skia2/include/core/SkClipStack.h
reed@google.com 0557d9ea94 add SkClipStack::clipEmpty() as an optimized way to say clipDevRect(empty, intersect)
if the caller knows up-front that it wants the clipstact to become empty.
Review URL: https://codereview.appspot.com/6443132

git-svn-id: http://skia.googlecode.com/svn/trunk@5127 2bbb7eff-a529-9590-31e7-b0007b416f81
2012-08-16 15:59:59 +00:00

261 lines
8.7 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkClipStack_DEFINED
#define SkClipStack_DEFINED
#include "SkDeque.h"
#include "SkRegion.h"
#include "SkTDArray.h"
struct SkRect;
class SkPath;
// Because a single save/restore state can have multiple clips, this class
// stores the stack depth (fSaveCount) and clips (fDeque) separately.
// Each clip in fDeque stores the stack state to which it belongs
// (i.e., the fSaveCount in force when it was added). Restores are thus
// implemented by removing clips from fDeque that have an fSaveCount larger
// then the freshly decremented count.
class SK_API SkClipStack {
public:
SkClipStack();
SkClipStack(const SkClipStack& b);
explicit SkClipStack(const SkRect& r);
explicit SkClipStack(const SkIRect& r);
~SkClipStack();
SkClipStack& operator=(const SkClipStack& b);
bool operator==(const SkClipStack& b) const;
bool operator!=(const SkClipStack& b) const { return !(*this == b); }
void reset();
int getSaveCount() const { return fSaveCount; }
void save();
void restore();
enum BoundsType {
// The bounding box contains all the pixels that can be written to
kNormal_BoundsType,
// The bounding box contains all the pixels that cannot be written to.
// The real bound extends out to infinity and all the pixels outside
// of the bound can be written to. Note that some of the pixels inside
// the bound may also be writeable but all pixels that cannot be
// written to are guaranteed to be inside.
kInsideOut_BoundsType
};
/**
* getBounds places the current finite bound in its first parameter. In its
* second, it indicates which kind of bound is being returned. If
* 'canvFiniteBound' is a normal bounding box then it encloses all writeable
* pixels. If 'canvFiniteBound' is an inside out bounding box then it
* encloses all the un-writeable pixels and the true/normal bound is the
* infinite plane. isIntersectionOfRects is an optional parameter
* that is true if 'canvFiniteBound' resulted from an intersection of rects.
*/
void getBounds(SkRect* canvFiniteBound,
BoundsType* boundType,
bool* isIntersectionOfRects = NULL) const;
void clipDevRect(const SkIRect& ir, SkRegion::Op op) {
SkRect r;
r.set(ir);
this->clipDevRect(r, op, false);
}
void clipDevRect(const SkRect&, SkRegion::Op, bool doAA);
void clipDevPath(const SkPath&, SkRegion::Op, bool doAA);
// An optimized version of clipDevRect(emptyRect, kIntersect, ...)
void clipEmpty();
/**
* isWideOpen returns true if the clip state corresponds to the infinite
* plane (i.e., draws are not limited at all)
*/
bool isWideOpen() const;
/**
* Add a callback function that will be called whenever a clip state
* is no longer viable. This will occur whenever restore
* is called or when a clipDevRect or clipDevPath call updates the
* clip within an existing save/restore state. Each clip state is
* represented by a unique generation ID.
*/
typedef void (*PFPurgeClipCB)(int genID, void* data);
void addPurgeClipCallback(PFPurgeClipCB callback, void* data) const;
/**
* Remove a callback added earlier via addPurgeClipCallback
*/
void removePurgeClipCallback(PFPurgeClipCB callback, void* data) const;
/**
* The generation ID has three reserved values to indicate special
* (potentially ignoreable) cases
*/
static const int32_t kInvalidGenID = 0;
static const int32_t kEmptyGenID = 1; // no pixels writeable
static const int32_t kWideOpenGenID = 2; // all pixels writeable
int32_t getTopmostGenID() const;
private:
struct Rec;
public:
class Iter {
public:
enum IterStart {
kBottom_IterStart = SkDeque::Iter::kFront_IterStart,
kTop_IterStart = SkDeque::Iter::kBack_IterStart
};
/**
* Creates an uninitialized iterator. Must be reset()
*/
Iter();
Iter(const SkClipStack& stack, IterStart startLoc);
struct Clip {
Clip() : fRect(NULL), fPath(NULL), fOp(SkRegion::kIntersect_Op),
fDoAA(false) {}
friend bool operator==(const Clip& a, const Clip& b);
friend bool operator!=(const Clip& a, const Clip& b);
const SkRect* fRect; // if non-null, this is a rect clip
const SkPath* fPath; // if non-null, this is a path clip
SkRegion::Op fOp;
bool fDoAA;
int32_t fGenID;
};
/**
* Return the clip for this element in the iterator. If next() returns
* NULL, then the iterator is done. The type of clip is determined by
* the pointers fRect and fPath:
*
* fRect==NULL fPath!=NULL path clip
* fRect!=NULL fPath==NULL rect clip
* fRect==NULL fPath==NULL empty clip
*/
const Clip* next();
const Clip* prev();
/**
* Moves the iterator to the topmost clip with the specified RegionOp
* and returns that clip. If no clip with that op is found,
* returns NULL.
*/
const Clip* skipToTopmost(SkRegion::Op op);
/**
* Restarts the iterator on a clip stack.
*/
void reset(const SkClipStack& stack, IterStart startLoc);
private:
const SkClipStack* fStack;
Clip fClip;
SkDeque::Iter fIter;
/**
* updateClip updates fClip to the current state of fIter. It unifies
* functionality needed by both next() and prev().
*/
const Clip* updateClip(const SkClipStack::Rec* rec);
};
/**
* The B2TIter iterates from the bottom of the stack to the top.
* It inherits privately from Iter to prevent access to reverse iteration.
*/
class B2TIter : private Iter {
public:
B2TIter() {}
/**
* Wrap Iter's 2 parameter ctor to force initialization to the
* beginning of the deque/bottom of the stack
*/
B2TIter(const SkClipStack& stack)
: INHERITED(stack, kBottom_IterStart) {
}
using Iter::Clip;
using Iter::next;
/**
* Wrap Iter::reset to force initialization to the
* beginning of the deque/bottom of the stack
*/
void reset(const SkClipStack& stack) {
this->INHERITED::reset(stack, kBottom_IterStart);
}
private:
typedef Iter INHERITED;
};
/**
* GetConservativeBounds returns a conservative bound of the current clip.
* Since this could be the infinite plane (if inverse fills were involved) the
* maxWidth and maxHeight parameters can be used to limit the returned bound
* to the expected drawing area. Similarly, the offsetX and offsetY parameters
* allow the caller to offset the returned bound to account for translated
* drawing areas (i.e., those resulting from a saveLayer). For finite bounds,
* the translation (+offsetX, +offsetY) is applied before the clamp to the
* maximum rectangle: [0,maxWidth) x [0,maxHeight).
* isIntersectionOfRects is an optional parameter that is true when
* 'devBounds' is the result of an intersection of rects. In this case
* 'devBounds' is the exact answer/clip.
*/
void getConservativeBounds(int offsetX,
int offsetY,
int maxWidth,
int maxHeight,
SkRect* devBounds,
bool* isIntersectionOfRects = NULL) const;
private:
friend class Iter;
SkDeque fDeque;
int fSaveCount;
// Generation ID for the clip stack. This is incremented for each
// clipDevRect and clipDevPath call. 0 is reserved to indicate an
// invalid ID.
static int32_t gGenID;
struct ClipCallbackData {
PFPurgeClipCB fCallback;
void* fData;
friend bool operator==(const ClipCallbackData& a,
const ClipCallbackData& b) {
return a.fCallback == b.fCallback && a.fData == b.fData;
}
};
mutable SkTDArray<ClipCallbackData> fCallbackData;
/**
* Invoke all the purge callbacks passing in rec's generation ID.
*/
void purgeClip(Rec* rec);
/**
* Return the next unique generation ID.
*/
static int32_t GetNextGenID();
};
#endif