35ba614dc5
Bug: skia:7966 Change-Id: I222db4f4bc765fad3e5f1461f3a8f3c663bb9429 Reviewed-on: https://skia-review.googlesource.com/c/186545 Reviewed-by: Robert Phillips <robertphillips@google.com> Commit-Queue: Brian Salomon <bsalomon@google.com>
359 lines
12 KiB
C++
359 lines
12 KiB
C++
/*
|
|
* Copyright 2014 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#ifndef GrGpuResource_DEFINED
|
|
#define GrGpuResource_DEFINED
|
|
|
|
#include "../private/GrResourceKey.h"
|
|
#include "../private/GrTypesPriv.h"
|
|
#include "../private/SkNoncopyable.h"
|
|
|
|
class GrContext;
|
|
class GrGpu;
|
|
class GrResourceCache;
|
|
class SkTraceMemoryDump;
|
|
|
|
/**
|
|
* Base class for GrGpuResource. Handles the various types of refs we need. Separated out as a base
|
|
* class to isolate the ref-cnting behavior and provide friendship without exposing all of
|
|
* GrGpuResource.
|
|
*
|
|
* Gpu resources can have three types of refs:
|
|
* 1) Normal ref (+ by ref(), - by unref()): These are used by code that is issuing draw calls
|
|
* that read and write the resource via GrOpList and by any object that must own a
|
|
* GrGpuResource and is itself owned (directly or indirectly) by Skia-client code.
|
|
* 2) Pending read (+ by addPendingRead(), - by completedRead()): GrContext has scheduled a read
|
|
* of the resource by the GPU as a result of a skia API call but hasn't executed it yet.
|
|
* 3) Pending write (+ by addPendingWrite(), - by completedWrite()): GrContext has scheduled a
|
|
* write to the resource by the GPU as a result of a skia API call but hasn't executed it yet.
|
|
*
|
|
* The latter two ref types are private and intended only for Gr core code.
|
|
*
|
|
* When all the ref/io counts reach zero DERIVED::notifyAllCntsAreZero() will be called (static poly
|
|
* morphism using CRTP). Similarly when the ref (but not necessarily pending read/write) count
|
|
* reaches 0 DERIVED::notifyRefCountIsZero() will be called. In the case when an unref() causes both
|
|
* the ref cnt to reach zero and the other counts are zero, notifyRefCountIsZero() will be called
|
|
* before notifyAllCntsAreZero(). Moreover, if notifyRefCountIsZero() returns false then
|
|
* notifyAllRefCntsAreZero() won't be called at all. notifyRefCountIsZero() must return false if the
|
|
* object may be deleted after notifyRefCntIsZero() returns.
|
|
*
|
|
* GrIORef and GrGpuResource are separate classes for organizational reasons and to be
|
|
* able to give access via friendship to only the functions related to pending IO operations.
|
|
*/
|
|
template <typename DERIVED> class GrIORef : public SkNoncopyable {
|
|
public:
|
|
// Some of the signatures are written to mirror SkRefCnt so that GrGpuResource can work with
|
|
// templated helper classes (e.g. sk_sp). However, we have different categories of
|
|
// refs (e.g. pending reads). We also don't require thread safety as GrCacheable objects are
|
|
// not intended to cross thread boundaries.
|
|
void ref() const {
|
|
this->validate();
|
|
++fRefCnt;
|
|
}
|
|
|
|
void unref() const {
|
|
this->validate();
|
|
|
|
if (!(--fRefCnt)) {
|
|
if (!static_cast<const DERIVED*>(this)->notifyRefCountIsZero()) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
this->didRemoveRefOrPendingIO(kRef_CntType);
|
|
}
|
|
|
|
void validate() const {
|
|
#ifdef SK_DEBUG
|
|
SkASSERT(fRefCnt >= 0);
|
|
SkASSERT(fPendingReads >= 0);
|
|
SkASSERT(fPendingWrites >= 0);
|
|
SkASSERT(fRefCnt + fPendingReads + fPendingWrites >= 0);
|
|
#endif
|
|
}
|
|
|
|
protected:
|
|
GrIORef() : fRefCnt(1), fPendingReads(0), fPendingWrites(0) { }
|
|
|
|
enum CntType {
|
|
kRef_CntType,
|
|
kPendingRead_CntType,
|
|
kPendingWrite_CntType,
|
|
};
|
|
|
|
bool internalHasPendingRead() const { return SkToBool(fPendingReads); }
|
|
bool internalHasPendingWrite() const { return SkToBool(fPendingWrites); }
|
|
bool internalHasPendingIO() const { return SkToBool(fPendingWrites | fPendingReads); }
|
|
|
|
bool internalHasRef() const { return SkToBool(fRefCnt); }
|
|
bool internalHasUniqueRef() const { return fRefCnt == 1; }
|
|
|
|
private:
|
|
friend class GrIORefProxy; // needs to forward on wrapped IO calls
|
|
// This is for a unit test.
|
|
template <typename T>
|
|
friend void testingOnly_getIORefCnts(const T*, int* refCnt, int* readCnt, int* writeCnt);
|
|
|
|
void addPendingRead() const {
|
|
this->validate();
|
|
++fPendingReads;
|
|
}
|
|
|
|
void completedRead() const {
|
|
this->validate();
|
|
--fPendingReads;
|
|
this->didRemoveRefOrPendingIO(kPendingRead_CntType);
|
|
}
|
|
|
|
void addPendingWrite() const {
|
|
this->validate();
|
|
++fPendingWrites;
|
|
}
|
|
|
|
void completedWrite() const {
|
|
this->validate();
|
|
--fPendingWrites;
|
|
this->didRemoveRefOrPendingIO(kPendingWrite_CntType);
|
|
}
|
|
|
|
private:
|
|
void didRemoveRefOrPendingIO(CntType cntTypeRemoved) const {
|
|
if (0 == fPendingReads && 0 == fPendingWrites && 0 == fRefCnt) {
|
|
static_cast<const DERIVED*>(this)->notifyAllCntsAreZero(cntTypeRemoved);
|
|
}
|
|
}
|
|
|
|
mutable int32_t fRefCnt;
|
|
mutable int32_t fPendingReads;
|
|
mutable int32_t fPendingWrites;
|
|
|
|
friend class GrResourceCache; // to check IO ref counts.
|
|
|
|
template <typename, GrIOType> friend class GrPendingIOResource;
|
|
};
|
|
|
|
/**
|
|
* Base class for objects that can be kept in the GrResourceCache.
|
|
*/
|
|
class SK_API GrGpuResource : public GrIORef<GrGpuResource> {
|
|
public:
|
|
/**
|
|
* Tests whether a object has been abandoned or released. All objects will
|
|
* be in this state after their creating GrContext is destroyed or has
|
|
* contextLost called. It's up to the client to test wasDestroyed() before
|
|
* attempting to use an object if it holds refs on objects across
|
|
* ~GrContext, freeResources with the force flag, or contextLost.
|
|
*
|
|
* @return true if the object has been released or abandoned,
|
|
* false otherwise.
|
|
*/
|
|
bool wasDestroyed() const { return nullptr == fGpu; }
|
|
|
|
/**
|
|
* Retrieves the context that owns the object. Note that it is possible for
|
|
* this to return NULL. When objects have been release()ed or abandon()ed
|
|
* they no longer have an owning context. Destroying a GrContext
|
|
* automatically releases all its resources.
|
|
*/
|
|
const GrContext* getContext() const;
|
|
GrContext* getContext();
|
|
|
|
/**
|
|
* Retrieves the amount of GPU memory used by this resource in bytes. It is
|
|
* approximate since we aren't aware of additional padding or copies made
|
|
* by the driver.
|
|
*
|
|
* @return the amount of GPU memory used in bytes
|
|
*/
|
|
size_t gpuMemorySize() const {
|
|
if (kInvalidGpuMemorySize == fGpuMemorySize) {
|
|
fGpuMemorySize = this->onGpuMemorySize();
|
|
SkASSERT(kInvalidGpuMemorySize != fGpuMemorySize);
|
|
}
|
|
return fGpuMemorySize;
|
|
}
|
|
|
|
class UniqueID {
|
|
public:
|
|
static UniqueID InvalidID() {
|
|
return UniqueID(uint32_t(SK_InvalidUniqueID));
|
|
}
|
|
|
|
UniqueID() {}
|
|
|
|
explicit UniqueID(uint32_t id) : fID(id) {}
|
|
|
|
uint32_t asUInt() const { return fID; }
|
|
|
|
bool operator==(const UniqueID& other) const {
|
|
return fID == other.fID;
|
|
}
|
|
bool operator!=(const UniqueID& other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
void makeInvalid() { fID = SK_InvalidUniqueID; }
|
|
bool isInvalid() const { return SK_InvalidUniqueID == fID; }
|
|
|
|
protected:
|
|
uint32_t fID;
|
|
};
|
|
|
|
/**
|
|
* Gets an id that is unique for this GrGpuResource object. It is static in that it does
|
|
* not change when the content of the GrGpuResource object changes. This will never return
|
|
* 0.
|
|
*/
|
|
UniqueID uniqueID() const { return fUniqueID; }
|
|
|
|
/** Returns the current unique key for the resource. It will be invalid if the resource has no
|
|
associated unique key. */
|
|
const GrUniqueKey& getUniqueKey() const { return fUniqueKey; }
|
|
|
|
/**
|
|
* Internal-only helper class used for manipulations of the resource by the cache.
|
|
*/
|
|
class CacheAccess;
|
|
inline CacheAccess cacheAccess();
|
|
inline const CacheAccess cacheAccess() const;
|
|
|
|
/**
|
|
* Internal-only helper class used for manipulations of the resource by internal code.
|
|
*/
|
|
class ResourcePriv;
|
|
inline ResourcePriv resourcePriv();
|
|
inline const ResourcePriv resourcePriv() const;
|
|
|
|
/**
|
|
* Dumps memory usage information for this GrGpuResource to traceMemoryDump.
|
|
* Typically, subclasses should not need to override this, and should only
|
|
* need to override setMemoryBacking.
|
|
**/
|
|
virtual void dumpMemoryStatistics(SkTraceMemoryDump* traceMemoryDump) const;
|
|
|
|
/**
|
|
* Describes the type of gpu resource that is represented by the implementing
|
|
* class (e.g. texture, buffer object, stencil). This data is used for diagnostic
|
|
* purposes by dumpMemoryStatistics().
|
|
*
|
|
* The value returned is expected to be long lived and will not be copied by the caller.
|
|
*/
|
|
virtual const char* getResourceType() const = 0;
|
|
|
|
static uint32_t CreateUniqueID();
|
|
|
|
protected:
|
|
// This must be called by every non-wrapped GrGpuObject. It should be called once the object is
|
|
// fully initialized (i.e. only from the constructors of the final class).
|
|
void registerWithCache(SkBudgeted);
|
|
|
|
// This must be called by every GrGpuObject that references any wrapped backend objects. It
|
|
// should be called once the object is fully initialized (i.e. only from the constructors of the
|
|
// final class).
|
|
void registerWithCacheWrapped(GrWrapCacheable);
|
|
|
|
GrGpuResource(GrGpu*);
|
|
virtual ~GrGpuResource();
|
|
|
|
GrGpu* getGpu() const { return fGpu; }
|
|
|
|
/** Overridden to free GPU resources in the backend API. */
|
|
virtual void onRelease() { }
|
|
/** Overridden to abandon any internal handles, ptrs, etc to backend API resources.
|
|
This may be called when the underlying 3D context is no longer valid and so no
|
|
backend API calls should be made. */
|
|
virtual void onAbandon() { }
|
|
|
|
/**
|
|
* Allows subclasses to add additional backing information to the SkTraceMemoryDump.
|
|
**/
|
|
virtual void setMemoryBacking(SkTraceMemoryDump*, const SkString&) const {}
|
|
|
|
/**
|
|
* Returns a string that uniquely identifies this resource.
|
|
*/
|
|
SkString getResourceName() const;
|
|
|
|
/**
|
|
* A helper for subclasses that override dumpMemoryStatistics(). This method using a format
|
|
* consistent with the default implementation of dumpMemoryStatistics() but allows the caller
|
|
* to customize various inputs.
|
|
*/
|
|
void dumpMemoryStatisticsPriv(SkTraceMemoryDump* traceMemoryDump, const SkString& resourceName,
|
|
const char* type, size_t size) const;
|
|
|
|
|
|
private:
|
|
bool isPurgeable() const;
|
|
bool hasRefOrPendingIO() const;
|
|
|
|
/**
|
|
* Called by the registerWithCache if the resource is available to be used as scratch.
|
|
* Resource subclasses should override this if the instances should be recycled as scratch
|
|
* resources and populate the scratchKey with the key.
|
|
* By default resources are not recycled as scratch.
|
|
**/
|
|
virtual void computeScratchKey(GrScratchKey*) const {}
|
|
|
|
/**
|
|
* Removes references to objects in the underlying 3D API without freeing them.
|
|
* Called by CacheAccess.
|
|
*/
|
|
void abandon();
|
|
|
|
/**
|
|
* Frees the object in the underlying 3D API. Called by CacheAccess.
|
|
*/
|
|
void release();
|
|
|
|
virtual size_t onGpuMemorySize() const = 0;
|
|
|
|
/**
|
|
* Called by GrResourceCache when a resource loses its last ref or pending IO.
|
|
*/
|
|
virtual void removedLastRefOrPendingIO() {}
|
|
|
|
// See comments in CacheAccess and ResourcePriv.
|
|
void setUniqueKey(const GrUniqueKey&);
|
|
void removeUniqueKey();
|
|
void notifyAllCntsAreZero(CntType) const;
|
|
bool notifyRefCountIsZero() const;
|
|
void removeScratchKey();
|
|
void makeBudgeted();
|
|
void makeUnbudgeted();
|
|
|
|
#ifdef SK_DEBUG
|
|
friend class GrGpu; // for assert in GrGpu to access getGpu
|
|
#endif
|
|
|
|
// An index into a heap when this resource is purgeable or an array when not. This is maintained
|
|
// by the cache.
|
|
int fCacheArrayIndex;
|
|
// This value reflects how recently this resource was accessed in the cache. This is maintained
|
|
// by the cache.
|
|
uint32_t fTimestamp;
|
|
GrStdSteadyClock::time_point fTimeWhenBecamePurgeable;
|
|
|
|
static const size_t kInvalidGpuMemorySize = ~static_cast<size_t>(0);
|
|
GrScratchKey fScratchKey;
|
|
GrUniqueKey fUniqueKey;
|
|
|
|
// This is not ref'ed but abandon() or release() will be called before the GrGpu object
|
|
// is destroyed. Those calls set will this to NULL.
|
|
GrGpu* fGpu;
|
|
mutable size_t fGpuMemorySize = kInvalidGpuMemorySize;
|
|
|
|
GrBudgetedType fBudgetedType = GrBudgetedType::kUnbudgetedUncacheable;
|
|
bool fRefsWrappedObjects = false;
|
|
const UniqueID fUniqueID;
|
|
|
|
typedef GrIORef<GrGpuResource> INHERITED;
|
|
friend class GrIORef<GrGpuResource>; // to access notifyAllCntsAreZero and notifyRefCntIsZero.
|
|
};
|
|
|
|
#endif
|