f672cead70
BUG=skia: Committed: http://code.google.com/p/skia/source/detail?r=14353 NOTRY=true NOTREECHECKS=true Committed: http://code.google.com/p/skia/source/detail?r=14354 R=bsalomon@google.com, bungeman@google.com, mtklein@google.com Author: mtklein@chromium.org Review URL: https://codereview.chromium.org/247813005 git-svn-id: http://skia.googlecode.com/svn/trunk@14390 2bbb7eff-a529-9590-31e7-b0007b416f81
178 lines
6.2 KiB
C++
178 lines
6.2 KiB
C++
/*
|
|
* Copyright 2013 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#ifndef SkOnce_DEFINED
|
|
#define SkOnce_DEFINED
|
|
|
|
// SkOnce.h defines SK_DECLARE_STATIC_ONCE and SkOnce(), which you can use
|
|
// together to create a threadsafe way to call a function just once. This
|
|
// is particularly useful for lazy singleton initialization. E.g.
|
|
//
|
|
// static void set_up_my_singleton(Singleton** singleton) {
|
|
// *singleton = new Singleton(...);
|
|
// }
|
|
// ...
|
|
// const Singleton& GetSingleton() {
|
|
// static Singleton* singleton = NULL;
|
|
// SK_DECLARE_STATIC_ONCE(once);
|
|
// SkOnce(&once, set_up_my_singleton, &singleton);
|
|
// SkASSERT(NULL != singleton);
|
|
// return *singleton;
|
|
// }
|
|
//
|
|
// OnceTest.cpp also should serve as a few other simple examples.
|
|
//
|
|
// You may optionally pass SkOnce a second function to be called at exit for cleanup.
|
|
|
|
#include "SkDynamicAnnotations.h"
|
|
#include "SkThread.h"
|
|
#include "SkTypes.h"
|
|
|
|
#define SK_ONCE_INIT { false, { 0, SkDEBUGCODE(0) } }
|
|
#define SK_DECLARE_STATIC_ONCE(name) static SkOnceFlag name = SK_ONCE_INIT
|
|
|
|
struct SkOnceFlag; // If manually created, initialize with SkOnceFlag once = SK_ONCE_INIT
|
|
|
|
template <typename Func, typename Arg>
|
|
inline void SkOnce(SkOnceFlag* once, Func f, Arg arg, void(*atExit)() = NULL);
|
|
|
|
// If you've already got a lock and a flag to use, this variant lets you avoid an extra SkOnceFlag.
|
|
template <typename Lock, typename Func, typename Arg>
|
|
inline void SkOnce(bool* done, Lock* lock, Func f, Arg arg, void(*atExit)() = NULL);
|
|
|
|
// ---------------------- Implementation details below here. -----------------------------
|
|
|
|
// This is POD and must be zero-initialized.
|
|
struct SkSpinlock {
|
|
void acquire() {
|
|
SkASSERT(shouldBeZero == 0);
|
|
// No memory barrier needed, but sk_atomic_cas gives us at least release anyway.
|
|
while (!sk_atomic_cas(&thisIsPrivate, 0, 1)) {
|
|
// spin
|
|
}
|
|
}
|
|
|
|
void release() {
|
|
SkASSERT(shouldBeZero == 0);
|
|
// This requires a release memory barrier before storing, which sk_atomic_cas guarantees.
|
|
SkAssertResult(sk_atomic_cas(&thisIsPrivate, 1, 0));
|
|
}
|
|
|
|
int32_t thisIsPrivate;
|
|
SkDEBUGCODE(int32_t shouldBeZero;)
|
|
};
|
|
|
|
struct SkOnceFlag {
|
|
bool done;
|
|
SkSpinlock lock;
|
|
};
|
|
|
|
// TODO(bungeman, mtklein): move all these *barrier* functions to SkThread when refactoring lands.
|
|
|
|
#ifdef SK_BUILD_FOR_WIN
|
|
# include <intrin.h>
|
|
inline static void compiler_barrier() {
|
|
_ReadWriteBarrier();
|
|
}
|
|
#else
|
|
inline static void compiler_barrier() {
|
|
asm volatile("" : : : "memory");
|
|
}
|
|
#endif
|
|
|
|
inline static void full_barrier_on_arm() {
|
|
#if (defined(SK_CPU_ARM) && SK_ARM_ARCH >= 7) || defined(SK_CPU_ARM64)
|
|
asm volatile("dmb ish" : : : "memory");
|
|
#elif defined(SK_CPU_ARM)
|
|
asm volatile("mcr p15, 0, %0, c7, c10, 5" : : "r" (0) : "memory");
|
|
#endif
|
|
}
|
|
|
|
// On every platform, we issue a compiler barrier to prevent it from reordering
|
|
// code. That's enough for platforms like x86 where release and acquire
|
|
// barriers are no-ops. On other platforms we may need to be more careful;
|
|
// ARM, in particular, needs real code for both acquire and release. We use a
|
|
// full barrier, which acts as both, because that the finest precision ARM
|
|
// provides.
|
|
|
|
inline static void release_barrier() {
|
|
compiler_barrier();
|
|
full_barrier_on_arm();
|
|
}
|
|
|
|
inline static void acquire_barrier() {
|
|
compiler_barrier();
|
|
full_barrier_on_arm();
|
|
}
|
|
|
|
// Works with SkSpinlock or SkMutex.
|
|
template <typename Lock>
|
|
class SkAutoLockAcquire {
|
|
public:
|
|
explicit SkAutoLockAcquire(Lock* lock) : fLock(lock) { fLock->acquire(); }
|
|
~SkAutoLockAcquire() { fLock->release(); }
|
|
private:
|
|
Lock* fLock;
|
|
};
|
|
|
|
// We've pulled a pretty standard double-checked locking implementation apart
|
|
// into its main fast path and a slow path that's called when we suspect the
|
|
// one-time code hasn't run yet.
|
|
|
|
// This is the guts of the code, called when we suspect the one-time code hasn't been run yet.
|
|
// This should be rarely called, so we separate it from SkOnce and don't mark it as inline.
|
|
// (We don't mind if this is an actual function call, but odds are it'll be inlined anyway.)
|
|
template <typename Lock, typename Func, typename Arg>
|
|
static void sk_once_slow(bool* done, Lock* lock, Func f, Arg arg, void (*atExit)()) {
|
|
const SkAutoLockAcquire<Lock> locked(lock);
|
|
if (!*done) {
|
|
f(arg);
|
|
if (atExit != NULL) {
|
|
atexit(atExit);
|
|
}
|
|
// Also known as a store-store/load-store barrier, this makes sure that the writes
|
|
// done before here---in particular, those done by calling f(arg)---are observable
|
|
// before the writes after the line, *done = true.
|
|
//
|
|
// In version control terms this is like saying, "check in the work up
|
|
// to and including f(arg), then check in *done=true as a subsequent change".
|
|
//
|
|
// We'll use this in the fast path to make sure f(arg)'s effects are
|
|
// observable whenever we observe *done == true.
|
|
release_barrier();
|
|
*done = true;
|
|
}
|
|
}
|
|
|
|
// This is our fast path, called all the time. We do really want it to be inlined.
|
|
template <typename Lock, typename Func, typename Arg>
|
|
inline void SkOnce(bool* done, Lock* lock, Func f, Arg arg, void(*atExit)()) {
|
|
if (!SK_ANNOTATE_UNPROTECTED_READ(*done)) {
|
|
sk_once_slow(done, lock, f, arg, atExit);
|
|
}
|
|
// Also known as a load-load/load-store barrier, this acquire barrier makes
|
|
// sure that anything we read from memory---in particular, memory written by
|
|
// calling f(arg)---is at least as current as the value we read from once->done.
|
|
//
|
|
// In version control terms, this is a lot like saying "sync up to the
|
|
// commit where we wrote once->done = true".
|
|
//
|
|
// The release barrier in sk_once_slow guaranteed that once->done = true
|
|
// happens after f(arg), so by syncing to once->done = true here we're
|
|
// forcing ourselves to also wait until the effects of f(arg) are readble.
|
|
acquire_barrier();
|
|
}
|
|
|
|
template <typename Func, typename Arg>
|
|
inline void SkOnce(SkOnceFlag* once, Func f, Arg arg, void(*atExit)()) {
|
|
return SkOnce(&once->done, &once->lock, f, arg, atExit);
|
|
}
|
|
|
|
#undef SK_ANNOTATE_BENIGN_RACE
|
|
|
|
#endif // SkOnce_DEFINED
|