skia2/experimental/Intersection/QuadraticIntersection.cpp
caryclark@google.com c682590538 save work in progress
git-svn-id: http://skia.googlecode.com/svn/trunk@3141 2bbb7eff-a529-9590-31e7-b0007b416f81
2012-02-03 22:07:47 +00:00

187 lines
6.2 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "CurveIntersection.h"
#include "Intersections.h"
#include "IntersectionUtilities.h"
#include "LineIntersection.h"
class QuadraticIntersections : public Intersections {
public:
QuadraticIntersections(const Quadratic& q1, const Quadratic& q2, Intersections& i)
: quad1(q1)
, quad2(q2)
, intersections(i)
, depth(0)
, splits(0) {
}
bool intersect() {
double minT1, minT2, maxT1, maxT2;
if (!bezier_clip(quad2, quad1, minT1, maxT1)) {
return false;
}
if (!bezier_clip(quad1, quad2, minT2, maxT2)) {
return false;
}
int split;
if (maxT1 - minT1 < maxT2 - minT2) {
intersections.swap();
minT2 = 0;
maxT2 = 1;
split = maxT1 - minT1 > tClipLimit;
} else {
minT1 = 0;
maxT1 = 1;
split = (maxT2 - minT2 > tClipLimit) << 1;
}
return chop(minT1, maxT1, minT2, maxT2, split);
}
protected:
bool intersect(double minT1, double maxT1, double minT2, double maxT2) {
Quadratic smaller, larger;
// FIXME: carry last subdivide and reduceOrder result with quad
sub_divide(quad1, minT1, maxT1, intersections.swapped() ? larger : smaller);
sub_divide(quad2, minT2, maxT2, intersections.swapped() ? smaller : larger);
Quadratic smallResult;
if (reduceOrder(smaller, smallResult) <= 2) {
Quadratic largeResult;
if (reduceOrder(larger, largeResult) <= 2) {
double smallT[2], largeT[2];
const _Line& smallLine = (const _Line&) smallResult;
const _Line& largeLine = (const _Line&) largeResult;
// FIXME: this doesn't detect or deal with coincident lines
if (!::intersect(smallLine, largeLine, smallT, largeT)) {
return false;
}
if (intersections.swapped()) {
smallT[0] = interp(minT2, maxT2, smallT[0]);
largeT[0] = interp(minT1, maxT1, largeT[0]);
} else {
smallT[0] = interp(minT1, maxT1, smallT[0]);
largeT[0] = interp(minT2, maxT2, largeT[0]);
}
intersections.add(smallT[0], largeT[0]);
return true;
}
}
double minT, maxT;
if (!bezier_clip(smaller, larger, minT, maxT)) {
if (minT == maxT) {
if (intersections.swapped()) {
minT1 = (minT1 + maxT1) / 2;
minT2 = interp(minT2, maxT2, minT);
} else {
minT1 = interp(minT1, maxT1, minT);
minT2 = (minT2 + maxT2) / 2;
}
intersections.add(minT1, minT2);
return true;
}
return false;
}
int split;
if (intersections.swapped()) {
double newMinT1 = interp(minT1, maxT1, minT);
double newMaxT1 = interp(minT1, maxT1, maxT);
split = (newMaxT1 - newMinT1 > (maxT1 - minT1) * tClipLimit) << 1;
printf("%s d=%d s=%d new1=(%g,%g) old1=(%g,%g) split=%d\n", __FUNCTION__, depth,
splits, newMinT1, newMaxT1, minT1, maxT1, split);
minT1 = newMinT1;
maxT1 = newMaxT1;
} else {
double newMinT2 = interp(minT2, maxT2, minT);
double newMaxT2 = interp(minT2, maxT2, maxT);
split = newMaxT2 - newMinT2 > (maxT2 - minT2) * tClipLimit;
printf("%s d=%d s=%d new2=(%g,%g) old2=(%g,%g) split=%d\n", __FUNCTION__, depth,
splits, newMinT2, newMaxT2, minT2, maxT2, split);
minT2 = newMinT2;
maxT2 = newMaxT2;
}
return chop(minT1, maxT1, minT2, maxT2, split);
}
bool chop(double minT1, double maxT1, double minT2, double maxT2, int split) {
++depth;
intersections.swap();
if (split) {
++splits;
if (split & 2) {
double middle1 = (maxT1 + minT1) / 2;
intersect(minT1, middle1, minT2, maxT2);
intersect(middle1, maxT1, minT2, maxT2);
} else {
double middle2 = (maxT2 + minT2) / 2;
intersect(minT1, maxT1, minT2, middle2);
intersect(minT1, maxT1, middle2, maxT2);
}
--splits;
intersections.swap();
--depth;
return intersections.intersected();
}
bool result = intersect(minT1, maxT1, minT2, maxT2);
intersections.swap();
--depth;
return result;
}
private:
static const double tClipLimit = 0.8; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf see Multiple intersections
const Quadratic& quad1;
const Quadratic& quad2;
Intersections& intersections;
int depth;
int splits;
};
bool intersect(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
QuadraticIntersections q(q1, q2, i);
return q.intersect();
}
// Another approach is to start with the implicit form of one curve and solve
// by substituting in the parametric form of the other.
// The downside of this approach is that early rejects are difficult to come by.
// http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step
/*
given x^4 + ax^3 + bx^2 + cx + d
the resolvent cubic is x^3 - 2bx^2 + (b^2 + ac - 4d)x + (c^2 + a^2d - abc)
use the cubic formula (CubicRoots.cpp) to find the radical expressions t1, t2, and t3.
(x - r1 r2) (x - r3 r4) = x^2 - (t2 + t3 - t1) / 2 x + d
s = r1*r2 = ((t2 + t3 - t1) + sqrt((t2 + t3 - t1)^2 - 16*d)) / 4
t = r3*r4 = ((t2 + t3 - t1) - sqrt((t2 + t3 - t1)^2 - 16*d)) / 4
u = r1+r2 = (-a + sqrt(a^2 - 4*t1)) / 2
v = r3+r4 = (-a - sqrt(a^2 - 4*t1)) / 2
r1 = (u + sqrt(u^2 - 4*s)) / 2
r2 = (u - sqrt(u^2 - 4*s)) / 2
r3 = (v + sqrt(v^2 - 4*t)) / 2
r4 = (v - sqrt(v^2 - 4*t)) / 2
*/
/* square root of complex number
http://en.wikipedia.org/wiki/Square_root#Square_roots_of_negative_and_complex_numbers
Algebraic formula
When the number is expressed using Cartesian coordinates the following formula
can be used for the principal square root:[5][6]
sqrt(x + iy) = sqrt((r + x) / 2) +/- i*sqrt((r - x) / 2)
where the sign of the imaginary part of the root is taken to be same as the sign
of the imaginary part of the original number, and
r = abs(x + iy) = sqrt(x^2 + y^2)
is the absolute value or modulus of the original number. The real part of the
principal value is always non-negative.
The other square root is simply 1 times the principal square root; in other
words, the two square roots of a number sum to 0.
*/