SkNx_neon_DEFINED