b25e6e15c6
Converts examples to use more idiomatic "user" SkSL, without extra casts, and taking advantage of swizzle. Change-Id: I4ad4e7b6563b4f09402855cb125546b015622ced Reviewed-on: https://skia-review.googlesource.com/c/skia/+/317388 Reviewed-by: Mike Klein <mtklein@google.com> Reviewed-by: Michael Ludwig <michaelludwig@google.com> Commit-Queue: Brian Osman <brianosman@google.com>
556 lines
16 KiB
C++
556 lines
16 KiB
C++
/*
|
|
* Copyright 2020 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "include/core/SkCanvas.h"
|
|
#include "include/core/SkM44.h"
|
|
#include "include/core/SkPaint.h"
|
|
#include "include/core/SkRRect.h"
|
|
#include "include/core/SkVertices.h"
|
|
#include "include/utils/SkRandom.h"
|
|
#include "samplecode/Sample.h"
|
|
#include "tools/Resources.h"
|
|
|
|
struct VSphere {
|
|
SkV2 fCenter;
|
|
SkScalar fRadius;
|
|
|
|
VSphere(SkV2 center, SkScalar radius) : fCenter(center), fRadius(radius) {}
|
|
|
|
bool contains(SkV2 v) const {
|
|
return (v - fCenter).length() <= fRadius;
|
|
}
|
|
|
|
SkV2 pinLoc(SkV2 p) const {
|
|
auto v = p - fCenter;
|
|
if (v.length() > fRadius) {
|
|
v *= (fRadius / v.length());
|
|
}
|
|
return fCenter + v;
|
|
}
|
|
|
|
SkV3 computeUnitV3(SkV2 v) const {
|
|
v = (v - fCenter) * (1 / fRadius);
|
|
SkScalar len2 = v.lengthSquared();
|
|
if (len2 > 1) {
|
|
v = v.normalize();
|
|
len2 = 1;
|
|
}
|
|
SkScalar z = SkScalarSqrt(1 - len2);
|
|
return {v.x, v.y, z};
|
|
}
|
|
|
|
struct RotateInfo {
|
|
SkV3 fAxis;
|
|
SkScalar fAngle;
|
|
};
|
|
|
|
RotateInfo computeRotationInfo(SkV2 a, SkV2 b) const {
|
|
SkV3 u = this->computeUnitV3(a);
|
|
SkV3 v = this->computeUnitV3(b);
|
|
SkV3 axis = u.cross(v);
|
|
SkScalar length = axis.length();
|
|
|
|
if (!SkScalarNearlyZero(length)) {
|
|
return {axis * (1.0f / length), acos(u.dot(v))};
|
|
}
|
|
return {{0, 0, 0}, 0};
|
|
}
|
|
|
|
SkM44 computeRotation(SkV2 a, SkV2 b) const {
|
|
auto [axis, angle] = this->computeRotationInfo(a, b);
|
|
return SkM44::Rotate(axis, angle);
|
|
}
|
|
};
|
|
|
|
static SkM44 inv(const SkM44& m) {
|
|
SkM44 inverse;
|
|
SkAssertResult(m.invert(&inverse));
|
|
return inverse;
|
|
}
|
|
|
|
class Sample3DView : public Sample {
|
|
protected:
|
|
float fNear = 0.05f;
|
|
float fFar = 4;
|
|
float fAngle = SK_ScalarPI / 12;
|
|
|
|
SkV3 fEye { 0, 0, 1.0f/tan(fAngle/2) - 1 };
|
|
SkV3 fCOA { 0, 0, 0 };
|
|
SkV3 fUp { 0, 1, 0 };
|
|
|
|
const char* kLocalToWorld = "local_to_world";
|
|
|
|
public:
|
|
void concatCamera(SkCanvas* canvas, const SkRect& area, SkScalar zscale) {
|
|
SkM44 camera = Sk3LookAt(fEye, fCOA, fUp),
|
|
perspective = Sk3Perspective(fNear, fFar, fAngle),
|
|
viewport = SkM44::Translate(area.centerX(), area.centerY(), 0) *
|
|
SkM44::Scale(area.width()*0.5f, area.height()*0.5f, zscale);
|
|
|
|
canvas->concat(viewport * perspective * camera * inv(viewport));
|
|
}
|
|
};
|
|
|
|
struct Face {
|
|
SkScalar fRx, fRy;
|
|
SkColor fColor;
|
|
|
|
static SkM44 T(SkScalar x, SkScalar y, SkScalar z) {
|
|
return SkM44::Translate(x, y, z);
|
|
}
|
|
|
|
static SkM44 R(SkV3 axis, SkScalar rad) {
|
|
return SkM44::Rotate(axis, rad);
|
|
}
|
|
|
|
SkM44 asM44(SkScalar scale) const {
|
|
return R({0,1,0}, fRy) * R({1,0,0}, fRx) * T(0, 0, scale);
|
|
}
|
|
};
|
|
|
|
static bool front(const SkM44& m) {
|
|
SkM44 m2(SkM44::kUninitialized_Constructor);
|
|
if (!m.invert(&m2)) {
|
|
m2.setIdentity();
|
|
}
|
|
/*
|
|
* Classically we want to dot the transpose(inverse(ctm)) with our surface normal.
|
|
* In this case, the normal is known to be {0, 0, 1}, so we only actually need to look
|
|
* at the z-scale of the inverse (the transpose doesn't change the main diagonal, so
|
|
* no need to actually transpose).
|
|
*/
|
|
return m2.rc(2,2) > 0;
|
|
}
|
|
|
|
const Face faces[] = {
|
|
{ 0, 0, SK_ColorRED }, // front
|
|
{ 0, SK_ScalarPI, SK_ColorGREEN }, // back
|
|
|
|
{ SK_ScalarPI/2, 0, SK_ColorBLUE }, // top
|
|
{-SK_ScalarPI/2, 0, SK_ColorCYAN }, // bottom
|
|
|
|
{ 0, SK_ScalarPI/2, SK_ColorMAGENTA }, // left
|
|
{ 0,-SK_ScalarPI/2, SK_ColorYELLOW }, // right
|
|
};
|
|
|
|
#include "include/effects/SkRuntimeEffect.h"
|
|
|
|
struct LightOnSphere {
|
|
SkV2 fLoc;
|
|
SkScalar fDistance;
|
|
SkScalar fRadius;
|
|
|
|
SkV3 computeWorldPos(const VSphere& s) const {
|
|
return s.computeUnitV3(fLoc) * fDistance;
|
|
}
|
|
|
|
void draw(SkCanvas* canvas) const {
|
|
SkPaint paint;
|
|
paint.setAntiAlias(true);
|
|
paint.setColor(SK_ColorWHITE);
|
|
canvas->drawCircle(fLoc.x, fLoc.y, fRadius + 2, paint);
|
|
paint.setColor(SK_ColorBLACK);
|
|
canvas->drawCircle(fLoc.x, fLoc.y, fRadius, paint);
|
|
}
|
|
};
|
|
|
|
#include "include/core/SkTime.h"
|
|
|
|
class RotateAnimator {
|
|
SkV3 fAxis = {0, 0, 0};
|
|
SkScalar fAngle = 0,
|
|
fPrevAngle = 1234567;
|
|
double fNow = 0,
|
|
fPrevNow = 0;
|
|
|
|
SkScalar fAngleSpeed = 0,
|
|
fAngleSign = 1;
|
|
|
|
static constexpr double kSlowDown = 4;
|
|
static constexpr SkScalar kMaxSpeed = 16;
|
|
|
|
public:
|
|
void update(SkV3 axis, SkScalar angle) {
|
|
if (angle != fPrevAngle) {
|
|
fPrevAngle = fAngle;
|
|
fAngle = angle;
|
|
|
|
fPrevNow = fNow;
|
|
fNow = SkTime::GetSecs();
|
|
|
|
fAxis = axis;
|
|
}
|
|
}
|
|
|
|
SkM44 rotation() {
|
|
if (fAngleSpeed > 0) {
|
|
double now = SkTime::GetSecs();
|
|
double dtime = now - fPrevNow;
|
|
fPrevNow = now;
|
|
double delta = fAngleSign * fAngleSpeed * dtime;
|
|
fAngle += delta;
|
|
fAngleSpeed -= kSlowDown * dtime;
|
|
if (fAngleSpeed < 0) {
|
|
fAngleSpeed = 0;
|
|
}
|
|
}
|
|
return SkM44::Rotate(fAxis, fAngle);
|
|
|
|
}
|
|
|
|
void start() {
|
|
if (fPrevNow != fNow) {
|
|
fAngleSpeed = (fAngle - fPrevAngle) / (fNow - fPrevNow);
|
|
fAngleSign = fAngleSpeed < 0 ? -1 : 1;
|
|
fAngleSpeed = std::min(kMaxSpeed, std::abs(fAngleSpeed));
|
|
} else {
|
|
fAngleSpeed = 0;
|
|
}
|
|
fPrevNow = SkTime::GetSecs();
|
|
fAngle = 0;
|
|
}
|
|
|
|
void reset() {
|
|
fAngleSpeed = 0;
|
|
fAngle = 0;
|
|
fPrevAngle = 1234567;
|
|
}
|
|
|
|
bool isAnimating() const { return fAngleSpeed != 0; }
|
|
};
|
|
|
|
class SampleCubeBase : public Sample3DView {
|
|
enum {
|
|
DX = 400,
|
|
DY = 300
|
|
};
|
|
|
|
SkM44 fRotation; // part of model
|
|
|
|
RotateAnimator fRotateAnimator;
|
|
|
|
protected:
|
|
enum Flags {
|
|
kCanRunOnCPU = 1 << 0,
|
|
kShowLightDome = 1 << 1,
|
|
};
|
|
|
|
LightOnSphere fLight = {{200 + DX, 200 + DY}, 800, 12};
|
|
|
|
VSphere fSphere;
|
|
Flags fFlags;
|
|
|
|
public:
|
|
SampleCubeBase(Flags flags)
|
|
: fSphere({200 + DX, 200 + DY}, 400)
|
|
, fFlags(flags)
|
|
{}
|
|
|
|
bool onChar(SkUnichar uni) override {
|
|
switch (uni) {
|
|
case 'Z': fLight.fDistance += 10; return true;
|
|
case 'z': fLight.fDistance -= 10; return true;
|
|
}
|
|
return this->Sample3DView::onChar(uni);
|
|
}
|
|
|
|
virtual void drawContent(SkCanvas* canvas, SkColor, int index, bool drawFront) = 0;
|
|
|
|
void onDrawContent(SkCanvas* canvas) override {
|
|
if (!canvas->recordingContext() && !(fFlags & kCanRunOnCPU)) {
|
|
return;
|
|
}
|
|
|
|
canvas->save();
|
|
canvas->translate(DX, DY);
|
|
|
|
this->concatCamera(canvas, {0, 0, 400, 400}, 200);
|
|
|
|
for (bool drawFront : {false, true}) {
|
|
int index = 0;
|
|
for (auto f : faces) {
|
|
SkAutoCanvasRestore acr(canvas, true);
|
|
|
|
SkM44 trans = SkM44::Translate(200, 200, 0); // center of the rotation
|
|
SkM44 m = fRotateAnimator.rotation() * fRotation * f.asM44(200);
|
|
|
|
canvas->concat(trans);
|
|
|
|
// "World" space - content is centered at the origin, in device scale (+-200)
|
|
canvas->markCTM(kLocalToWorld);
|
|
|
|
canvas->concat(m * inv(trans));
|
|
this->drawContent(canvas, f.fColor, index++, drawFront);
|
|
}
|
|
}
|
|
|
|
canvas->restore(); // camera & center the content in the window
|
|
|
|
if (fFlags & kShowLightDome){
|
|
fLight.draw(canvas);
|
|
|
|
SkPaint paint;
|
|
paint.setAntiAlias(true);
|
|
paint.setStyle(SkPaint::kStroke_Style);
|
|
paint.setColor(0x40FF0000);
|
|
canvas->drawCircle(fSphere.fCenter.x, fSphere.fCenter.y, fSphere.fRadius, paint);
|
|
canvas->drawLine(fSphere.fCenter.x, fSphere.fCenter.y - fSphere.fRadius,
|
|
fSphere.fCenter.x, fSphere.fCenter.y + fSphere.fRadius, paint);
|
|
canvas->drawLine(fSphere.fCenter.x - fSphere.fRadius, fSphere.fCenter.y,
|
|
fSphere.fCenter.x + fSphere.fRadius, fSphere.fCenter.y, paint);
|
|
}
|
|
}
|
|
|
|
Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey modi) override {
|
|
SkV2 p = fLight.fLoc - SkV2{x, y};
|
|
if (p.length() <= fLight.fRadius) {
|
|
Click* c = new Click();
|
|
c->fMeta.setS32("type", 0);
|
|
return c;
|
|
}
|
|
if (fSphere.contains({x, y})) {
|
|
Click* c = new Click();
|
|
c->fMeta.setS32("type", 1);
|
|
|
|
fRotation = fRotateAnimator.rotation() * fRotation;
|
|
fRotateAnimator.reset();
|
|
return c;
|
|
}
|
|
return nullptr;
|
|
}
|
|
bool onClick(Click* click) override {
|
|
if (click->fMeta.hasS32("type", 0)) {
|
|
fLight.fLoc = fSphere.pinLoc({click->fCurr.fX, click->fCurr.fY});
|
|
return true;
|
|
}
|
|
if (click->fMeta.hasS32("type", 1)) {
|
|
if (click->fState == skui::InputState::kUp) {
|
|
fRotation = fRotateAnimator.rotation() * fRotation;
|
|
fRotateAnimator.start();
|
|
} else {
|
|
auto [axis, angle] = fSphere.computeRotationInfo(
|
|
{click->fOrig.fX, click->fOrig.fY},
|
|
{click->fCurr.fX, click->fCurr.fY});
|
|
fRotateAnimator.update(axis, angle);
|
|
}
|
|
return true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool onAnimate(double nanos) override {
|
|
return fRotateAnimator.isAnimating();
|
|
}
|
|
|
|
private:
|
|
using INHERITED = Sample3DView;
|
|
};
|
|
|
|
class SampleBump3D : public SampleCubeBase {
|
|
sk_sp<SkShader> fBmpShader, fImgShader;
|
|
sk_sp<SkRuntimeEffect> fEffect;
|
|
SkRRect fRR;
|
|
|
|
public:
|
|
SampleBump3D() : SampleCubeBase(Flags(kCanRunOnCPU | kShowLightDome)) {}
|
|
|
|
SkString name() override { return SkString("bump3d"); }
|
|
|
|
void onOnceBeforeDraw() override {
|
|
fRR = SkRRect::MakeRectXY({20, 20, 380, 380}, 50, 50);
|
|
auto img = GetResourceAsImage("images/brickwork-texture.jpg");
|
|
fImgShader = img->makeShader(SkMatrix::Scale(2, 2));
|
|
img = GetResourceAsImage("images/brickwork_normal-map.jpg");
|
|
fBmpShader = img->makeShader(SkMatrix::Scale(2, 2));
|
|
|
|
const char code[] = R"(
|
|
in shader color_map;
|
|
in shader normal_map;
|
|
|
|
layout (marker=local_to_world) uniform float4x4 localToWorld;
|
|
layout (marker=normals(local_to_world)) uniform float4x4 localToWorldAdjInv;
|
|
uniform float3 lightPos;
|
|
|
|
float3 convert_normal_sample(half4 c) {
|
|
float3 n = 2 * c.rgb - 1;
|
|
n.y = -n.y;
|
|
return n;
|
|
}
|
|
|
|
half4 main(float2 p) {
|
|
float3 norm = convert_normal_sample(sample(normal_map, p));
|
|
float3 plane_norm = normalize(localToWorldAdjInv * norm.xyz0).xyz;
|
|
|
|
float3 plane_pos = (localToWorld * p.xy01).xyz;
|
|
float3 light_dir = normalize(lightPos - plane_pos);
|
|
|
|
float ambient = 0.2;
|
|
float dp = dot(plane_norm, light_dir);
|
|
float scale = min(ambient + max(dp, 0), 1);
|
|
|
|
return sample(color_map, p) * scale.xxx1;
|
|
}
|
|
)";
|
|
auto [effect, error] = SkRuntimeEffect::Make(SkString(code));
|
|
if (!effect) {
|
|
SkDebugf("runtime error %s\n", error.c_str());
|
|
}
|
|
fEffect = effect;
|
|
}
|
|
|
|
void drawContent(SkCanvas* canvas, SkColor color, int index, bool drawFront) override {
|
|
if (!drawFront || !front(canvas->getLocalToDevice())) {
|
|
return;
|
|
}
|
|
|
|
SkRuntimeShaderBuilder builder(fEffect);
|
|
builder.uniform("lightPos") = fLight.computeWorldPos(fSphere);
|
|
// localToWorld matrices are automatically populated, via layout(marker)
|
|
|
|
builder.child("color_map") = fImgShader;
|
|
builder.child("normal_map") = fBmpShader;
|
|
|
|
SkPaint paint;
|
|
paint.setColor(color);
|
|
paint.setShader(builder.makeShader(nullptr, true));
|
|
|
|
canvas->drawRRect(fRR, paint);
|
|
}
|
|
};
|
|
DEF_SAMPLE( return new SampleBump3D; )
|
|
|
|
class SampleVerts3D : public SampleCubeBase {
|
|
sk_sp<SkRuntimeEffect> fEffect;
|
|
sk_sp<SkVertices> fVertices;
|
|
|
|
public:
|
|
SampleVerts3D() : SampleCubeBase(kShowLightDome) {}
|
|
|
|
SkString name() override { return SkString("verts3d"); }
|
|
|
|
void onOnceBeforeDraw() override {
|
|
using Attr = SkVertices::Attribute;
|
|
Attr attrs[] = {
|
|
Attr(Attr::Type::kFloat3, Attr::Usage::kNormalVector),
|
|
};
|
|
|
|
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 66, 0, attrs, 1);
|
|
|
|
SkPoint* pos = builder.positions();
|
|
SkV3* nrm = (SkV3*)builder.customData();
|
|
|
|
SkPoint center = { 200, 200 };
|
|
SkScalar radius = 200;
|
|
|
|
pos[0] = center;
|
|
nrm[0] = { 0, 0, 1 };
|
|
|
|
for (int i = 0; i < 65; ++i) {
|
|
SkScalar t = (i / 64.0f) * 2 * SK_ScalarPI;
|
|
SkScalar s = SkScalarSin(t),
|
|
c = SkScalarCos(t);
|
|
pos[i + 1] = center + SkPoint { c * radius, s * radius };
|
|
nrm[i + 1] = { c, s, 0 };
|
|
}
|
|
|
|
fVertices = builder.detach();
|
|
|
|
const char code[] = R"(
|
|
varying float3 vtx_normal;
|
|
|
|
layout (marker=local_to_world) uniform float4x4 localToWorld;
|
|
layout (marker=normals(local_to_world)) uniform float4x4 localToWorldAdjInv;
|
|
uniform float3 lightPos;
|
|
|
|
half4 main(float2 p) {
|
|
float3 norm = normalize(vtx_normal);
|
|
float3 plane_norm = normalize(localToWorldAdjInv * norm.xyz0).xyz;
|
|
|
|
float3 plane_pos = (localToWorld * p.xy01).xyz;
|
|
float3 light_dir = normalize(lightPos - plane_pos);
|
|
|
|
float ambient = 0.2;
|
|
float dp = dot(plane_norm, light_dir);
|
|
float scale = min(ambient + max(dp, 0), 1);
|
|
|
|
return half4(0.7, 0.9, 0.3, 1) * scale.xxx1;
|
|
}
|
|
)";
|
|
auto [effect, error] = SkRuntimeEffect::Make(SkString(code));
|
|
if (!effect) {
|
|
SkDebugf("runtime error %s\n", error.c_str());
|
|
}
|
|
fEffect = effect;
|
|
}
|
|
|
|
void drawContent(SkCanvas* canvas, SkColor color, int index, bool drawFront) override {
|
|
if (!drawFront || !front(canvas->getLocalToDevice())) {
|
|
return;
|
|
}
|
|
|
|
SkRuntimeShaderBuilder builder(fEffect);
|
|
builder.uniform("lightPos") = fLight.computeWorldPos(fSphere);
|
|
|
|
SkPaint paint;
|
|
paint.setColor(color);
|
|
paint.setShader(builder.makeShader(nullptr, true));
|
|
|
|
canvas->drawVertices(fVertices, paint);
|
|
}
|
|
};
|
|
DEF_SAMPLE( return new SampleVerts3D; )
|
|
|
|
#include "modules/skottie/include/Skottie.h"
|
|
|
|
class SampleSkottieCube : public SampleCubeBase {
|
|
sk_sp<skottie::Animation> fAnim[6];
|
|
|
|
public:
|
|
SampleSkottieCube() : SampleCubeBase(kCanRunOnCPU) {}
|
|
|
|
SkString name() override { return SkString("skottie3d"); }
|
|
|
|
void onOnceBeforeDraw() override {
|
|
const char* files[] = {
|
|
"skottie/skottie-chained-mattes.json",
|
|
"skottie/skottie-gradient-ramp.json",
|
|
"skottie/skottie_sample_2.json",
|
|
"skottie/skottie-3d-3planes.json",
|
|
"skottie/skottie-text-animator-4.json",
|
|
"skottie/skottie-motiontile-effect-phase.json",
|
|
|
|
};
|
|
for (unsigned i = 0; i < SK_ARRAY_COUNT(files); ++i) {
|
|
if (auto stream = GetResourceAsStream(files[i])) {
|
|
fAnim[i] = skottie::Animation::Make(stream.get());
|
|
}
|
|
}
|
|
}
|
|
|
|
void drawContent(SkCanvas* canvas, SkColor color, int index, bool drawFront) override {
|
|
if (!drawFront || !front(canvas->getLocalToDevice())) {
|
|
return;
|
|
}
|
|
|
|
SkPaint paint;
|
|
paint.setColor(color);
|
|
SkRect r = {0, 0, 400, 400};
|
|
canvas->drawRect(r, paint);
|
|
fAnim[index]->render(canvas, &r);
|
|
}
|
|
|
|
bool onAnimate(double nanos) override {
|
|
for (auto& anim : fAnim) {
|
|
SkScalar dur = anim->duration();
|
|
SkScalar t = fmod(1e-9 * nanos, dur) / dur;
|
|
anim->seek(t);
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
DEF_SAMPLE( return new SampleSkottieCube; )
|