skia2/bench/SkSLBench.cpp
Brian Osman 24b8a8cd1a Switch back to mallinfo in SkSL memory benchmark
Early results from measuring RSS (via /proc or similar) shows results
that aren't very accurate or stable. From previous detailed testing, I
know that mallinfo gives a good answer. We only really need results
from ~one machine, so limiting to UNIX bots isn't a big deal.

Change-Id: I73af043720b1204e1da436e2e63b19766a97a9a2
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/301445
Reviewed-by: Mike Klein <mtklein@google.com>
Commit-Queue: Brian Osman <brianosman@google.com>
2020-07-09 14:42:02 +00:00

150 lines
5.6 KiB
C++

/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "bench/Benchmark.h"
#include "bench/ResultsWriter.h"
#include "bench/SkSLBench.h"
#include "src/sksl/SkSLCompiler.h"
class SkSLBench : public Benchmark {
public:
SkSLBench(SkSL::String name, const char* src)
: fName("sksl_" + name)
, fSrc(src) {}
protected:
const char* onGetName() override {
return fName.c_str();
}
bool isSuitableFor(Backend backend) override {
return backend == kNonRendering_Backend;
}
void onDraw(int loops, SkCanvas*) override {
for (int i = 0; i < loops; i++) {
std::unique_ptr<SkSL::Program> program = fCompiler.convertProgram(
SkSL::Program::kFragment_Kind,
fSrc,
fSettings);
if (!fCompiler.errorCount()) {
fCompiler.optimize(*program);
} else {
printf("%s\n", fCompiler.errorText().c_str());
SK_ABORT("shader compilation failed");
}
}
}
private:
SkSL::String fName;
SkSL::String fSrc;
SkSL::Compiler fCompiler;
SkSL::Program::Settings fSettings;
typedef Benchmark INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
DEF_BENCH(return new SkSLBench("tiny", "void main() { sk_FragColor = half4(1); }"); )
DEF_BENCH(return new SkSLBench("huge", R"(
uniform half2 uDstTextureUpperLeft_Stage1;
uniform half2 uDstTextureCoordScale_Stage1;
uniform sampler2D uDstTextureSampler_Stage1;
noperspective in half4 vQuadEdge_Stage0;
noperspective in half4 vinColor_Stage0;
out half4 sk_FragColor;
half luminance_Stage1(half3 color) {
return dot(half3(0.3, 0.59, 0.11), color);
}
half3 set_luminance_Stage1(half3 hueSat, half alpha, half3 lumColor) {
half diff = luminance_Stage1(lumColor - hueSat);
half3 outColor = hueSat + diff;
half outLum = luminance_Stage1(outColor);
half minComp = min(min(outColor.r, outColor.g), outColor.b);
half maxComp = max(max(outColor.r, outColor.g), outColor.b);
if (minComp < 0.0 && outLum != minComp) {
outColor = outLum + ((outColor - half3(outLum, outLum, outLum)) * outLum) /
(outLum - minComp);
}
if (maxComp > alpha && maxComp != outLum) {
outColor = outLum +((outColor - half3(outLum, outLum, outLum)) * (alpha - outLum)) /
(maxComp - outLum);
}
return outColor;
}
void main() {
half4 outputColor_Stage0;
half4 outputCoverage_Stage0;
{ // Stage 0, QuadEdge
outputColor_Stage0 = vinColor_Stage0;
half edgeAlpha;
half2 duvdx = half2(dFdx(vQuadEdge_Stage0.xy));
half2 duvdy = half2(dFdy(vQuadEdge_Stage0.xy));
if (vQuadEdge_Stage0.z > 0.0 && vQuadEdge_Stage0.w > 0.0) {
edgeAlpha = min(min(vQuadEdge_Stage0.z, vQuadEdge_Stage0.w) + 0.5, 1.0);
} else {
half2 gF = half2(2.0 * vQuadEdge_Stage0.x * duvdx.x - duvdx.y,
2.0 * vQuadEdge_Stage0.x * duvdy.x - duvdy.y);
edgeAlpha = (vQuadEdge_Stage0.x*vQuadEdge_Stage0.x - vQuadEdge_Stage0.y);
edgeAlpha = saturate(0.5 - edgeAlpha / length(gF));
}
outputCoverage_Stage0 = half4(edgeAlpha);
}
{ // Xfer Processor: Custom Xfermode
if (all(lessThanEqual(outputCoverage_Stage0.rgb, half3(0)))) {
discard;
}
// Read color from copy of the destination.
half2 _dstTexCoord = (half2(sk_FragCoord.xy) - uDstTextureUpperLeft_Stage1) *
uDstTextureCoordScale_Stage1;
_dstTexCoord.y = 1.0 - _dstTexCoord.y;
half4 _dstColor = sample(uDstTextureSampler_Stage1, _dstTexCoord);
sk_FragColor.a = outputColor_Stage0.a + (1.0 - outputColor_Stage0.a) * _dstColor.a;
half4 srcDstAlpha = outputColor_Stage0 * _dstColor.a;
sk_FragColor.rgb = set_luminance_Stage1(_dstColor.rgb * outputColor_Stage0.a,
srcDstAlpha.a, srcDstAlpha.rgb);
sk_FragColor.rgb += (1.0 - outputColor_Stage0.a) * _dstColor.rgb + (1.0 - _dstColor.a) *
outputColor_Stage0.rgb;
sk_FragColor = outputCoverage_Stage0 * sk_FragColor +
(half4(1.0) - outputCoverage_Stage0) * _dstColor;
}
}
)"); )
#if defined(SK_BUILD_FOR_UNIX)
#include <malloc.h>
// These benchmarks aren't timed, they produce memory usage statistics. They run standalone, and
// directly add their results to the nanobench log.
void RunSkSLMemoryBenchmarks(NanoJSONResultsWriter* log) {
auto heap_bytes_used = []() { return mallinfo().uordblks; };
auto bench = [log](const char* name, int bytes) {
log->beginObject(name); // test
log->beginObject("meta"); // config
log->appendS32("bytes", bytes); // sub_result
log->endObject(); // config
log->endObject(); // test
};
{
int before = heap_bytes_used();
SkSL::Compiler compiler;
int after = heap_bytes_used();
bench("sksl_compiler_baseline", after - before);
}
}
#else
void RunSkSLMemoryBenchmarks(NanoJSONResultsWriter*) {}
#endif