c682590538
git-svn-id: http://skia.googlecode.com/svn/trunk@3141 2bbb7eff-a529-9590-31e7-b0007b416f81
164 lines
4.9 KiB
C++
164 lines
4.9 KiB
C++
#include "CurveIntersection.h"
|
|
#include "Intersections.h"
|
|
#include "LineUtilities.h"
|
|
#include "QuadraticUtilities.h"
|
|
|
|
/*
|
|
Find the interection of a line and quadratic by solving for valid t values.
|
|
|
|
From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve
|
|
|
|
"A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three
|
|
control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where
|
|
A, B and C are points and t goes from zero to one.
|
|
|
|
This will give you two equations:
|
|
|
|
x = a(1 - t)^2 + b(1 - t)t + ct^2
|
|
y = d(1 - t)^2 + e(1 - t)t + ft^2
|
|
|
|
If you add for instance the line equation (y = kx + m) to that, you'll end up
|
|
with three equations and three unknowns (x, y and t)."
|
|
|
|
Similar to above, the quadratic is represented as
|
|
x = a(1-t)^2 + 2b(1-t)t + ct^2
|
|
y = d(1-t)^2 + 2e(1-t)t + ft^2
|
|
and the line as
|
|
y = g*x + h
|
|
|
|
Using Mathematica, solve for the values of t where the quadratic intersects the
|
|
line:
|
|
|
|
(in) t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x,
|
|
d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - g*x - h, x]
|
|
(out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 +
|
|
g (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2)
|
|
(in) Solve[t1 == 0, t]
|
|
(out) {
|
|
{t -> (-2 d + 2 e + 2 a g - 2 b g -
|
|
Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 -
|
|
4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) /
|
|
(2 (-d + 2 e - f + a g - 2 b g + c g))
|
|
},
|
|
{t -> (-2 d + 2 e + 2 a g - 2 b g +
|
|
Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 -
|
|
4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) /
|
|
(2 (-d + 2 e - f + a g - 2 b g + c g))
|
|
}
|
|
}
|
|
|
|
Numeric Solutions (5.6) suggests to solve the quadratic by computing
|
|
|
|
Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C))
|
|
|
|
and using the roots
|
|
|
|
t1 = Q / A
|
|
t2 = C / Q
|
|
|
|
Using the results above (when the line tends towards horizontal)
|
|
A = (-(d - 2*e + f) + g*(a - 2*b + c) )
|
|
B = 2*( (d - e ) - g*(a - b ) )
|
|
C = (-(d ) + g*(a ) + h )
|
|
|
|
If g goes to infinity, we can rewrite the line in terms of x.
|
|
x = g'*y + h'
|
|
|
|
And solve accordingly in Mathematica:
|
|
|
|
(in) t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h',
|
|
d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - y, y]
|
|
(out) a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 -
|
|
g' (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2)
|
|
(in) Solve[t2 == 0, t]
|
|
(out) {
|
|
{t -> (2 a - 2 b - 2 d g' + 2 e g' -
|
|
Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 -
|
|
4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) /
|
|
(2 (a - 2 b + c - d g' + 2 e g' - f g'))
|
|
},
|
|
{t -> (2 a - 2 b - 2 d g' + 2 e g' +
|
|
Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 -
|
|
4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/
|
|
(2 (a - 2 b + c - d g' + 2 e g' - f g'))
|
|
}
|
|
}
|
|
|
|
Thus, if the slope of the line tends towards vertical, we use:
|
|
A = ( (a - 2*b + c) - g'*(d - 2*e + f) )
|
|
B = 2*(-(a - b ) + g'*(d - e ) )
|
|
C = ( (a ) - g'*(d ) - h' )
|
|
*/
|
|
|
|
|
|
class LineQuadraticIntersections : public Intersections {
|
|
public:
|
|
|
|
LineQuadraticIntersections(const Quadratic& q, const _Line& l, Intersections& i)
|
|
: quad(q)
|
|
, line(l)
|
|
, intersections(i) {
|
|
}
|
|
|
|
bool intersect() {
|
|
double slope;
|
|
double axisIntercept;
|
|
moreHorizontal = implicitLine(line, slope, axisIntercept);
|
|
double A = quad[2].x; // c
|
|
double B = quad[1].x; // b
|
|
double C = quad[0].x; // a
|
|
A += C - 2 * B; // A = a - 2*b + c
|
|
B -= C; // B = -(a - b)
|
|
double D = quad[2].y; // f
|
|
double E = quad[1].y; // e
|
|
double F = quad[0].y; // d
|
|
D += F - 2 * E; // D = d - 2*e + f
|
|
E -= F; // E = -(d - e)
|
|
if (moreHorizontal) {
|
|
A = A * slope - D;
|
|
B = B * slope - E;
|
|
C = C * slope - F + axisIntercept;
|
|
} else {
|
|
A = A - D * slope;
|
|
B = B - E * slope;
|
|
C = C - F * slope - axisIntercept;
|
|
}
|
|
double t[2];
|
|
int roots = quadraticRoots(A, B, C, t);
|
|
for (int x = 0; x < roots; ++x) {
|
|
intersections.add(t[x], findLineT(t[x]));
|
|
}
|
|
return roots > 0;
|
|
}
|
|
|
|
protected:
|
|
|
|
double findLineT(double t) {
|
|
const double* qPtr;
|
|
const double* lPtr;
|
|
if (moreHorizontal) {
|
|
qPtr = &quad[0].x;
|
|
lPtr = &line[0].x;
|
|
} else {
|
|
qPtr = &quad[0].y;
|
|
lPtr = &line[0].y;
|
|
}
|
|
double s = 1 - t;
|
|
double quadVal = qPtr[0] * s * s + 2 * qPtr[2] * s * t + qPtr[4] * t * t;
|
|
return (quadVal - lPtr[0]) / (lPtr[2] - lPtr[0]);
|
|
}
|
|
|
|
private:
|
|
|
|
const Quadratic& quad;
|
|
const _Line& line;
|
|
Intersections& intersections;
|
|
bool moreHorizontal;
|
|
|
|
};
|
|
|
|
bool intersect(const Quadratic& quad, const _Line& line, Intersections& i) {
|
|
LineQuadraticIntersections q(quad, line, i);
|
|
return q.intersect();
|
|
}
|