65a726bb49
These have been renamed SK_MAKE_BITFIELD_OPS and SkAlignTo because nothing seemed particularly GPU/Ganesh specific to them. I moved the latter to SkTypes.h because we have other align code there and former to src/SkUtils.h because I didn't know where else it should go. The primary motivation was removing the GrTypesPriv.h include from src/core/SkBlockAllocator.h. I had attempted some amount of #if SK_SUPPORT_GPU, but that's not as clean here because both our CPU and GPU backends use the SkBlockAllocator (as far as I could tell). This also moves sk_memset* from SkUtils.h to SkOpts.h, because SkOpts.h requires bringing in RasterPipeline, which seemed like overkill. Change-Id: I5163ef5064ad3840a15b7e873930d60e2620bf9d Bug: skia:12584 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/464876 Reviewed-by: Brian Osman <brianosman@google.com>
221 lines
8.4 KiB
C++
221 lines
8.4 KiB
C++
/*
|
|
* Copyright 2012 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "bench/Benchmark.h"
|
|
#include "include/private/GrTypesPriv.h"
|
|
#include "include/utils/SkRandom.h"
|
|
#include "src/gpu/GrMemoryPool.h"
|
|
|
|
#include <type_traits>
|
|
|
|
namespace {
|
|
|
|
// sizeof is a multiple of GrMemoryPool::kAlignment for 4, 8, or 16 byte alignment
|
|
struct alignas(GrMemoryPool::kAlignment) Aligned {
|
|
char buf[32];
|
|
};
|
|
static_assert(sizeof(Aligned) == 32);
|
|
static_assert(sizeof(Aligned) % GrMemoryPool::kAlignment == 0);
|
|
|
|
// sizeof is not a multiple of GrMemoryPool::kAlignment (will not be a multiple of max_align_t
|
|
// if it's 4, 8, or 16, as desired).
|
|
struct alignas(2) Unaligned {
|
|
char buf[30];
|
|
};
|
|
static_assert(sizeof(Unaligned) == 30);
|
|
static_assert(sizeof(Unaligned) % GrMemoryPool::kAlignment != 0);
|
|
|
|
// When max_align_t == 16, 8, or 4 the padded Unaligned will also be 32
|
|
static_assert(SkAlignTo(sizeof(Unaligned), GrMemoryPool::kAlignment) == sizeof(Aligned));
|
|
|
|
// All benchmarks create and delete the same number of objects. The key difference is the order
|
|
// of operations, the size of the objects being allocated, and the size of the pool.
|
|
typedef void (*RunBenchProc)(GrMemoryPool*, int);
|
|
|
|
} // namespace
|
|
|
|
// N objects are created, and then destroyed in reverse order (fully unwinding the cursor within
|
|
// each block of the memory pool).
|
|
template <typename T>
|
|
static void run_stack(GrMemoryPool* pool, int loops) {
|
|
static const int kMaxObjects = 4 * (1 << 10);
|
|
T* objs[kMaxObjects];
|
|
for (int i = 0; i < loops; ++i) {
|
|
// Push N objects into the pool (or heap if pool is null)
|
|
for (int j = 0; j < kMaxObjects; ++j) {
|
|
objs[j] = pool ? (T*) pool->allocate(sizeof(T)) : new T;
|
|
}
|
|
// Pop N objects off in LIFO order
|
|
for (int j = kMaxObjects - 1; j >= 0; --j) {
|
|
if (pool) {
|
|
pool->release(objs[j]);
|
|
} else {
|
|
delete objs[j];
|
|
}
|
|
}
|
|
|
|
// Everything has been cleaned up for the next loop
|
|
}
|
|
}
|
|
|
|
// N objects are created, and then destroyed in creation order (is not able to unwind the cursor
|
|
// within each block, but can reclaim the block once everything is destroyed).
|
|
template <typename T>
|
|
static void run_queue(GrMemoryPool* pool, int loops) {
|
|
static const int kMaxObjects = 4 * (1 << 10);
|
|
T* objs[kMaxObjects];
|
|
for (int i = 0; i < loops; ++i) {
|
|
// Push N objects into the pool (or heap if pool is null)
|
|
for (int j = 0; j < kMaxObjects; ++j) {
|
|
objs[j] = pool ? (T*) pool->allocate(sizeof(T)) : new T;
|
|
}
|
|
// Pop N objects off in FIFO order
|
|
for (int j = 0; j < kMaxObjects; ++j) {
|
|
if (pool) {
|
|
pool->release(objs[j]);
|
|
} else {
|
|
delete objs[j];
|
|
}
|
|
}
|
|
|
|
// Everything has been cleaned up for the next loop
|
|
}
|
|
}
|
|
|
|
// N objects are created and immediately destroyed, so space at the start of the pool should be
|
|
// immediately reclaimed.
|
|
template <typename T>
|
|
static void run_pushpop(GrMemoryPool* pool, int loops) {
|
|
static const int kMaxObjects = 4 * (1 << 10);
|
|
T* objs[kMaxObjects];
|
|
for (int i = 0; i < loops; ++i) {
|
|
// Push N objects into the pool (or heap if pool is null)
|
|
for (int j = 0; j < kMaxObjects; ++j) {
|
|
if (pool) {
|
|
objs[j] = (T*) pool->allocate(sizeof(T));
|
|
pool->release(objs[j]);
|
|
} else {
|
|
objs[j] = new T;
|
|
delete objs[j];
|
|
}
|
|
}
|
|
|
|
// Everything has been cleaned up for the next loop
|
|
}
|
|
}
|
|
|
|
// N object creations and destructions are invoked in random order.
|
|
template <typename T>
|
|
static void run_random(GrMemoryPool* pool, int loops) {
|
|
static const int kMaxObjects = 4 * (1 << 10);
|
|
T* objs[kMaxObjects];
|
|
for (int i = 0; i < kMaxObjects; ++i) {
|
|
objs[i] = nullptr;
|
|
}
|
|
|
|
auto del = [&](int j) {
|
|
// Delete
|
|
if (pool) {
|
|
pool->release(objs[j]);
|
|
} else {
|
|
delete objs[j];
|
|
}
|
|
objs[j] = nullptr;
|
|
};
|
|
|
|
SkRandom r;
|
|
for (int i = 0; i < loops; ++i) {
|
|
// Execute 2*kMaxObjects operations, which should average to N create and N destroy,
|
|
// followed by a small number of remaining deletions.
|
|
for (int j = 0; j < 2 * kMaxObjects; ++j) {
|
|
int k = r.nextRangeU(0, kMaxObjects-1);
|
|
if (objs[k]) {
|
|
del(k);
|
|
} else {
|
|
// Create
|
|
objs[k] = pool ? (T*) pool->allocate(sizeof(T)) : new T;
|
|
}
|
|
}
|
|
|
|
// Ensure everything is null for the next loop
|
|
for (int j = 0; j < kMaxObjects; ++j) {
|
|
if (objs[j]) {
|
|
del(j);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
class GrMemoryPoolBench : public Benchmark {
|
|
public:
|
|
GrMemoryPoolBench(const char* name, RunBenchProc proc, int poolSize)
|
|
: fPoolSize(poolSize)
|
|
, fProc(proc) {
|
|
fName.printf("grmemorypool_%s", name);
|
|
}
|
|
|
|
bool isSuitableFor(Backend backend) override {
|
|
return backend == kNonRendering_Backend;
|
|
}
|
|
|
|
protected:
|
|
const char* onGetName() override {
|
|
return fName.c_str();
|
|
}
|
|
|
|
void onDraw(int loops, SkCanvas*) override {
|
|
std::unique_ptr<GrMemoryPool> pool;
|
|
if (fPoolSize > 0) {
|
|
pool = GrMemoryPool::Make(fPoolSize, fPoolSize);
|
|
} // else keep it null to test regular new/delete performance
|
|
|
|
fProc(pool.get(), loops);
|
|
}
|
|
|
|
SkString fName;
|
|
int fPoolSize;
|
|
RunBenchProc fProc;
|
|
|
|
using INHERITED = Benchmark;
|
|
};
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static const int kLargePool = 10 * (1 << 10);
|
|
static const int kSmallPool = GrMemoryPool::kMinAllocationSize;
|
|
|
|
DEF_BENCH( return new GrMemoryPoolBench("stack_aligned_lg", run_stack<Aligned>, kLargePool); )
|
|
DEF_BENCH( return new GrMemoryPoolBench("stack_aligned_sm", run_stack<Aligned>, kSmallPool); )
|
|
DEF_BENCH( return new GrMemoryPoolBench("stack_aligned_ref", run_stack<Aligned>, 0); )
|
|
DEF_BENCH( return new GrMemoryPoolBench("stack_unaligned_lg", run_stack<Unaligned>, kLargePool); )
|
|
DEF_BENCH( return new GrMemoryPoolBench("stack_unaligned_sm", run_stack<Unaligned>, kSmallPool); )
|
|
DEF_BENCH( return new GrMemoryPoolBench("stack_unaligned_ref", run_stack<Unaligned>, 0); )
|
|
|
|
DEF_BENCH( return new GrMemoryPoolBench("queue_aligned_lg", run_queue<Aligned>, kLargePool); )
|
|
DEF_BENCH( return new GrMemoryPoolBench("queue_aligned_sm", run_queue<Aligned>, kSmallPool); )
|
|
DEF_BENCH( return new GrMemoryPoolBench("queue_aligned_ref", run_queue<Aligned>, 0); )
|
|
DEF_BENCH( return new GrMemoryPoolBench("queue_unaligned_lg", run_queue<Unaligned>, kLargePool); )
|
|
DEF_BENCH( return new GrMemoryPoolBench("queue_unaligned_sm", run_queue<Unaligned>, kSmallPool); )
|
|
DEF_BENCH( return new GrMemoryPoolBench("queue_unaligned_ref", run_queue<Unaligned>, 0); )
|
|
|
|
DEF_BENCH( return new GrMemoryPoolBench("pushpop_aligned_lg", run_pushpop<Aligned>, kLargePool); )
|
|
DEF_BENCH( return new GrMemoryPoolBench("pushpop_aligned_sm", run_pushpop<Aligned>, kSmallPool); )
|
|
// DEF_BENCH( return new GrMemoryPoolBench("pushpop_aligned_ref", run_pushpop<Aligned>, 0); )
|
|
DEF_BENCH( return new GrMemoryPoolBench("pushpop_unaligned_lg", run_pushpop<Unaligned>, kLargePool); )
|
|
DEF_BENCH( return new GrMemoryPoolBench("pushpop_unaligned_sm", run_pushpop<Unaligned>, kSmallPool); )
|
|
// DEF_BENCH( return new GrMemoryPoolBench("pushpop_unaligned_ref", run_pushpop<Unaligned>, 0); )
|
|
// pushpop_x_ref are not meaningful because the compiler completely optimizes away new T; delete *.
|
|
|
|
DEF_BENCH( return new GrMemoryPoolBench("random_aligned_lg", run_random<Aligned>, kLargePool); )
|
|
DEF_BENCH( return new GrMemoryPoolBench("random_aligned_sm", run_random<Aligned>, kSmallPool); )
|
|
DEF_BENCH( return new GrMemoryPoolBench("random_aligned_ref", run_random<Aligned>, 0); )
|
|
DEF_BENCH( return new GrMemoryPoolBench("random_unaligned_lg", run_random<Unaligned>, kLargePool); )
|
|
DEF_BENCH( return new GrMemoryPoolBench("random_unaligned_sm", run_random<Unaligned>, kSmallPool); )
|
|
DEF_BENCH( return new GrMemoryPoolBench("random_unaligned_ref", run_random<Unaligned>, 0); )
|