4b5179b74c
skpbench is a benchmarking suite for skps that aims to generate 100% repeatable results. The initial commit consists of three parts: skpbench A minimalist program whose sole purpose is to open an skp file, benchmark it on a single config, and exit. No tiling, looping, or other fanciness is used; it just draws the skp whole into a size- matched render target and syncs the GPU after each draw. Limiting the entire process to a single config/skp pair helps to keep the results repeatable. skpbench.py A wrapper to execute the skpbench binary with various configs and skps. It also monitors the output in order to filter out and re-run results with an unacceptable stddev. In the future this script will lock down and monitor clocks and temperatures. parseskpbench.py A utility for parsing skpbench output into a spreadsheet. BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2341823002 Review-Url: https://codereview.chromium.org/2341823002
156 lines
4.9 KiB
Python
Executable File
156 lines
4.9 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
# Copyright 2016 Google Inc.
|
|
#
|
|
# Use of this source code is governed by a BSD-style license that can be
|
|
# found in the LICENSE file.
|
|
|
|
from __future__ import print_function
|
|
from _benchresult import BenchResult
|
|
from argparse import ArgumentParser
|
|
from datetime import datetime
|
|
import collections
|
|
import operator
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
import urllib
|
|
import urlparse
|
|
import webbrowser
|
|
|
|
__argparse = ArgumentParser(description="""
|
|
|
|
Parses output files from skpbench.py into csv.
|
|
|
|
This script can also be used to generate a Google sheet:
|
|
|
|
(1) Install the "Office Editing for Docs, Sheets & Slides" Chrome extension:
|
|
https://chrome.google.com/webstore/detail/office-editing-for-docs-s/gbkeegbaiigmenfmjfclcdgdpimamgkj
|
|
|
|
(2) Designate Chrome os-wide as the default application for opening .csv files.
|
|
|
|
(3) Run parseskpbench.py with the --open flag.
|
|
|
|
""")
|
|
|
|
__argparse.add_argument('-r', '--result',
|
|
choices=['median', 'accum', 'max', 'min'], default='median',
|
|
help='result to use for cell values')
|
|
__argparse.add_argument('-f', '--force',
|
|
action='store_true', help='silently ignore warnings')
|
|
__argparse.add_argument('-o', '--open',
|
|
action='store_true',
|
|
help='generate a temp file and open it (theoretically in a web browser)')
|
|
__argparse.add_argument('-n', '--name',
|
|
default='skpbench_%s' % datetime.now().strftime('%Y-%m-%d_%H.%M.%S.csv'),
|
|
help='if using --open, a name for the temp file')
|
|
__argparse.add_argument('sources',
|
|
nargs='+', help='source files with skpbench results ("-" for stdin)')
|
|
|
|
FLAGS = __argparse.parse_args()
|
|
|
|
|
|
class Parser:
|
|
def __init__(self):
|
|
self.configs = list() # use list to preserve the order configs appear in.
|
|
self.rows = collections.defaultdict(dict)
|
|
self.cols = collections.defaultdict(dict)
|
|
self.metric = None
|
|
self.samples = None
|
|
self.sample_ms = None
|
|
|
|
def parse_file(self, infile):
|
|
for line in infile:
|
|
match = BenchResult.match(line)
|
|
if not match:
|
|
continue
|
|
if self.metric is None:
|
|
self.metric = match.metric
|
|
elif match.metric != self.metric:
|
|
raise ValueError('results have mismatched metrics (%s and %s)' %
|
|
(self.metric, match.metric))
|
|
if self.samples is None:
|
|
self.samples = match.samples
|
|
elif not FLAGS.force and match.samples != self.samples:
|
|
raise ValueError('results have mismatched number of samples. '
|
|
'(use --force to ignore)')
|
|
if self.sample_ms is None:
|
|
self.sample_ms = match.sample_ms
|
|
elif not FLAGS.force and match.sample_ms != self.sample_ms:
|
|
raise ValueError('results have mismatched sampling times. '
|
|
'(use --force to ignore)')
|
|
if not match.config in self.configs:
|
|
self.configs.append(match.config)
|
|
self.rows[match.bench][match.config] = match.get_string(FLAGS.result)
|
|
self.cols[match.config][match.bench] = getattr(match, FLAGS.result)
|
|
|
|
def print_csv(self, outfile=sys.stdout):
|
|
print('%s_%s' % (FLAGS.result, self.metric), file=outfile)
|
|
|
|
# Write the header.
|
|
outfile.write('bench,')
|
|
for config in self.configs:
|
|
outfile.write('%s,' % config)
|
|
outfile.write('\n')
|
|
|
|
# Write the rows.
|
|
for bench, row in self.rows.items():
|
|
outfile.write('%s,' % bench)
|
|
for config in self.configs:
|
|
if config in row:
|
|
outfile.write('%s,' % row[config])
|
|
elif FLAGS.force:
|
|
outfile.write(',')
|
|
else:
|
|
raise ValueError('%s: missing value for %s. (use --force to ignore)' %
|
|
(bench, config))
|
|
outfile.write('\n')
|
|
|
|
# Add simple, literal averages.
|
|
if len(self.rows) > 1:
|
|
outfile.write('\n')
|
|
self.__print_computed_row('MEAN',
|
|
lambda col: reduce(operator.add, col.values()) / len(col),
|
|
outfile=outfile)
|
|
self.__print_computed_row('GEOMEAN',
|
|
lambda col: reduce(operator.mul, col.values()) ** (1.0 / len(col)),
|
|
outfile=outfile)
|
|
|
|
def __print_computed_row(self, name, func, outfile=sys.stdout):
|
|
outfile.write('%s,' % name)
|
|
for config in self.configs:
|
|
assert(len(self.cols[config]) == len(self.rows))
|
|
outfile.write('%.4g,' % func(self.cols[config]))
|
|
outfile.write('\n')
|
|
|
|
|
|
def main():
|
|
parser = Parser()
|
|
|
|
# Parse the input files.
|
|
for src in FLAGS.sources:
|
|
if src == '-':
|
|
parser.parse_file(sys.stdin)
|
|
else:
|
|
with open(src, mode='r') as infile:
|
|
parser.parse_file(infile)
|
|
|
|
# Print the csv.
|
|
if not FLAGS.open:
|
|
parser.print_csv()
|
|
else:
|
|
dirname = tempfile.mkdtemp()
|
|
basename = FLAGS.name
|
|
if os.path.splitext(basename)[1] != '.csv':
|
|
basename += '.csv';
|
|
pathname = os.path.join(dirname, basename)
|
|
with open(pathname, mode='w') as tmpfile:
|
|
parser.print_csv(outfile=tmpfile)
|
|
fileuri = urlparse.urljoin('file:', urllib.pathname2url(pathname))
|
|
print('opening %s' % fileuri)
|
|
webbrowser.open(fileuri)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|