aec2510125
All but 17 extended tests work. A helper function is privately added to SkPath.h to permit a test to modify a given point in a path. BUG=skia:3588 Review URL: https://codereview.chromium.org/1107353004
332 lines
10 KiB
C++
332 lines
10 KiB
C++
/*
|
|
* Copyright 2012 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
#include "PathOpsTestCommon.h"
|
|
#include "SkPathOpsBounds.h"
|
|
#include "SkPathOpsConic.h"
|
|
#include "SkPathOpsCubic.h"
|
|
#include "SkPathOpsLine.h"
|
|
#include "SkPathOpsQuad.h"
|
|
#include "SkReduceOrder.h"
|
|
#include "SkTSort.h"
|
|
|
|
static double calc_t_div(const SkDCubic& cubic, double precision, double start) {
|
|
const double adjust = sqrt(3.) / 36;
|
|
SkDCubic sub;
|
|
const SkDCubic* cPtr;
|
|
if (start == 0) {
|
|
cPtr = &cubic;
|
|
} else {
|
|
// OPTIMIZE: special-case half-split ?
|
|
sub = cubic.subDivide(start, 1);
|
|
cPtr = ⊂
|
|
}
|
|
const SkDCubic& c = *cPtr;
|
|
double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX;
|
|
double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY;
|
|
double dist = sqrt(dx * dx + dy * dy);
|
|
double tDiv3 = precision / (adjust * dist);
|
|
double t = SkDCubeRoot(tDiv3);
|
|
if (start > 0) {
|
|
t = start + (1 - start) * t;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTArray<double, true>* ts) {
|
|
double tDiv = calc_t_div(cubic, precision, 0);
|
|
if (tDiv >= 1) {
|
|
return true;
|
|
}
|
|
if (tDiv >= 0.5) {
|
|
ts->push_back(0.5);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void addTs(const SkDCubic& cubic, double precision, double start, double end,
|
|
SkTArray<double, true>* ts) {
|
|
double tDiv = calc_t_div(cubic, precision, 0);
|
|
double parts = ceil(1.0 / tDiv);
|
|
for (double index = 0; index < parts; ++index) {
|
|
double newT = start + (index / parts) * (end - start);
|
|
if (newT > 0 && newT < 1) {
|
|
ts->push_back(newT);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void toQuadraticTs(const SkDCubic* cubic, double precision, SkTArray<double, true>* ts) {
|
|
SkReduceOrder reducer;
|
|
int order = reducer.reduce(*cubic, SkReduceOrder::kAllow_Quadratics);
|
|
if (order < 3) {
|
|
return;
|
|
}
|
|
double inflectT[5];
|
|
int inflections = cubic->findInflections(inflectT);
|
|
SkASSERT(inflections <= 2);
|
|
if (!cubic->endsAreExtremaInXOrY()) {
|
|
inflections += cubic->findMaxCurvature(&inflectT[inflections]);
|
|
SkASSERT(inflections <= 5);
|
|
}
|
|
SkTQSort<double>(inflectT, &inflectT[inflections - 1]);
|
|
// OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its
|
|
// own subroutine?
|
|
while (inflections && approximately_less_than_zero(inflectT[0])) {
|
|
memmove(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections);
|
|
}
|
|
int start = 0;
|
|
int next = 1;
|
|
while (next < inflections) {
|
|
if (!approximately_equal(inflectT[start], inflectT[next])) {
|
|
++start;
|
|
++next;
|
|
continue;
|
|
}
|
|
memmove(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start));
|
|
}
|
|
|
|
while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) {
|
|
--inflections;
|
|
}
|
|
SkDCubicPair pair;
|
|
if (inflections == 1) {
|
|
pair = cubic->chopAt(inflectT[0]);
|
|
int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics);
|
|
if (orderP1 < 2) {
|
|
--inflections;
|
|
} else {
|
|
int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadratics);
|
|
if (orderP2 < 2) {
|
|
--inflections;
|
|
}
|
|
}
|
|
}
|
|
if (inflections == 0 && add_simple_ts(*cubic, precision, ts)) {
|
|
return;
|
|
}
|
|
if (inflections == 1) {
|
|
pair = cubic->chopAt(inflectT[0]);
|
|
addTs(pair.first(), precision, 0, inflectT[0], ts);
|
|
addTs(pair.second(), precision, inflectT[0], 1, ts);
|
|
return;
|
|
}
|
|
if (inflections > 1) {
|
|
SkDCubic part = cubic->subDivide(0, inflectT[0]);
|
|
addTs(part, precision, 0, inflectT[0], ts);
|
|
int last = inflections - 1;
|
|
for (int idx = 0; idx < last; ++idx) {
|
|
part = cubic->subDivide(inflectT[idx], inflectT[idx + 1]);
|
|
addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts);
|
|
}
|
|
part = cubic->subDivide(inflectT[last], 1);
|
|
addTs(part, precision, inflectT[last], 1, ts);
|
|
return;
|
|
}
|
|
addTs(*cubic, precision, 0, 1, ts);
|
|
}
|
|
|
|
void CubicToQuads(const SkDCubic& cubic, double precision, SkTArray<SkDQuad, true>& quads) {
|
|
SkTArray<double, true> ts;
|
|
toQuadraticTs(&cubic, precision, &ts);
|
|
if (ts.count() <= 0) {
|
|
SkDQuad quad = cubic.toQuad();
|
|
quads.push_back(quad);
|
|
return;
|
|
}
|
|
double tStart = 0;
|
|
for (int i1 = 0; i1 <= ts.count(); ++i1) {
|
|
const double tEnd = i1 < ts.count() ? ts[i1] : 1;
|
|
SkDRect bounds;
|
|
bounds.setBounds(cubic);
|
|
SkDCubic part = cubic.subDivide(tStart, tEnd);
|
|
SkDQuad quad = part.toQuad();
|
|
if (quad[1].fX < bounds.fLeft) {
|
|
quad[1].fX = bounds.fLeft;
|
|
} else if (quad[1].fX > bounds.fRight) {
|
|
quad[1].fX = bounds.fRight;
|
|
}
|
|
if (quad[1].fY < bounds.fTop) {
|
|
quad[1].fY = bounds.fTop;
|
|
} else if (quad[1].fY > bounds.fBottom) {
|
|
quad[1].fY = bounds.fBottom;
|
|
}
|
|
quads.push_back(quad);
|
|
tStart = tEnd;
|
|
}
|
|
}
|
|
|
|
void CubicPathToQuads(const SkPath& cubicPath, SkPath* quadPath) {
|
|
quadPath->reset();
|
|
SkDCubic cubic;
|
|
SkTArray<SkDQuad, true> quads;
|
|
SkPath::RawIter iter(cubicPath);
|
|
uint8_t verb;
|
|
SkPoint pts[4];
|
|
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
|
switch (verb) {
|
|
case SkPath::kMove_Verb:
|
|
quadPath->moveTo(pts[0].fX, pts[0].fY);
|
|
continue;
|
|
case SkPath::kLine_Verb:
|
|
quadPath->lineTo(pts[1].fX, pts[1].fY);
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
quadPath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
|
|
break;
|
|
case SkPath::kCubic_Verb:
|
|
quads.reset();
|
|
cubic.set(pts);
|
|
CubicToQuads(cubic, cubic.calcPrecision(), quads);
|
|
for (int index = 0; index < quads.count(); ++index) {
|
|
SkPoint qPts[2] = {
|
|
quads[index][1].asSkPoint(),
|
|
quads[index][2].asSkPoint()
|
|
};
|
|
quadPath->quadTo(qPts[0].fX, qPts[0].fY, qPts[1].fX, qPts[1].fY);
|
|
}
|
|
break;
|
|
case SkPath::kClose_Verb:
|
|
quadPath->close();
|
|
break;
|
|
default:
|
|
SkDEBUGFAIL("bad verb");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CubicPathToSimple(const SkPath& cubicPath, SkPath* simplePath) {
|
|
simplePath->reset();
|
|
SkDCubic cubic;
|
|
SkPath::RawIter iter(cubicPath);
|
|
uint8_t verb;
|
|
SkPoint pts[4];
|
|
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
|
switch (verb) {
|
|
case SkPath::kMove_Verb:
|
|
simplePath->moveTo(pts[0].fX, pts[0].fY);
|
|
continue;
|
|
case SkPath::kLine_Verb:
|
|
simplePath->lineTo(pts[1].fX, pts[1].fY);
|
|
break;
|
|
case SkPath::kQuad_Verb:
|
|
simplePath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
|
|
break;
|
|
case SkPath::kCubic_Verb: {
|
|
cubic.set(pts);
|
|
double tInflects[2];
|
|
int inflections = cubic.findInflections(tInflects);
|
|
if (inflections > 1 && tInflects[0] > tInflects[1]) {
|
|
SkTSwap(tInflects[0], tInflects[1]);
|
|
}
|
|
double lo = 0;
|
|
for (int index = 0; index <= inflections; ++index) {
|
|
double hi = index < inflections ? tInflects[index] : 1;
|
|
SkDCubic part = cubic.subDivide(lo, hi);
|
|
SkPoint cPts[3];
|
|
cPts[0] = part[1].asSkPoint();
|
|
cPts[1] = part[2].asSkPoint();
|
|
cPts[2] = part[3].asSkPoint();
|
|
simplePath->cubicTo(cPts[0].fX, cPts[0].fY, cPts[1].fX, cPts[1].fY,
|
|
cPts[2].fX, cPts[2].fY);
|
|
lo = hi;
|
|
}
|
|
break;
|
|
}
|
|
case SkPath::kClose_Verb:
|
|
simplePath->close();
|
|
break;
|
|
default:
|
|
SkDEBUGFAIL("bad verb");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool SkDoubleIsNaN(double x) {
|
|
return x != x;
|
|
}
|
|
|
|
bool ValidBounds(const SkPathOpsBounds& bounds) {
|
|
if (SkScalarIsNaN(bounds.fLeft)) {
|
|
return false;
|
|
}
|
|
if (SkScalarIsNaN(bounds.fTop)) {
|
|
return false;
|
|
}
|
|
if (SkScalarIsNaN(bounds.fRight)) {
|
|
return false;
|
|
}
|
|
return !SkScalarIsNaN(bounds.fBottom);
|
|
}
|
|
|
|
bool ValidConic(const SkDConic& conic) {
|
|
for (int index = 0; index < SkDConic::kPointCount; ++index) {
|
|
if (!ValidPoint(conic[index])) {
|
|
return false;
|
|
}
|
|
}
|
|
if (SkDoubleIsNaN(conic.fWeight)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ValidCubic(const SkDCubic& cubic) {
|
|
for (int index = 0; index < 4; ++index) {
|
|
if (!ValidPoint(cubic[index])) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ValidLine(const SkDLine& line) {
|
|
for (int index = 0; index < 2; ++index) {
|
|
if (!ValidPoint(line[index])) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ValidPoint(const SkDPoint& pt) {
|
|
if (SkDoubleIsNaN(pt.fX)) {
|
|
return false;
|
|
}
|
|
return !SkDoubleIsNaN(pt.fY);
|
|
}
|
|
|
|
bool ValidPoints(const SkPoint* pts, int count) {
|
|
for (int index = 0; index < count; ++index) {
|
|
if (SkScalarIsNaN(pts[index].fX)) {
|
|
return false;
|
|
}
|
|
if (SkScalarIsNaN(pts[index].fY)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ValidQuad(const SkDQuad& quad) {
|
|
for (int index = 0; index < 3; ++index) {
|
|
if (!ValidPoint(quad[index])) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ValidVector(const SkDVector& v) {
|
|
if (SkDoubleIsNaN(v.fX)) {
|
|
return false;
|
|
}
|
|
return !SkDoubleIsNaN(v.fY);
|
|
}
|