93d3fabcc3
This loads 32 bits instead of gathering 256 in the tail part of loops. To make it work, add a vmovd with SIB addressing. I also remembered that the mysterious 0b100 is actually a signal that the instruction uses SIB addressing, and is usually denoted by `rsp`. (SIB addressing may be something we'd want to generalize over like we did recently with YmmOrLabel, but I'll leave that for Future Me.) Slight rewording where "scratch" is mentioned to keep it focused on scratch GP registers, not "tmp" ymm registers. Not a hugely important distinction but helps when I'm grepping through code. Change-Id: I39a6ab1a76ea0c103ae7d3ebc97a1b7d4b530e73 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/264376 Commit-Queue: Mike Klein <mtklein@google.com> Reviewed-by: Herb Derby <herb@google.com>
1490 lines
45 KiB
C++
1490 lines
45 KiB
C++
/*
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "include/core/SkColorPriv.h"
|
|
#include "include/private/SkColorData.h"
|
|
#include "src/core/SkMSAN.h"
|
|
#include "src/core/SkVM.h"
|
|
#include "tests/Test.h"
|
|
#include "tools/Resources.h"
|
|
#include "tools/SkVMBuilders.h"
|
|
|
|
using Fmt = SrcoverBuilder_F32::Fmt;
|
|
const char* fmt_name(Fmt fmt) {
|
|
switch (fmt) {
|
|
case Fmt::A8: return "A8";
|
|
case Fmt::G8: return "G8";
|
|
case Fmt::RGBA_8888: return "RGBA_8888";
|
|
}
|
|
return "";
|
|
}
|
|
|
|
static void dump(skvm::Builder& builder, SkWStream* o) {
|
|
skvm::Program program = builder.done();
|
|
builder.dump(o);
|
|
o->writeText("\n");
|
|
program.dump(o);
|
|
o->writeText("\n");
|
|
}
|
|
|
|
// TODO: I'd like this to go away and have every test in here run both JIT and interpreter.
|
|
template <typename Fn>
|
|
static void test_interpreter_only(skiatest::Reporter* r, skvm::Program&& program, Fn&& test) {
|
|
REPORTER_ASSERT(r, !program.hasJIT());
|
|
test((const skvm::Program&) program);
|
|
}
|
|
|
|
template <typename Fn>
|
|
static void test_jit_and_interpreter(skiatest::Reporter* r, skvm::Program&& program, Fn&& test) {
|
|
static const bool can_jit = []{
|
|
// This is about the simplest program we can write, setting an int buffer to a constant.
|
|
// If this can't JIT, the platform does not support JITing.
|
|
skvm::Builder b;
|
|
b.store32(b.varying<int>(), b.splat(42));
|
|
skvm::Program p = b.done();
|
|
return p.hasJIT();
|
|
}();
|
|
|
|
if (can_jit) {
|
|
REPORTER_ASSERT(r, program.hasJIT());
|
|
test((const skvm::Program&) program);
|
|
program.dropJIT();
|
|
}
|
|
test_interpreter_only(r, std::move(program), std::move(test));
|
|
}
|
|
|
|
|
|
DEF_TEST(SkVM, r) {
|
|
SkDynamicMemoryWStream buf;
|
|
|
|
// Write all combinations of SrcoverBuilder_F32
|
|
for (int s = 0; s < 3; s++)
|
|
for (int d = 0; d < 3; d++) {
|
|
auto srcFmt = (Fmt)s,
|
|
dstFmt = (Fmt)d;
|
|
SrcoverBuilder_F32 builder{srcFmt, dstFmt};
|
|
|
|
buf.writeText(fmt_name(srcFmt));
|
|
buf.writeText(" over ");
|
|
buf.writeText(fmt_name(dstFmt));
|
|
buf.writeText("\n");
|
|
dump(builder, &buf);
|
|
}
|
|
|
|
// Write the I32 Srcovers also.
|
|
{
|
|
SrcoverBuilder_I32_Naive builder;
|
|
buf.writeText("I32 (Naive) 8888 over 8888\n");
|
|
dump(builder, &buf);
|
|
}
|
|
{
|
|
SrcoverBuilder_I32 builder;
|
|
buf.writeText("I32 8888 over 8888\n");
|
|
dump(builder, &buf);
|
|
}
|
|
{
|
|
SrcoverBuilder_I32_SWAR builder;
|
|
buf.writeText("I32 (SWAR) 8888 over 8888\n");
|
|
dump(builder, &buf);
|
|
}
|
|
|
|
{
|
|
skvm::Builder b;
|
|
skvm::Arg arg = b.varying<int>();
|
|
|
|
// x and y can both be hoisted,
|
|
// and x can die at y, while y must live for the loop.
|
|
skvm::I32 x = b.splat(1),
|
|
y = b.add(x, b.splat(2));
|
|
b.store32(arg, b.mul(b.load32(arg), y));
|
|
|
|
skvm::Program program = b.done();
|
|
REPORTER_ASSERT(r, program.nregs() == 2);
|
|
|
|
std::vector<skvm::Builder::Instruction> insts = b.program();
|
|
REPORTER_ASSERT(r, insts.size() == 6);
|
|
REPORTER_ASSERT(r, insts[0].can_hoist && insts[0].death == 2 && !insts[0].used_in_loop);
|
|
REPORTER_ASSERT(r, insts[1].can_hoist && insts[1].death == 2 && !insts[1].used_in_loop);
|
|
REPORTER_ASSERT(r, insts[2].can_hoist && insts[2].death == 4 && insts[2].used_in_loop);
|
|
REPORTER_ASSERT(r, !insts[3].can_hoist);
|
|
REPORTER_ASSERT(r, !insts[4].can_hoist);
|
|
REPORTER_ASSERT(r, !insts[5].can_hoist);
|
|
|
|
dump(b, &buf);
|
|
|
|
test_jit_and_interpreter(r, std::move(program), [&](const skvm::Program& program) {
|
|
int arg[] = {0,1,2,3,4,5,6,7,8,9};
|
|
|
|
program.eval(SK_ARRAY_COUNT(arg), arg);
|
|
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(arg); i++) {
|
|
REPORTER_ASSERT(r, arg[i] == i*3);
|
|
}
|
|
});
|
|
}
|
|
|
|
{
|
|
// Demonstrate the value of program reordering.
|
|
skvm::Builder b;
|
|
skvm::Arg sp = b.varying<int>(),
|
|
dp = b.varying<int>();
|
|
|
|
skvm::I32 byte = b.splat(0xff);
|
|
|
|
skvm::I32 src = b.load32(sp),
|
|
sr = b.extract(src, 0, byte),
|
|
sg = b.extract(src, 8, byte),
|
|
sb = b.extract(src, 16, byte),
|
|
sa = b.extract(src, 24, byte);
|
|
|
|
skvm::I32 dst = b.load32(dp),
|
|
dr = b.extract(dst, 0, byte),
|
|
dg = b.extract(dst, 8, byte),
|
|
db = b.extract(dst, 16, byte),
|
|
da = b.extract(dst, 24, byte);
|
|
|
|
skvm::I32 R = b.add(sr, dr),
|
|
G = b.add(sg, dg),
|
|
B = b.add(sb, db),
|
|
A = b.add(sa, da);
|
|
|
|
skvm::I32 rg = b.pack(R, G, 8),
|
|
ba = b.pack(B, A, 8),
|
|
rgba = b.pack(rg, ba, 16);
|
|
|
|
b.store32(dp, rgba);
|
|
|
|
dump(b, &buf);
|
|
}
|
|
|
|
#if defined(SK_CPU_X86)
|
|
sk_sp<SkData> blob = buf.detachAsData();
|
|
{
|
|
|
|
sk_sp<SkData> expected = GetResourceAsData("SkVMTest.expected");
|
|
REPORTER_ASSERT(r, expected, "Couldn't load SkVMTest.expected.");
|
|
if (expected) {
|
|
if (blob->size() != expected->size()
|
|
|| 0 != memcmp(blob->data(), expected->data(), blob->size())) {
|
|
|
|
ERRORF(r, "SkVMTest expected\n%.*s\nbut got\n%.*s\n",
|
|
expected->size(), expected->data(),
|
|
blob->size(), blob->data());
|
|
}
|
|
|
|
SkFILEWStream out(GetResourcePath("SkVMTest.expected").c_str());
|
|
if (out.isValid()) {
|
|
out.write(blob->data(), blob->size());
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
auto test_8888 = [&](skvm::Program&& program) {
|
|
uint32_t src[9];
|
|
uint32_t dst[SK_ARRAY_COUNT(src)];
|
|
|
|
test_jit_and_interpreter(r, std::move(program), [&](const skvm::Program& program) {
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(src); i++) {
|
|
src[i] = 0xbb007733;
|
|
dst[i] = 0xffaaccee;
|
|
}
|
|
|
|
SkPMColor expected = SkPMSrcOver(src[0], dst[0]); // 0xff2dad73
|
|
|
|
program.eval((int)SK_ARRAY_COUNT(src), src, dst);
|
|
|
|
// dst is probably 0xff2dad72.
|
|
for (auto got : dst) {
|
|
auto want = expected;
|
|
for (int i = 0; i < 4; i++) {
|
|
uint8_t d = got & 0xff,
|
|
w = want & 0xff;
|
|
if (abs(d-w) >= 2) {
|
|
SkDebugf("d %02x, w %02x\n", d,w);
|
|
}
|
|
REPORTER_ASSERT(r, abs(d-w) < 2);
|
|
got >>= 8;
|
|
want >>= 8;
|
|
}
|
|
}
|
|
});
|
|
};
|
|
|
|
test_8888(SrcoverBuilder_F32{Fmt::RGBA_8888, Fmt::RGBA_8888}.done("srcover_f32"));
|
|
test_8888(SrcoverBuilder_I32_Naive{}.done("srcover_i32_naive"));
|
|
test_8888(SrcoverBuilder_I32{}.done("srcover_i32"));
|
|
test_8888(SrcoverBuilder_I32_SWAR{}.done("srcover_i32_SWAR"));
|
|
|
|
test_jit_and_interpreter(r, SrcoverBuilder_F32{Fmt::RGBA_8888, Fmt::G8}.done(),
|
|
[&](const skvm::Program& program) {
|
|
uint32_t src[9];
|
|
uint8_t dst[SK_ARRAY_COUNT(src)];
|
|
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(src); i++) {
|
|
src[i] = 0xbb007733;
|
|
dst[i] = 0x42;
|
|
}
|
|
|
|
SkPMColor over = SkPMSrcOver(SkPackARGB32(0xbb, 0x33, 0x77, 0x00),
|
|
0xff424242);
|
|
|
|
uint8_t want = SkComputeLuminance(SkGetPackedR32(over),
|
|
SkGetPackedG32(over),
|
|
SkGetPackedB32(over));
|
|
program.eval((int)SK_ARRAY_COUNT(src), src, dst);
|
|
|
|
for (auto got : dst) {
|
|
REPORTER_ASSERT(r, abs(got-want) < 3);
|
|
}
|
|
});
|
|
|
|
test_jit_and_interpreter(r, SrcoverBuilder_F32{Fmt::A8, Fmt::A8}.done(),
|
|
[&](const skvm::Program& program) {
|
|
uint8_t src[256],
|
|
dst[256];
|
|
for (int i = 0; i < 256; i++) {
|
|
src[i] = 255 - i;
|
|
dst[i] = i;
|
|
}
|
|
|
|
program.eval(256, src, dst);
|
|
|
|
for (int i = 0; i < 256; i++) {
|
|
uint8_t want = SkGetPackedA32(SkPMSrcOver(SkPackARGB32(src[i], 0,0,0),
|
|
SkPackARGB32( i, 0,0,0)));
|
|
REPORTER_ASSERT(r, abs(dst[i]-want) < 2);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_Pointless, r) {
|
|
// Let's build a program with no memory arguments.
|
|
// It should all be pegged as dead code, but we should be able to "run" it.
|
|
skvm::Builder b;
|
|
{
|
|
b.add(b.splat(5.0f),
|
|
b.splat(4.0f));
|
|
}
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
for (int N = 0; N < 64; N++) {
|
|
program.eval(N);
|
|
}
|
|
});
|
|
|
|
for (const skvm::Builder::Instruction& inst : b.program()) {
|
|
REPORTER_ASSERT(r, inst.death == 0 && inst.can_hoist == true);
|
|
}
|
|
}
|
|
|
|
DEF_TEST(SkVM_LoopCounts, r) {
|
|
// Make sure we cover all the exact N we want.
|
|
|
|
// buf[i] += 1
|
|
skvm::Builder b;
|
|
skvm::Arg arg = b.varying<int>();
|
|
b.store32(arg,
|
|
b.add(b.splat(1),
|
|
b.load32(arg)));
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
int buf[64];
|
|
for (int N = 0; N <= (int)SK_ARRAY_COUNT(buf); N++) {
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
buf[i] = i;
|
|
}
|
|
program.eval(N, buf);
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
REPORTER_ASSERT(r, buf[i] == i+1);
|
|
}
|
|
for (int i = N; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
REPORTER_ASSERT(r, buf[i] == i);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_gather32, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg uniforms = b.uniform(),
|
|
buf = b.varying<int>();
|
|
skvm::I32 x = b.load32(buf);
|
|
b.store32(buf, b.gather32(uniforms,0, b.bit_and(x, b.splat(7))));
|
|
}
|
|
|
|
#if defined(SK_CPU_X86)
|
|
test_jit_and_interpreter
|
|
#else
|
|
test_interpreter_only
|
|
#endif
|
|
(r, b.done(), [&](const skvm::Program& program) {
|
|
const int img[] = {12,34,56,78, 90,98,76,54};
|
|
|
|
int buf[20];
|
|
for (int i = 0; i < 20; i++) {
|
|
buf[i] = i;
|
|
}
|
|
|
|
struct Uniforms {
|
|
const int* img;
|
|
} uniforms{img};
|
|
|
|
program.eval(20, &uniforms, buf);
|
|
int i = 0;
|
|
REPORTER_ASSERT(r, buf[i] == 12); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 34); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 56); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 78); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 90); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 98); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 76); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 54); i++;
|
|
|
|
REPORTER_ASSERT(r, buf[i] == 12); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 34); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 56); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 78); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 90); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 98); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 76); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 54); i++;
|
|
|
|
REPORTER_ASSERT(r, buf[i] == 12); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 34); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 56); i++;
|
|
REPORTER_ASSERT(r, buf[i] == 78); i++;
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_gathers, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg uniforms = b.uniform(),
|
|
buf32 = b.varying<int>(),
|
|
buf16 = b.varying<uint16_t>(),
|
|
buf8 = b.varying<uint8_t>();
|
|
|
|
skvm::I32 x = b.load32(buf32);
|
|
|
|
b.store32(buf32, b.gather32(uniforms,0, b.bit_and(x, b.splat( 7))));
|
|
b.store16(buf16, b.gather16(uniforms,0, b.bit_and(x, b.splat(15))));
|
|
b.store8 (buf8 , b.gather8 (uniforms,0, b.bit_and(x, b.splat(31))));
|
|
}
|
|
|
|
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
|
|
const int img[] = {12,34,56,78, 90,98,76,54};
|
|
|
|
constexpr int N = 20;
|
|
int buf32[N];
|
|
uint16_t buf16[N];
|
|
uint8_t buf8 [N];
|
|
|
|
for (int i = 0; i < 20; i++) {
|
|
buf32[i] = i;
|
|
}
|
|
|
|
struct Uniforms {
|
|
const int* img;
|
|
} uniforms{img};
|
|
|
|
program.eval(N, &uniforms, buf32, buf16, buf8);
|
|
int i = 0;
|
|
REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 12 && buf8[i] == 12); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 34 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 90 && buf16[i] == 56 && buf8[i] == 34); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 98 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 76 && buf16[i] == 78 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 54 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
|
|
REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 90 && buf8[i] == 56); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 98 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 90 && buf16[i] == 76 && buf8[i] == 78); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 98 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 76 && buf16[i] == 54 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 54 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
|
|
REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 12 && buf8[i] == 90); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 34 && buf8[i] == 0); i++;
|
|
REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++;
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_bitops, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg ptr = b.varying<int>();
|
|
|
|
skvm::I32 x = b.load32(ptr);
|
|
|
|
x = b.bit_and (x, b.splat(0xf1)); // 0x40
|
|
x = b.bit_or (x, b.splat(0x80)); // 0xc0
|
|
x = b.bit_xor (x, b.splat(0xfe)); // 0x3e
|
|
x = b.bit_clear(x, b.splat(0x30)); // 0x0e
|
|
|
|
x = b.shl(x, 28); // 0xe000'0000
|
|
x = b.sra(x, 28); // 0xffff'fffe
|
|
x = b.shr(x, 1); // 0x7fff'ffff
|
|
|
|
b.store32(ptr, x);
|
|
}
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
int x = 0x42;
|
|
program.eval(1, &x);
|
|
REPORTER_ASSERT(r, x == 0x7fff'ffff);
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_f32, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg arg = b.varying<float>();
|
|
|
|
skvm::F32 x = b.bit_cast(b.load32(arg)),
|
|
y = b.add(x,x), // y = 2x
|
|
z = b.sub(y,x), // z = 2x-x = x
|
|
w = b.div(z,x); // w = x/x = 1
|
|
b.store32(arg, b.bit_cast(w));
|
|
}
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
float buf[] = { 1,2,3,4,5,6,7,8,9 };
|
|
program.eval(SK_ARRAY_COUNT(buf), buf);
|
|
for (float v : buf) {
|
|
REPORTER_ASSERT(r, v == 1.0f);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_cmp_i32, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::I32 x = b.load32(b.varying<int>());
|
|
|
|
auto to_bit = [&](int shift, skvm::I32 mask) {
|
|
return b.shl(b.bit_and(mask, b.splat(0x1)), shift);
|
|
};
|
|
|
|
skvm::I32 m = b.splat(0);
|
|
m = b.bit_or(m, to_bit(0, b. eq(x, b.splat(0))));
|
|
m = b.bit_or(m, to_bit(1, b.neq(x, b.splat(1))));
|
|
m = b.bit_or(m, to_bit(2, b. lt(x, b.splat(2))));
|
|
m = b.bit_or(m, to_bit(3, b.lte(x, b.splat(3))));
|
|
m = b.bit_or(m, to_bit(4, b. gt(x, b.splat(4))));
|
|
m = b.bit_or(m, to_bit(5, b.gte(x, b.splat(5))));
|
|
|
|
b.store32(b.varying<int>(), m);
|
|
}
|
|
|
|
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
|
|
int in[] = { 0,1,2,3,4,5,6,7,8,9 };
|
|
int out[SK_ARRAY_COUNT(in)];
|
|
|
|
program.eval(SK_ARRAY_COUNT(in), in, out);
|
|
|
|
REPORTER_ASSERT(r, out[0] == 0b001111);
|
|
REPORTER_ASSERT(r, out[1] == 0b001100);
|
|
REPORTER_ASSERT(r, out[2] == 0b001010);
|
|
REPORTER_ASSERT(r, out[3] == 0b001010);
|
|
REPORTER_ASSERT(r, out[4] == 0b000010);
|
|
for (int i = 5; i < (int)SK_ARRAY_COUNT(out); i++) {
|
|
REPORTER_ASSERT(r, out[i] == 0b110010);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_cmp_f32, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::F32 x = b.bit_cast(b.load32(b.varying<float>()));
|
|
|
|
auto to_bit = [&](int shift, skvm::I32 mask) {
|
|
return b.shl(b.bit_and(mask, b.splat(0x1)), shift);
|
|
};
|
|
|
|
skvm::I32 m = b.splat(0);
|
|
m = b.bit_or(m, to_bit(0, b. eq(x, b.splat(0.0f))));
|
|
m = b.bit_or(m, to_bit(1, b.neq(x, b.splat(1.0f))));
|
|
m = b.bit_or(m, to_bit(2, b. lt(x, b.splat(2.0f))));
|
|
m = b.bit_or(m, to_bit(3, b.lte(x, b.splat(3.0f))));
|
|
m = b.bit_or(m, to_bit(4, b. gt(x, b.splat(4.0f))));
|
|
m = b.bit_or(m, to_bit(5, b.gte(x, b.splat(5.0f))));
|
|
|
|
b.store32(b.varying<int>(), m);
|
|
}
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
float in[] = { 0,1,2,3,4,5,6,7,8,9 };
|
|
int out[SK_ARRAY_COUNT(in)];
|
|
|
|
program.eval(SK_ARRAY_COUNT(in), in, out);
|
|
|
|
REPORTER_ASSERT(r, out[0] == 0b001111);
|
|
REPORTER_ASSERT(r, out[1] == 0b001100);
|
|
REPORTER_ASSERT(r, out[2] == 0b001010);
|
|
REPORTER_ASSERT(r, out[3] == 0b001010);
|
|
REPORTER_ASSERT(r, out[4] == 0b000010);
|
|
for (int i = 5; i < (int)SK_ARRAY_COUNT(out); i++) {
|
|
REPORTER_ASSERT(r, out[i] == 0b110010);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_i16x2, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg buf = b.varying<int>();
|
|
|
|
skvm::I32 x = b.load32(buf),
|
|
y = b.add_16x2(x,x), // y = 2x
|
|
z = b.mul_16x2(x,y), // z = 2x^2
|
|
w = b.sub_16x2(z,x), // w = x(2x-1)
|
|
v = b.shl_16x2(w,7), // These shifts will be a no-op
|
|
u = b.sra_16x2(v,7); // for all but x=12 and x=13.
|
|
b.store32(buf, u);
|
|
}
|
|
|
|
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
|
|
uint16_t buf[] = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13 };
|
|
|
|
program.eval(SK_ARRAY_COUNT(buf)/2, buf);
|
|
for (int i = 0; i < 12; i++) {
|
|
REPORTER_ASSERT(r, buf[i] == i*(2*i-1));
|
|
}
|
|
REPORTER_ASSERT(r, buf[12] == 0xff14); // 12*23 = 0x114
|
|
REPORTER_ASSERT(r, buf[13] == 0xff45); // 13*25 = 0x145
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_cmp_i16, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg buf = b.varying<int>();
|
|
skvm::I32 x = b.load32(buf);
|
|
|
|
auto to_bit = [&](int shift, skvm::I32 mask) {
|
|
return b.shl_16x2(b.bit_and(mask, b.splat(0x0001'0001)), shift);
|
|
};
|
|
|
|
skvm::I32 m = b.splat(0);
|
|
m = b.bit_or(m, to_bit(0, b. eq_16x2(x, b.splat(0x0000'0000))));
|
|
m = b.bit_or(m, to_bit(1, b.neq_16x2(x, b.splat(0x0001'0001))));
|
|
m = b.bit_or(m, to_bit(2, b. lt_16x2(x, b.splat(0x0002'0002))));
|
|
m = b.bit_or(m, to_bit(3, b.lte_16x2(x, b.splat(0x0003'0003))));
|
|
m = b.bit_or(m, to_bit(4, b. gt_16x2(x, b.splat(0x0004'0004))));
|
|
m = b.bit_or(m, to_bit(5, b.gte_16x2(x, b.splat(0x0005'0005))));
|
|
|
|
b.store32(buf, m);
|
|
}
|
|
|
|
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
|
|
int16_t buf[] = { 0,1, 2,3, 4,5, 6,7, 8,9 };
|
|
|
|
program.eval(SK_ARRAY_COUNT(buf)/2, buf);
|
|
|
|
REPORTER_ASSERT(r, buf[0] == 0b001111);
|
|
REPORTER_ASSERT(r, buf[1] == 0b001100);
|
|
REPORTER_ASSERT(r, buf[2] == 0b001010);
|
|
REPORTER_ASSERT(r, buf[3] == 0b001010);
|
|
REPORTER_ASSERT(r, buf[4] == 0b000010);
|
|
for (int i = 5; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
REPORTER_ASSERT(r, buf[i] == 0b110010);
|
|
}
|
|
});
|
|
}
|
|
|
|
|
|
DEF_TEST(SkVM_mad, r) {
|
|
// This program is designed to exercise the tricky corners of instruction
|
|
// and register selection for Op::mad_f32.
|
|
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg arg = b.varying<int>();
|
|
|
|
skvm::F32 x = b.to_f32(b.load32(arg)),
|
|
y = b.mad(x,x,x), // x is needed in the future, so r[x] != r[y].
|
|
z = b.mad(y,y,x), // y is needed in the future, but r[z] = r[x] is ok.
|
|
w = b.mad(z,z,y), // w can alias z but not y.
|
|
v = b.mad(w,y,w); // Got to stop somewhere.
|
|
b.store32(arg, b.trunc(v));
|
|
}
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
int x = 2;
|
|
program.eval(1, &x);
|
|
// x = 2
|
|
// y = 2*2 + 2 = 6
|
|
// z = 6*6 + 2 = 38
|
|
// w = 38*38 + 6 = 1450
|
|
// v = 1450*6 + 1450 = 10150
|
|
REPORTER_ASSERT(r, x == 10150);
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_madder, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg arg = b.varying<float>();
|
|
|
|
skvm::F32 x = b.bit_cast(b.load32(arg)),
|
|
y = b.mad(x,x,x), // x is needed in the future, so r[x] != r[y].
|
|
z = b.mad(y,x,y), // r[x] can be reused after this instruction, but not r[y].
|
|
w = b.mad(y,y,z);
|
|
b.store32(arg, b.bit_cast(w));
|
|
}
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
float x = 2.0f;
|
|
// y = 2*2 + 2 = 6
|
|
// z = 6*2 + 6 = 18
|
|
// w = 6*6 + 18 = 54
|
|
program.eval(1, &x);
|
|
REPORTER_ASSERT(r, x == 54.0f);
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_floor, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg arg = b.varying<float>();
|
|
b.store32(arg, b.bit_cast(b.floor(b.bit_cast(b.load32(arg)))));
|
|
}
|
|
|
|
#if defined(SK_CPU_X86)
|
|
test_jit_and_interpreter
|
|
#else
|
|
test_interpreter_only
|
|
#endif
|
|
(r, b.done(), [&](const skvm::Program& program) {
|
|
float buf[] = { -2.0f, -1.5f, -1.0f, 0.0f, 1.0f, 1.5f, 2.0f };
|
|
float want[] = { -2.0f, -2.0f, -1.0f, 0.0f, 1.0f, 1.0f, 2.0f };
|
|
program.eval(SK_ARRAY_COUNT(buf), buf);
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
REPORTER_ASSERT(r, buf[i] == want[i]);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_hoist, r) {
|
|
// This program uses enough constants that it will fail to JIT if we hoist them.
|
|
// The JIT will try again without hoisting, and that'll just need 2 registers.
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg arg = b.varying<int>();
|
|
skvm::I32 x = b.load32(arg);
|
|
for (int i = 0; i < 32; i++) {
|
|
x = b.add(x, b.splat(i));
|
|
}
|
|
b.store32(arg, x);
|
|
}
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
int x = 4;
|
|
program.eval(1, &x);
|
|
// x += 0 + 1 + 2 + 3 + ... + 30 + 31
|
|
// x += 496
|
|
REPORTER_ASSERT(r, x == 500);
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_select, r) {
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg buf = b.varying<int>();
|
|
|
|
skvm::I32 x = b.load32(buf);
|
|
|
|
x = b.select( b.gt(x, b.splat(4)), x, b.splat(42) );
|
|
|
|
b.store32(buf, x);
|
|
}
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
int buf[] = { 0,1,2,3,4,5,6,7,8 };
|
|
program.eval(SK_ARRAY_COUNT(buf), buf);
|
|
for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) {
|
|
REPORTER_ASSERT(r, buf[i] == (i > 4 ? i : 42));
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_NewOps, r) {
|
|
// Exercise a somewhat arbitrary set of new ops.
|
|
skvm::Builder b;
|
|
{
|
|
skvm::Arg buf = b.varying<int16_t>(),
|
|
uniforms = b.uniform();
|
|
|
|
skvm::I32 x = b.load16(buf);
|
|
|
|
const size_t kPtr = sizeof(const int*);
|
|
|
|
x = b.add(x, b.uniform32(uniforms, kPtr+0));
|
|
x = b.mul(x, b.uniform8 (uniforms, kPtr+4));
|
|
x = b.sub(x, b.uniform16(uniforms, kPtr+6));
|
|
|
|
skvm::I32 limit = b.uniform32(uniforms, kPtr+8);
|
|
x = b.select(b.lt(x, b.splat(0)), b.splat(0), x);
|
|
x = b.select(b.gt(x, limit ), limit , x);
|
|
|
|
x = b.gather8(uniforms,0, x);
|
|
|
|
b.store16(buf, x);
|
|
}
|
|
|
|
if ((false)) {
|
|
SkDynamicMemoryWStream buf;
|
|
dump(b, &buf);
|
|
sk_sp<SkData> blob = buf.detachAsData();
|
|
SkDebugf("%.*s\n", blob->size(), blob->data());
|
|
}
|
|
|
|
test_interpreter_only(r, b.done(), [&](const skvm::Program& program) {
|
|
const int N = 31;
|
|
int16_t buf[N];
|
|
for (int i = 0; i < N; i++) {
|
|
buf[i] = i;
|
|
}
|
|
|
|
const int M = 16;
|
|
uint8_t img[M];
|
|
for (int i = 0; i < M; i++) {
|
|
img[i] = i*i;
|
|
}
|
|
|
|
struct {
|
|
const uint8_t* img;
|
|
int add = 5;
|
|
uint8_t mul = 3;
|
|
uint16_t sub = 18;
|
|
int limit = M-1;
|
|
} uniforms{img};
|
|
|
|
program.eval(N, buf, &uniforms);
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
// Our first math calculates x = (i+5)*3 - 18 a.k.a 3*(i-1).
|
|
int x = 3*(i-1);
|
|
|
|
// Then that's pinned to the limits of img.
|
|
if (i < 2) { x = 0; } // Notice i == 1 hits x == 0 exactly...
|
|
if (i > 5) { x = 15; } // ...and i == 6 hits x == 15 exactly
|
|
REPORTER_ASSERT(r, buf[i] == img[x]);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_MSAN, r) {
|
|
// This little memset32() program should be able to JIT, but if we run that
|
|
// JIT code in an MSAN build, it won't see the writes initialize buf. So
|
|
// this tests that we're using the interpreter instead.
|
|
skvm::Builder b;
|
|
b.store32(b.varying<int>(), b.splat(42));
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
constexpr int K = 17;
|
|
int buf[K]; // Intentionally uninitialized.
|
|
program.eval(K, buf);
|
|
sk_msan_assert_initialized(buf, buf+K);
|
|
for (int x : buf) {
|
|
REPORTER_ASSERT(r, x == 42);
|
|
}
|
|
});
|
|
}
|
|
|
|
DEF_TEST(SkVM_assert, r) {
|
|
skvm::Builder b;
|
|
b.assert_true(b.lt(b.load32(b.varying<int>()),
|
|
b.splat(42)));
|
|
|
|
test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) {
|
|
int buf[] = { 0,1,2,3,4,5,6,7,8,9 };
|
|
program.eval(SK_ARRAY_COUNT(buf), buf);
|
|
});
|
|
}
|
|
|
|
|
|
template <typename Fn>
|
|
static void test_asm(skiatest::Reporter* r, Fn&& fn, std::initializer_list<uint8_t> expected) {
|
|
uint8_t buf[4096];
|
|
skvm::Assembler a{buf};
|
|
fn(a);
|
|
|
|
REPORTER_ASSERT(r, a.size() == expected.size());
|
|
|
|
auto got = (const uint8_t*)buf,
|
|
want = expected.begin();
|
|
for (int i = 0; i < (int)std::min(a.size(), expected.size()); i++) {
|
|
REPORTER_ASSERT(r, got[i] == want[i],
|
|
"byte %d was %02x, want %02x", i, got[i], want[i]);
|
|
}
|
|
}
|
|
|
|
DEF_TEST(SkVM_Assembler, r) {
|
|
// Easiest way to generate test cases is
|
|
//
|
|
// echo '...some asm...' | llvm-mc -show-encoding -x86-asm-syntax=intel
|
|
//
|
|
// The -x86-asm-syntax=intel bit is optional, controlling the
|
|
// input syntax only; the output will always be AT&T op x,y,dst style.
|
|
// Our APIs read more like Intel op dst,x,y as op(dst,x,y), so I find
|
|
// that a bit easier to use here, despite maybe favoring AT&T overall.
|
|
|
|
using A = skvm::Assembler;
|
|
// Our exit strategy from AVX code.
|
|
test_asm(r, [&](A& a) {
|
|
a.int3();
|
|
a.vzeroupper();
|
|
a.ret();
|
|
},{
|
|
0xcc,
|
|
0xc5, 0xf8, 0x77,
|
|
0xc3,
|
|
});
|
|
|
|
// Align should pad with zero
|
|
test_asm(r, [&](A& a) {
|
|
a.ret();
|
|
a.align(4);
|
|
},{
|
|
0xc3,
|
|
0x00, 0x00, 0x00,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.add(A::rax, 8); // Always good to test rax.
|
|
a.sub(A::rax, 32);
|
|
|
|
a.add(A::rdi, 12); // Last 0x48 REX
|
|
a.sub(A::rdi, 8);
|
|
|
|
a.add(A::r8 , 7); // First 0x49 REX
|
|
a.sub(A::r8 , 4);
|
|
|
|
a.add(A::rsi, 128); // Requires 4 byte immediate.
|
|
a.sub(A::r8 , 1000000);
|
|
},{
|
|
0x48, 0x83, 0b11'000'000, 0x08,
|
|
0x48, 0x83, 0b11'101'000, 0x20,
|
|
|
|
0x48, 0x83, 0b11'000'111, 0x0c,
|
|
0x48, 0x83, 0b11'101'111, 0x08,
|
|
|
|
0x49, 0x83, 0b11'000'000, 0x07,
|
|
0x49, 0x83, 0b11'101'000, 0x04,
|
|
|
|
0x48, 0x81, 0b11'000'110, 0x80, 0x00, 0x00, 0x00,
|
|
0x49, 0x81, 0b11'101'000, 0x40, 0x42, 0x0f, 0x00,
|
|
});
|
|
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpaddd (A::ymm0, A::ymm1, A::ymm2); // Low registers and 0x0f map -> 2-byte VEX.
|
|
a.vpaddd (A::ymm8, A::ymm1, A::ymm2); // A high dst register is ok -> 2-byte VEX.
|
|
a.vpaddd (A::ymm0, A::ymm8, A::ymm2); // A high first argument register -> 2-byte VEX.
|
|
a.vpaddd (A::ymm0, A::ymm1, A::ymm8); // A high second argument -> 3-byte VEX.
|
|
a.vpmulld(A::ymm0, A::ymm1, A::ymm2); // Using non-0x0f map instruction -> 3-byte VEX.
|
|
a.vpsubd (A::ymm0, A::ymm1, A::ymm2); // Test vpsubd to ensure argument order is right.
|
|
},{
|
|
/* VEX */ /*op*/ /*modRM*/
|
|
0xc5, 0xf5, 0xfe, 0xc2,
|
|
0xc5, 0x75, 0xfe, 0xc2,
|
|
0xc5, 0xbd, 0xfe, 0xc2,
|
|
0xc4, 0xc1, 0x75, 0xfe, 0xc0,
|
|
0xc4, 0xe2, 0x75, 0x40, 0xc2,
|
|
0xc5, 0xf5, 0xfa, 0xc2,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpcmpeqd (A::ymm0, A::ymm1, A::ymm2);
|
|
a.vpcmpgtd (A::ymm0, A::ymm1, A::ymm2);
|
|
a.vcmpeqps (A::ymm0, A::ymm1, A::ymm2);
|
|
a.vcmpltps (A::ymm0, A::ymm1, A::ymm2);
|
|
a.vcmpleps (A::ymm0, A::ymm1, A::ymm2);
|
|
a.vcmpneqps(A::ymm0, A::ymm1, A::ymm2);
|
|
},{
|
|
0xc5,0xf5,0x76,0xc2,
|
|
0xc5,0xf5,0x66,0xc2,
|
|
0xc5,0xf4,0xc2,0xc2,0x00,
|
|
0xc5,0xf4,0xc2,0xc2,0x01,
|
|
0xc5,0xf4,0xc2,0xc2,0x02,
|
|
0xc5,0xf4,0xc2,0xc2,0x04,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vminps(A::ymm0, A::ymm1, A::ymm2);
|
|
a.vmaxps(A::ymm0, A::ymm1, A::ymm2);
|
|
},{
|
|
0xc5,0xf4,0x5d,0xc2,
|
|
0xc5,0xf4,0x5f,0xc2,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpblendvb(A::ymm0, A::ymm1, A::ymm2, A::ymm3);
|
|
},{
|
|
0xc4,0xe3,0x75, 0x4c, 0xc2, 0x30,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpsrld(A::ymm15, A::ymm2, 8);
|
|
a.vpsrld(A::ymm0 , A::ymm8, 5);
|
|
},{
|
|
0xc5, 0x85, 0x72,0xd2, 0x08,
|
|
0xc4,0xc1,0x7d, 0x72,0xd0, 0x05,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpermq(A::ymm1, A::ymm2, 5);
|
|
},{
|
|
0xc4,0xe3,0xfd, 0x00,0xca, 0x05,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vroundps(A::ymm1, A::ymm2, A::NEAREST);
|
|
a.vroundps(A::ymm1, A::ymm2, A::FLOOR);
|
|
a.vroundps(A::ymm1, A::ymm2, A::CEIL);
|
|
a.vroundps(A::ymm1, A::ymm2, A::TRUNC);
|
|
},{
|
|
0xc4,0xe3,0x7d,0x08,0xca,0x00,
|
|
0xc4,0xe3,0x7d,0x08,0xca,0x01,
|
|
0xc4,0xe3,0x7d,0x08,0xca,0x02,
|
|
0xc4,0xe3,0x7d,0x08,0xca,0x03,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l = a.here();
|
|
a.byte(1);
|
|
a.byte(2);
|
|
a.byte(3);
|
|
a.byte(4);
|
|
|
|
a.vbroadcastss(A::ymm0 , &l);
|
|
a.vbroadcastss(A::ymm1 , &l);
|
|
a.vbroadcastss(A::ymm8 , &l);
|
|
a.vbroadcastss(A::ymm15, &l);
|
|
|
|
a.vpshufb(A::ymm4, A::ymm3, &l);
|
|
a.vpaddd (A::ymm4, A::ymm3, &l);
|
|
a.vpsubd (A::ymm4, A::ymm3, &l);
|
|
|
|
a.vptest(A::ymm4, &l);
|
|
|
|
a.vmulps (A::ymm4, A::ymm3, &l);
|
|
},{
|
|
0x01, 0x02, 0x03, 0x4,
|
|
|
|
/* VEX */ /*op*/ /* ModRM */ /* offset */
|
|
0xc4, 0xe2, 0x7d, 0x18, 0b00'000'101, 0xf3,0xff,0xff,0xff, // 0xfffffff3 == -13
|
|
0xc4, 0xe2, 0x7d, 0x18, 0b00'001'101, 0xea,0xff,0xff,0xff, // 0xffffffea == -22
|
|
0xc4, 0x62, 0x7d, 0x18, 0b00'000'101, 0xe1,0xff,0xff,0xff, // 0xffffffe1 == -31
|
|
0xc4, 0x62, 0x7d, 0x18, 0b00'111'101, 0xd8,0xff,0xff,0xff, // 0xffffffd8 == -40
|
|
|
|
0xc4, 0xe2, 0x65, 0x00, 0b00'100'101, 0xcf,0xff,0xff,0xff, // 0xffffffcf == -49
|
|
|
|
0xc5, 0xe5, 0xfe, 0b00'100'101, 0xc7,0xff,0xff,0xff, // 0xffffffc7 == -57
|
|
0xc5, 0xe5, 0xfa, 0b00'100'101, 0xbf,0xff,0xff,0xff, // 0xffffffbf == -65
|
|
|
|
0xc4, 0xe2, 0x7d, 0x17, 0b00'100'101, 0xb6,0xff,0xff,0xff, // 0xffffffb6 == -74
|
|
|
|
0xc5, 0xe4, 0x59, 0b00'100'101, 0xae,0xff,0xff,0xff, // 0xffffffaf == -82
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vbroadcastss(A::ymm0, A::rdi, 0);
|
|
a.vbroadcastss(A::ymm13, A::r14, 7);
|
|
a.vbroadcastss(A::ymm8, A::rdx, -12);
|
|
a.vbroadcastss(A::ymm8, A::rdx, 400);
|
|
|
|
a.vbroadcastss(A::ymm8, A::xmm0);
|
|
a.vbroadcastss(A::ymm0, A::xmm13);
|
|
},{
|
|
/* VEX */ /*op*/ /*ModRM*/ /*offset*/
|
|
0xc4,0xe2,0x7d, 0x18, 0b00'000'111,
|
|
0xc4,0x42,0x7d, 0x18, 0b01'101'110, 0x07,
|
|
0xc4,0x62,0x7d, 0x18, 0b01'000'010, 0xf4,
|
|
0xc4,0x62,0x7d, 0x18, 0b10'000'010, 0x90,0x01,0x00,0x00,
|
|
|
|
0xc4,0x62,0x7d, 0x18, 0b11'000'000,
|
|
0xc4,0xc2,0x7d, 0x18, 0b11'000'101,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l = a.here();
|
|
a.jne(&l);
|
|
a.jne(&l);
|
|
a.je (&l);
|
|
a.jmp(&l);
|
|
a.jl (&l);
|
|
a.jc (&l);
|
|
|
|
a.cmp(A::rdx, 0);
|
|
a.cmp(A::rax, 12);
|
|
a.cmp(A::r14, 2000000000);
|
|
},{
|
|
0x0f,0x85, 0xfa,0xff,0xff,0xff, // near jne -6 bytes
|
|
0x0f,0x85, 0xf4,0xff,0xff,0xff, // near jne -12 bytes
|
|
0x0f,0x84, 0xee,0xff,0xff,0xff, // near je -18 bytes
|
|
0xe9, 0xe9,0xff,0xff,0xff, // near jmp -23 bytes
|
|
0x0f,0x8c, 0xe3,0xff,0xff,0xff, // near jl -29 bytes
|
|
0x0f,0x82, 0xdd,0xff,0xff,0xff, // near jc -35 bytes
|
|
|
|
0x48,0x83,0xfa,0x00,
|
|
0x48,0x83,0xf8,0x0c,
|
|
0x49,0x81,0xfe,0x00,0x94,0x35,0x77,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vmovups(A::ymm5, A::rsi);
|
|
a.vmovups(A::rsi, A::ymm5);
|
|
|
|
a.vmovups(A::rsi, A::xmm5);
|
|
|
|
a.vpmovzxwd(A::ymm4, A::rsi);
|
|
a.vpmovzxbd(A::ymm4, A::rsi);
|
|
|
|
a.vmovq(A::rdx, A::xmm15);
|
|
},{
|
|
/* VEX */ /*Op*/ /* ModRM */
|
|
0xc5, 0xfc, 0x10, 0b00'101'110,
|
|
0xc5, 0xfc, 0x11, 0b00'101'110,
|
|
|
|
0xc5, 0xf8, 0x11, 0b00'101'110,
|
|
|
|
0xc4,0xe2,0x7d, 0x33, 0b00'100'110,
|
|
0xc4,0xe2,0x7d, 0x31, 0b00'100'110,
|
|
|
|
0xc5, 0x79, 0xd6, 0b00'111'010,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.movzbl(A::rax, A::rsi, 0); // Low registers for src and dst.
|
|
a.movzbl(A::rax, A::r8, 0); // High src register.
|
|
a.movzbl(A::r8 , A::rsi, 0); // High dst register.
|
|
a.movzbl(A::r8, A::rsi, 12);
|
|
a.movzbl(A::r8, A::rsi, 400);
|
|
|
|
a.vmovd(A::rax, A::xmm0);
|
|
a.vmovd(A::rax, A::xmm8);
|
|
a.vmovd(A::r8, A::xmm0);
|
|
|
|
a.vmovd(A::xmm0, A::rax);
|
|
a.vmovd(A::xmm8, A::rax);
|
|
a.vmovd(A::xmm0, A::r8);
|
|
|
|
a.vmovd(A::xmm0 , A::FOUR, A::rcx, A::rax);
|
|
a.vmovd(A::xmm15, A::TWO, A::r8, A::rax);
|
|
a.vmovd(A::xmm0 , A::ONE, A::rcx, A::r8);
|
|
|
|
a.vmovd_direct(A::rax, A::xmm0);
|
|
a.vmovd_direct(A::rax, A::xmm8);
|
|
a.vmovd_direct(A::r8, A::xmm0);
|
|
|
|
a.vmovd_direct(A::xmm0, A::rax);
|
|
a.vmovd_direct(A::xmm8, A::rax);
|
|
a.vmovd_direct(A::xmm0, A::r8);
|
|
|
|
a.movb(A::rdx, A::rax);
|
|
a.movb(A::rdx, A::r8);
|
|
a.movb(A::r8 , A::rax);
|
|
},{
|
|
0x0f,0xb6,0x06,
|
|
0x41,0x0f,0xb6,0x00,
|
|
0x44,0x0f,0xb6,0x06,
|
|
0x44,0x0f,0xb6,0x46, 12,
|
|
0x44,0x0f,0xb6,0x86, 0x90,0x01,0x00,0x00,
|
|
|
|
0xc5,0xf9,0x7e,0x00,
|
|
0xc5,0x79,0x7e,0x00,
|
|
0xc4,0xc1,0x79,0x7e,0x00,
|
|
|
|
0xc5,0xf9,0x6e,0x00,
|
|
0xc5,0x79,0x6e,0x00,
|
|
0xc4,0xc1,0x79,0x6e,0x00,
|
|
|
|
0xc5,0xf9,0x6e,0x04,0x88,
|
|
0xc4,0x21,0x79,0x6e,0x3c,0x40,
|
|
0xc4,0xc1,0x79,0x6e,0x04,0x08,
|
|
|
|
0xc5,0xf9,0x7e,0xc0,
|
|
0xc5,0x79,0x7e,0xc0,
|
|
0xc4,0xc1,0x79,0x7e,0xc0,
|
|
|
|
0xc5,0xf9,0x6e,0xc0,
|
|
0xc5,0x79,0x6e,0xc0,
|
|
0xc4,0xc1,0x79,0x6e,0xc0,
|
|
|
|
0x88, 0x02,
|
|
0x44, 0x88, 0x02,
|
|
0x41, 0x88, 0x00,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpinsrw(A::xmm1, A::xmm8, A::rsi, 4);
|
|
a.vpinsrw(A::xmm8, A::xmm1, A::r8, 12);
|
|
|
|
a.vpinsrb(A::xmm1, A::xmm8, A::rsi, 4);
|
|
a.vpinsrb(A::xmm8, A::xmm1, A::r8, 12);
|
|
|
|
a.vpextrw(A::rsi, A::xmm8, 7);
|
|
a.vpextrw(A::r8, A::xmm1, 15);
|
|
|
|
a.vpextrb(A::rsi, A::xmm8, 7);
|
|
a.vpextrb(A::r8, A::xmm1, 15);
|
|
},{
|
|
0xc5,0xb9, 0xc4, 0x0e, 4,
|
|
0xc4,0x41,0x71, 0xc4, 0x00, 12,
|
|
|
|
0xc4,0xe3,0x39, 0x20, 0x0e, 4,
|
|
0xc4,0x43,0x71, 0x20, 0x00, 12,
|
|
|
|
0xc4,0x63,0x79, 0x15, 0x06, 7,
|
|
0xc4,0xc3,0x79, 0x15, 0x08, 15,
|
|
|
|
0xc4,0x63,0x79, 0x14, 0x06, 7,
|
|
0xc4,0xc3,0x79, 0x14, 0x08, 15,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vpandn(A::ymm3, A::ymm12, A::ymm2);
|
|
},{
|
|
0xc5, 0x9d, 0xdf, 0xda,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vmovdqa (A::ymm3, A::ymm2);
|
|
a.vcvttps2dq(A::ymm3, A::ymm2);
|
|
a.vcvtdq2ps (A::ymm3, A::ymm2);
|
|
a.vcvtps2dq (A::ymm3, A::ymm2);
|
|
},{
|
|
0xc5,0xfd,0x6f,0xda,
|
|
0xc5,0xfe,0x5b,0xda,
|
|
0xc5,0xfc,0x5b,0xda,
|
|
0xc5,0xfd,0x5b,0xda,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.vgatherdps(A::ymm1 , A::FOUR , A::ymm0 , A::rdi, A::ymm2 );
|
|
a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::rax, A::ymm1 );
|
|
a.vgatherdps(A::ymm10, A::ONE , A::ymm2 , A::rax, A::ymm1 );
|
|
a.vgatherdps(A::ymm0 , A::ONE , A::ymm12, A::rax, A::ymm1 );
|
|
a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::r9 , A::ymm1 );
|
|
a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::rax, A::ymm12);
|
|
a.vgatherdps(A::ymm0 , A::EIGHT, A::ymm2 , A::rax, A::ymm12);
|
|
},{
|
|
0xc4,0xe2,0x6d,0x92,0x0c,0x87,
|
|
0xc4,0xe2,0x75,0x92,0x04,0x10,
|
|
0xc4,0x62,0x75,0x92,0x14,0x10,
|
|
0xc4,0xa2,0x75,0x92,0x04,0x20,
|
|
0xc4,0xc2,0x75,0x92,0x04,0x11,
|
|
0xc4,0xe2,0x1d,0x92,0x04,0x10,
|
|
0xc4,0xe2,0x1d,0x92,0x04,0xd0,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.movq(A::rax, A::rdi, 0);
|
|
a.movq(A::rax, A::rdi, 1);
|
|
a.movq(A::rax, A::rdi, 512);
|
|
a.movq(A::r15, A::r13, 42);
|
|
a.movq(A::rax, A::r13, 42);
|
|
a.movq(A::r15, A::rax, 42);
|
|
},{
|
|
0x48, 0x8b, 0x07,
|
|
0x48, 0x8b, 0x47, 0x01,
|
|
0x48, 0x8b, 0x87, 0x00,0x02,0x00,0x00,
|
|
0x4d, 0x8b, 0x7d, 0x2a,
|
|
0x49, 0x8b, 0x45, 0x2a,
|
|
0x4c, 0x8b, 0x78, 0x2a,
|
|
});
|
|
|
|
// echo "fmul v4.4s, v3.4s, v1.4s" | llvm-mc -show-encoding -arch arm64
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.and16b(A::v4, A::v3, A::v1);
|
|
a.orr16b(A::v4, A::v3, A::v1);
|
|
a.eor16b(A::v4, A::v3, A::v1);
|
|
a.bic16b(A::v4, A::v3, A::v1);
|
|
a.bsl16b(A::v4, A::v3, A::v1);
|
|
a.not16b(A::v4, A::v3);
|
|
|
|
a.add4s(A::v4, A::v3, A::v1);
|
|
a.sub4s(A::v4, A::v3, A::v1);
|
|
a.mul4s(A::v4, A::v3, A::v1);
|
|
|
|
a.cmeq4s(A::v4, A::v3, A::v1);
|
|
a.cmgt4s(A::v4, A::v3, A::v1);
|
|
|
|
a.sub8h(A::v4, A::v3, A::v1);
|
|
a.mul8h(A::v4, A::v3, A::v1);
|
|
|
|
a.fadd4s(A::v4, A::v3, A::v1);
|
|
a.fsub4s(A::v4, A::v3, A::v1);
|
|
a.fmul4s(A::v4, A::v3, A::v1);
|
|
a.fdiv4s(A::v4, A::v3, A::v1);
|
|
a.fmin4s(A::v4, A::v3, A::v1);
|
|
a.fmax4s(A::v4, A::v3, A::v1);
|
|
|
|
a.fmla4s(A::v4, A::v3, A::v1);
|
|
|
|
a.fcmeq4s(A::v4, A::v3, A::v1);
|
|
a.fcmgt4s(A::v4, A::v3, A::v1);
|
|
a.fcmge4s(A::v4, A::v3, A::v1);
|
|
},{
|
|
0x64,0x1c,0x21,0x4e,
|
|
0x64,0x1c,0xa1,0x4e,
|
|
0x64,0x1c,0x21,0x6e,
|
|
0x64,0x1c,0x61,0x4e,
|
|
0x64,0x1c,0x61,0x6e,
|
|
0x64,0x58,0x20,0x6e,
|
|
|
|
0x64,0x84,0xa1,0x4e,
|
|
0x64,0x84,0xa1,0x6e,
|
|
0x64,0x9c,0xa1,0x4e,
|
|
|
|
0x64,0x8c,0xa1,0x6e,
|
|
0x64,0x34,0xa1,0x4e,
|
|
|
|
0x64,0x84,0x61,0x6e,
|
|
0x64,0x9c,0x61,0x4e,
|
|
|
|
0x64,0xd4,0x21,0x4e,
|
|
0x64,0xd4,0xa1,0x4e,
|
|
0x64,0xdc,0x21,0x6e,
|
|
0x64,0xfc,0x21,0x6e,
|
|
0x64,0xf4,0xa1,0x4e,
|
|
0x64,0xf4,0x21,0x4e,
|
|
|
|
0x64,0xcc,0x21,0x4e,
|
|
|
|
0x64,0xe4,0x21,0x4e,
|
|
0x64,0xe4,0xa1,0x6e,
|
|
0x64,0xe4,0x21,0x6e,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.shl4s(A::v4, A::v3, 0);
|
|
a.shl4s(A::v4, A::v3, 1);
|
|
a.shl4s(A::v4, A::v3, 8);
|
|
a.shl4s(A::v4, A::v3, 16);
|
|
a.shl4s(A::v4, A::v3, 31);
|
|
|
|
a.sshr4s(A::v4, A::v3, 1);
|
|
a.sshr4s(A::v4, A::v3, 8);
|
|
a.sshr4s(A::v4, A::v3, 31);
|
|
|
|
a.ushr4s(A::v4, A::v3, 1);
|
|
a.ushr4s(A::v4, A::v3, 8);
|
|
a.ushr4s(A::v4, A::v3, 31);
|
|
|
|
a.ushr8h(A::v4, A::v3, 1);
|
|
a.ushr8h(A::v4, A::v3, 8);
|
|
a.ushr8h(A::v4, A::v3, 15);
|
|
},{
|
|
0x64,0x54,0x20,0x4f,
|
|
0x64,0x54,0x21,0x4f,
|
|
0x64,0x54,0x28,0x4f,
|
|
0x64,0x54,0x30,0x4f,
|
|
0x64,0x54,0x3f,0x4f,
|
|
|
|
0x64,0x04,0x3f,0x4f,
|
|
0x64,0x04,0x38,0x4f,
|
|
0x64,0x04,0x21,0x4f,
|
|
|
|
0x64,0x04,0x3f,0x6f,
|
|
0x64,0x04,0x38,0x6f,
|
|
0x64,0x04,0x21,0x6f,
|
|
|
|
0x64,0x04,0x1f,0x6f,
|
|
0x64,0x04,0x18,0x6f,
|
|
0x64,0x04,0x11,0x6f,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.sli4s(A::v4, A::v3, 0);
|
|
a.sli4s(A::v4, A::v3, 1);
|
|
a.sli4s(A::v4, A::v3, 8);
|
|
a.sli4s(A::v4, A::v3, 16);
|
|
a.sli4s(A::v4, A::v3, 31);
|
|
},{
|
|
0x64,0x54,0x20,0x6f,
|
|
0x64,0x54,0x21,0x6f,
|
|
0x64,0x54,0x28,0x6f,
|
|
0x64,0x54,0x30,0x6f,
|
|
0x64,0x54,0x3f,0x6f,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.scvtf4s (A::v4, A::v3);
|
|
a.fcvtzs4s(A::v4, A::v3);
|
|
a.fcvtns4s(A::v4, A::v3);
|
|
},{
|
|
0x64,0xd8,0x21,0x4e,
|
|
0x64,0xb8,0xa1,0x4e,
|
|
0x64,0xa8,0x21,0x4e,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.brk(0);
|
|
a.brk(65535);
|
|
|
|
a.ret(A::x30); // Conventional ret using link register.
|
|
a.ret(A::x13); // Can really return using any register if we like.
|
|
|
|
a.add(A::x2, A::x2, 4);
|
|
a.add(A::x3, A::x2, 32);
|
|
|
|
a.sub(A::x2, A::x2, 4);
|
|
a.sub(A::x3, A::x2, 32);
|
|
|
|
a.subs(A::x2, A::x2, 4);
|
|
a.subs(A::x3, A::x2, 32);
|
|
|
|
a.subs(A::xzr, A::x2, 4); // These are actually the same instruction!
|
|
a.cmp(A::x2, 4);
|
|
|
|
A::Label l = a.here();
|
|
a.bne(&l);
|
|
a.bne(&l);
|
|
a.blt(&l);
|
|
a.b(&l);
|
|
a.cbnz(A::x2, &l);
|
|
a.cbz(A::x2, &l);
|
|
},{
|
|
0x00,0x00,0x20,0xd4,
|
|
0xe0,0xff,0x3f,0xd4,
|
|
|
|
0xc0,0x03,0x5f,0xd6,
|
|
0xa0,0x01,0x5f,0xd6,
|
|
|
|
0x42,0x10,0x00,0x91,
|
|
0x43,0x80,0x00,0x91,
|
|
|
|
0x42,0x10,0x00,0xd1,
|
|
0x43,0x80,0x00,0xd1,
|
|
|
|
0x42,0x10,0x00,0xf1,
|
|
0x43,0x80,0x00,0xf1,
|
|
|
|
0x5f,0x10,0x00,0xf1,
|
|
0x5f,0x10,0x00,0xf1,
|
|
|
|
0x01,0x00,0x00,0x54, // b.ne #0
|
|
0xe1,0xff,0xff,0x54, // b.ne #-4
|
|
0xcb,0xff,0xff,0x54, // b.lt #-8
|
|
0xae,0xff,0xff,0x54, // b.al #-12
|
|
0x82,0xff,0xff,0xb5, // cbnz x2, #-16
|
|
0x62,0xff,0xff,0xb4, // cbz x2, #-20
|
|
});
|
|
|
|
// Can we cbz() to a not-yet-defined label?
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l;
|
|
a.cbz(A::x2, &l);
|
|
a.add(A::x3, A::x2, 32);
|
|
a.label(&l);
|
|
a.ret(A::x30);
|
|
},{
|
|
0x42,0x00,0x00,0xb4, // cbz x2, #8
|
|
0x43,0x80,0x00,0x91, // add x3, x2, #32
|
|
0xc0,0x03,0x5f,0xd6, // ret
|
|
});
|
|
|
|
// If we start a label as a backward label,
|
|
// can we redefine it to be a future label?
|
|
// (Not sure this is useful... just want to test it works.)
|
|
test_asm(r, [&](A& a) {
|
|
A::Label l1 = a.here();
|
|
a.add(A::x3, A::x2, 32);
|
|
a.cbz(A::x2, &l1); // This will jump backward... nothing sneaky.
|
|
|
|
A::Label l2 = a.here(); // Start off the same...
|
|
a.add(A::x3, A::x2, 32);
|
|
a.cbz(A::x2, &l2); // Looks like this will go backward...
|
|
a.add(A::x2, A::x2, 4);
|
|
a.add(A::x3, A::x2, 32);
|
|
a.label(&l2); // But no... actually forward! What a switcheroo!
|
|
},{
|
|
0x43,0x80,0x00,0x91, // add x3, x2, #32
|
|
0xe2,0xff,0xff,0xb4, // cbz x2, #-4
|
|
|
|
0x43,0x80,0x00,0x91, // add x3, x2, #32
|
|
0x62,0x00,0x00,0xb4, // cbz x2, #12
|
|
0x42,0x10,0x00,0x91, // add x2, x2, #4
|
|
0x43,0x80,0x00,0x91, // add x3, x2, #32
|
|
});
|
|
|
|
// Loading from a label on ARM.
|
|
test_asm(r, [&](A& a) {
|
|
A::Label fore,aft;
|
|
a.label(&fore);
|
|
a.word(0x01234567);
|
|
a.ldrq(A::v1, &fore);
|
|
a.ldrq(A::v2, &aft);
|
|
a.label(&aft);
|
|
a.word(0x76543210);
|
|
},{
|
|
0x67,0x45,0x23,0x01,
|
|
0xe1,0xff,0xff,0x9c, // ldr q1, #-4
|
|
0x22,0x00,0x00,0x9c, // ldr q2, #4
|
|
0x10,0x32,0x54,0x76,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.ldrq(A::v0, A::x8);
|
|
a.strq(A::v0, A::x8);
|
|
},{
|
|
0x00,0x01,0xc0,0x3d,
|
|
0x00,0x01,0x80,0x3d,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.xtns2h(A::v0, A::v0);
|
|
a.xtnh2b(A::v0, A::v0);
|
|
a.strs (A::v0, A::x0);
|
|
|
|
a.ldrs (A::v0, A::x0);
|
|
a.uxtlb2h(A::v0, A::v0);
|
|
a.uxtlh2s(A::v0, A::v0);
|
|
|
|
a.uminv4s(A::v3, A::v4);
|
|
a.fmovs (A::x3, A::v4); // fmov w3,s4
|
|
},{
|
|
0x00,0x28,0x61,0x0e,
|
|
0x00,0x28,0x21,0x0e,
|
|
0x00,0x00,0x00,0xbd,
|
|
|
|
0x00,0x00,0x40,0xbd,
|
|
0x00,0xa4,0x08,0x2f,
|
|
0x00,0xa4,0x10,0x2f,
|
|
|
|
0x83,0xa8,0xb1,0x6e,
|
|
0x83,0x00,0x26,0x1e,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.ldrb(A::v0, A::x8);
|
|
a.strb(A::v0, A::x8);
|
|
},{
|
|
0x00,0x01,0x40,0x3d,
|
|
0x00,0x01,0x00,0x3d,
|
|
});
|
|
|
|
test_asm(r, [&](A& a) {
|
|
a.tbl(A::v0, A::v1, A::v2);
|
|
},{
|
|
0x20,0x00,0x02,0x4e,
|
|
});
|
|
}
|