24b8a8cd1a
Early results from measuring RSS (via /proc or similar) shows results that aren't very accurate or stable. From previous detailed testing, I know that mallinfo gives a good answer. We only really need results from ~one machine, so limiting to UNIX bots isn't a big deal. Change-Id: I73af043720b1204e1da436e2e63b19766a97a9a2 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/301445 Reviewed-by: Mike Klein <mtklein@google.com> Commit-Queue: Brian Osman <brianosman@google.com>
150 lines
5.6 KiB
C++
150 lines
5.6 KiB
C++
/*
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
#include "bench/Benchmark.h"
|
|
#include "bench/ResultsWriter.h"
|
|
#include "bench/SkSLBench.h"
|
|
#include "src/sksl/SkSLCompiler.h"
|
|
|
|
class SkSLBench : public Benchmark {
|
|
public:
|
|
SkSLBench(SkSL::String name, const char* src)
|
|
: fName("sksl_" + name)
|
|
, fSrc(src) {}
|
|
|
|
protected:
|
|
const char* onGetName() override {
|
|
return fName.c_str();
|
|
}
|
|
|
|
bool isSuitableFor(Backend backend) override {
|
|
return backend == kNonRendering_Backend;
|
|
}
|
|
|
|
void onDraw(int loops, SkCanvas*) override {
|
|
for (int i = 0; i < loops; i++) {
|
|
std::unique_ptr<SkSL::Program> program = fCompiler.convertProgram(
|
|
SkSL::Program::kFragment_Kind,
|
|
fSrc,
|
|
fSettings);
|
|
if (!fCompiler.errorCount()) {
|
|
fCompiler.optimize(*program);
|
|
} else {
|
|
printf("%s\n", fCompiler.errorText().c_str());
|
|
SK_ABORT("shader compilation failed");
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
SkSL::String fName;
|
|
SkSL::String fSrc;
|
|
SkSL::Compiler fCompiler;
|
|
SkSL::Program::Settings fSettings;
|
|
|
|
typedef Benchmark INHERITED;
|
|
};
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
DEF_BENCH(return new SkSLBench("tiny", "void main() { sk_FragColor = half4(1); }"); )
|
|
DEF_BENCH(return new SkSLBench("huge", R"(
|
|
uniform half2 uDstTextureUpperLeft_Stage1;
|
|
uniform half2 uDstTextureCoordScale_Stage1;
|
|
uniform sampler2D uDstTextureSampler_Stage1;
|
|
noperspective in half4 vQuadEdge_Stage0;
|
|
noperspective in half4 vinColor_Stage0;
|
|
out half4 sk_FragColor;
|
|
half luminance_Stage1(half3 color) {
|
|
return dot(half3(0.3, 0.59, 0.11), color);
|
|
}
|
|
|
|
half3 set_luminance_Stage1(half3 hueSat, half alpha, half3 lumColor) {
|
|
half diff = luminance_Stage1(lumColor - hueSat);
|
|
half3 outColor = hueSat + diff;
|
|
half outLum = luminance_Stage1(outColor);
|
|
half minComp = min(min(outColor.r, outColor.g), outColor.b);
|
|
half maxComp = max(max(outColor.r, outColor.g), outColor.b);
|
|
if (minComp < 0.0 && outLum != minComp) {
|
|
outColor = outLum + ((outColor - half3(outLum, outLum, outLum)) * outLum) /
|
|
(outLum - minComp);
|
|
}
|
|
if (maxComp > alpha && maxComp != outLum) {
|
|
outColor = outLum +((outColor - half3(outLum, outLum, outLum)) * (alpha - outLum)) /
|
|
(maxComp - outLum);
|
|
}
|
|
return outColor;
|
|
}
|
|
|
|
void main() {
|
|
half4 outputColor_Stage0;
|
|
half4 outputCoverage_Stage0;
|
|
{ // Stage 0, QuadEdge
|
|
outputColor_Stage0 = vinColor_Stage0;
|
|
half edgeAlpha;
|
|
half2 duvdx = half2(dFdx(vQuadEdge_Stage0.xy));
|
|
half2 duvdy = half2(dFdy(vQuadEdge_Stage0.xy));
|
|
if (vQuadEdge_Stage0.z > 0.0 && vQuadEdge_Stage0.w > 0.0) {
|
|
edgeAlpha = min(min(vQuadEdge_Stage0.z, vQuadEdge_Stage0.w) + 0.5, 1.0);
|
|
} else {
|
|
half2 gF = half2(2.0 * vQuadEdge_Stage0.x * duvdx.x - duvdx.y,
|
|
2.0 * vQuadEdge_Stage0.x * duvdy.x - duvdy.y);
|
|
edgeAlpha = (vQuadEdge_Stage0.x*vQuadEdge_Stage0.x - vQuadEdge_Stage0.y);
|
|
edgeAlpha = saturate(0.5 - edgeAlpha / length(gF));
|
|
}
|
|
outputCoverage_Stage0 = half4(edgeAlpha);
|
|
}
|
|
{ // Xfer Processor: Custom Xfermode
|
|
if (all(lessThanEqual(outputCoverage_Stage0.rgb, half3(0)))) {
|
|
discard;
|
|
}
|
|
// Read color from copy of the destination.
|
|
half2 _dstTexCoord = (half2(sk_FragCoord.xy) - uDstTextureUpperLeft_Stage1) *
|
|
uDstTextureCoordScale_Stage1;
|
|
_dstTexCoord.y = 1.0 - _dstTexCoord.y;
|
|
half4 _dstColor = sample(uDstTextureSampler_Stage1, _dstTexCoord);
|
|
sk_FragColor.a = outputColor_Stage0.a + (1.0 - outputColor_Stage0.a) * _dstColor.a;
|
|
half4 srcDstAlpha = outputColor_Stage0 * _dstColor.a;
|
|
sk_FragColor.rgb = set_luminance_Stage1(_dstColor.rgb * outputColor_Stage0.a,
|
|
srcDstAlpha.a, srcDstAlpha.rgb);
|
|
sk_FragColor.rgb += (1.0 - outputColor_Stage0.a) * _dstColor.rgb + (1.0 - _dstColor.a) *
|
|
outputColor_Stage0.rgb;
|
|
sk_FragColor = outputCoverage_Stage0 * sk_FragColor +
|
|
(half4(1.0) - outputCoverage_Stage0) * _dstColor;
|
|
}
|
|
}
|
|
)"); )
|
|
|
|
#if defined(SK_BUILD_FOR_UNIX)
|
|
|
|
#include <malloc.h>
|
|
|
|
// These benchmarks aren't timed, they produce memory usage statistics. They run standalone, and
|
|
// directly add their results to the nanobench log.
|
|
void RunSkSLMemoryBenchmarks(NanoJSONResultsWriter* log) {
|
|
auto heap_bytes_used = []() { return mallinfo().uordblks; };
|
|
auto bench = [log](const char* name, int bytes) {
|
|
log->beginObject(name); // test
|
|
log->beginObject("meta"); // config
|
|
log->appendS32("bytes", bytes); // sub_result
|
|
log->endObject(); // config
|
|
log->endObject(); // test
|
|
};
|
|
|
|
{
|
|
int before = heap_bytes_used();
|
|
SkSL::Compiler compiler;
|
|
int after = heap_bytes_used();
|
|
bench("sksl_compiler_baseline", after - before);
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
void RunSkSLMemoryBenchmarks(NanoJSONResultsWriter*) {}
|
|
|
|
#endif
|