skia2/bench/AlternatingColorPatternBench.cpp
Mike Reed 5ec22387ff Simplify common case of linear filtering with no mips
Change-Id: I08b4a7bc088705b93a0aa680f6733d09c7ad23dd
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/354221
Reviewed-by: Brian Salomon <bsalomon@google.com>
Commit-Queue: Mike Reed <reed@google.com>
2021-01-15 16:47:16 +00:00

195 lines
7.5 KiB
C++

/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "bench/Benchmark.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPath.h"
#include "include/core/SkString.h"
#include "include/effects/SkGradientShader.h"
enum ColorPattern {
kWhite_ColorPattern,
kBlue_ColorPattern,
kOpaqueBitmap_ColorPattern,
kAlphaBitmap_ColorPattern,
};
static const struct ColorPatternData{
SkColor fColor;
bool fIsBitmap;
const char* fName;
} gColorPatterns[] = {
// Keep this in same order as ColorPattern enum
{ SK_ColorWHITE, false, "white" }, // kWhite_ColorPattern
{ SK_ColorBLUE, false, "blue" }, // kBlue_ColorPattern
{ SK_ColorWHITE, true, "obaqueBitMap" }, // kOpaqueBitmap_ColorPattern
{ 0x10000000, true, "alphaBitmap" }, // kAlphaBitmap_ColorPattern
};
enum DrawType {
kRect_DrawType,
kPath_DrawType,
};
static void makebm(SkBitmap* bm, int w, int h) {
bm->allocN32Pixels(w, h);
bm->eraseColor(SK_ColorTRANSPARENT);
SkCanvas canvas(*bm);
SkScalar s = SkIntToScalar(std::min(w, h));
static const SkPoint kPts0[] = { { 0, 0 }, { s, s } };
static const SkPoint kPts1[] = { { s/2, 0 }, { s/2, s } };
static const SkScalar kPos[] = { 0, SK_Scalar1/2, SK_Scalar1 };
static const SkColor kColors0[] = {0x80F00080, 0xF0F08000, 0x800080F0 };
static const SkColor kColors1[] = {0xF08000F0, 0x8080F000, 0xF000F080 };
SkPaint paint;
paint.setShader(SkGradientShader::MakeLinear(kPts0, kColors0, kPos, SK_ARRAY_COUNT(kColors0),
SkTileMode::kClamp));
canvas.drawPaint(paint);
paint.setShader(SkGradientShader::MakeLinear(kPts1, kColors1, kPos, SK_ARRAY_COUNT(kColors1),
SkTileMode::kClamp));
canvas.drawPaint(paint);
}
/**
* This bench draws a grid of either rects or filled paths, with two alternating color patterns.
* This color patterns are passed in as enums to the class. The options are:
* 1) solid white color
* 2) solid blue color
* 3) opaque bitmap
* 4) partial alpha bitmap
* The same color pattern can be set for both arguments to create a uniform pattern on all draws.
*
* The bench is used to test a few things. First it can test any optimizations made for a specific
* color pattern (for example drawing an opaque bitmap versus one with partial alpha). Also it can
* be used to test the cost of program switching and/or GrDrawOp combining when alternating between
* different patterns when on the gpu.
*/
class AlternatingColorPatternBench : public Benchmark {
public:
enum {
NX = 5,
NY = 5,
NUM_DRAWS = NX * NY,
};
sk_sp<SkShader> fBmShader;
SkPath fPaths[NUM_DRAWS];
SkRect fRects[NUM_DRAWS];
SkColor fColors[NUM_DRAWS];
sk_sp<SkShader> fShaders[NUM_DRAWS];
SkString fName;
ColorPatternData fPattern1;
ColorPatternData fPattern2;
DrawType fDrawType;
SkBitmap fBmp;
AlternatingColorPatternBench(ColorPattern pattern1, ColorPattern pattern2, DrawType drawType) {
fPattern1 = gColorPatterns[pattern1];
fPattern2 = gColorPatterns[pattern2];
fName.printf("colorPattern_%s_%s_%s",
fPattern1.fName, fPattern2.fName,
kRect_DrawType == drawType ? "rect" : "path");
fDrawType = drawType;
}
protected:
const char* onGetName() override {
return fName.c_str();
}
void onDelayedSetup() override {
int w = 40;
int h = 40;
makebm(&fBmp, w, h);
fBmShader = fBmp.makeShader(SkTileMode::kRepeat, SkTileMode::kRepeat,
SkSamplingOptions(SkFilterMode::kLinear));
int offset = 2;
int count = 0;
for (int j = 0; j < NY; ++j) {
for (int i = 0; i < NX; ++i) {
int x = (w + offset) * i;
int y = (h * offset) * j;
if (kRect_DrawType == fDrawType) {
fRects[count].setXYWH(SkIntToScalar(x), SkIntToScalar(y),
SkIntToScalar(w), SkIntToScalar(h));
} else {
fPaths[count].moveTo(SkIntToScalar(x), SkIntToScalar(y));
fPaths[count].rLineTo(SkIntToScalar(w), 0);
fPaths[count].rLineTo(0, SkIntToScalar(h));
fPaths[count].rLineTo(SkIntToScalar(-w + 1), 0);
}
if (0 == count % 2) {
fColors[count] = fPattern1.fColor;
fShaders[count] = fPattern1.fIsBitmap ? fBmShader : nullptr;
} else {
fColors[count] = fPattern2.fColor;
fShaders[count] = fPattern2.fIsBitmap ? fBmShader : nullptr;
}
++count;
}
}
}
void onDraw(int loops, SkCanvas* canvas) override {
SkPaint paint;
paint.setAntiAlias(false);
for (int i = 0; i < loops; ++i) {
for (int j = 0; j < NUM_DRAWS; ++j) {
paint.setColor(fColors[j]);
paint.setShader(fShaders[j]);
if (kRect_DrawType == fDrawType) {
canvas->drawRect(fRects[j], paint);
} else {
canvas->drawPath(fPaths[j], paint);
}
}
}
}
private:
using INHERITED = Benchmark;
};
DEF_BENCH(return new AlternatingColorPatternBench(kWhite_ColorPattern,
kWhite_ColorPattern,
kPath_DrawType);)
DEF_BENCH(return new AlternatingColorPatternBench(kBlue_ColorPattern,
kBlue_ColorPattern,
kPath_DrawType);)
DEF_BENCH(return new AlternatingColorPatternBench(kWhite_ColorPattern,
kBlue_ColorPattern,
kPath_DrawType);)
DEF_BENCH(return new AlternatingColorPatternBench(kOpaqueBitmap_ColorPattern,
kOpaqueBitmap_ColorPattern,
kPath_DrawType);)
DEF_BENCH(return new AlternatingColorPatternBench(kAlphaBitmap_ColorPattern,
kAlphaBitmap_ColorPattern,
kPath_DrawType);)
DEF_BENCH(return new AlternatingColorPatternBench(kOpaqueBitmap_ColorPattern,
kAlphaBitmap_ColorPattern,
kPath_DrawType);)
DEF_BENCH(return new AlternatingColorPatternBench(kOpaqueBitmap_ColorPattern,
kOpaqueBitmap_ColorPattern,
kRect_DrawType);)
DEF_BENCH(return new AlternatingColorPatternBench(kAlphaBitmap_ColorPattern,
kAlphaBitmap_ColorPattern,
kRect_DrawType);)
DEF_BENCH(return new AlternatingColorPatternBench(kOpaqueBitmap_ColorPattern,
kAlphaBitmap_ColorPattern,
kRect_DrawType);)