skia2/tests/CanvasTest.cpp
halcanary a1f1ee98a1 PDF : New factory function for SkPDFDevice
SkPDFDevice now has factory function that matches what callers need.

Review URL: https://codereview.chromium.org/941023005
2015-02-20 06:17:26 -08:00

754 lines
30 KiB
C++

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Description:
* This test defines a series of elementatry test steps that perform
* a single or a small group of canvas API calls. Each test step is
* used in several test cases that verify that different types of SkCanvas
* flavors and derivatives pass it and yield consistent behavior. The
* test cases analyse results that are queryable through the API. They do
* not look at rendering results.
*
* Adding test stepss:
* The general pattern for creating a new test step is to write a test
* function of the form:
*
* static void MyTestStepFunction(SkCanvas* canvas,
* skiatest::Reporter* reporter,
* CanvasTestStep* testStep)
* {
* canvas->someCanvasAPImethod();
* (...)
* REPORTER_ASSERT_MESSAGE(reporter, (...), \
* testStep->assertMessage());
* }
*
* The definition of the test step function should be followed by an
* invocation of the TEST_STEP macro, which generates a class and
* instance for the test step:
*
* TEST_STEP(MyTestStep, MyTestStepFunction)
*
* There are also short hand macros for defining simple test steps
* in a single line of code. A simple test step is a one that is made
* of a single canvas API call.
*
* SIMPLE_TEST_STEP(MytestStep, someCanvasAPIMethod());
*
* There is another macro called SIMPLE_TEST_STEP_WITH_ASSERT that
* works the same way as SIMPLE_TEST_STEP, and additionally verifies
* that the invoked method returns a non-zero value.
*/
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkDeferredCanvas.h"
#include "SkDevice.h"
#include "SkMatrix.h"
#include "SkNWayCanvas.h"
#include "SkPDFCanon.h"
#include "SkPDFDevice.h"
#include "SkPDFDocument.h"
#include "SkPaint.h"
#include "SkPath.h"
#include "SkPicture.h"
#include "SkPictureRecord.h"
#include "SkPictureRecorder.h"
#include "SkRect.h"
#include "SkRegion.h"
#include "SkShader.h"
#include "SkStream.h"
#include "SkSurface.h"
#include "SkTDArray.h"
#include "Test.h"
static const int kWidth = 2, kHeight = 2;
static void createBitmap(SkBitmap* bm, SkColor color) {
bm->allocN32Pixels(kWidth, kHeight);
bm->eraseColor(color);
}
static SkSurface* createSurface(SkColor color) {
SkSurface* surface = SkSurface::NewRasterN32Premul(kWidth, kHeight);
surface->getCanvas()->clear(color);
return surface;
}
///////////////////////////////////////////////////////////////////////////////
// Constants used by test steps
const SkPoint kTestPoints[] = {
{SkIntToScalar(0), SkIntToScalar(0)},
{SkIntToScalar(2), SkIntToScalar(1)},
{SkIntToScalar(0), SkIntToScalar(2)}
};
const SkPoint kTestPoints2[] = {
{ SkIntToScalar(0), SkIntToScalar(1) },
{ SkIntToScalar(1), SkIntToScalar(1) },
{ SkIntToScalar(2), SkIntToScalar(1) },
{ SkIntToScalar(3), SkIntToScalar(1) },
{ SkIntToScalar(4), SkIntToScalar(1) },
{ SkIntToScalar(5), SkIntToScalar(1) },
{ SkIntToScalar(6), SkIntToScalar(1) },
{ SkIntToScalar(7), SkIntToScalar(1) },
{ SkIntToScalar(8), SkIntToScalar(1) },
{ SkIntToScalar(9), SkIntToScalar(1) },
{ SkIntToScalar(10), SkIntToScalar(1) }
};
struct TestData {
public:
TestData()
: fRect(SkRect::MakeXYWH(SkIntToScalar(0), SkIntToScalar(0),
SkIntToScalar(2), SkIntToScalar(1)))
, fMatrix(TestMatrix())
, fPath(TestPath())
, fNearlyZeroLengthPath(TestNearlyZeroLengthPath())
, fIRect(SkIRect::MakeXYWH(0, 0, 2, 1))
, fRegion(TestRegion())
, fColor(0x01020304)
, fPoints(kTestPoints)
, fPointCount(3)
, fWidth(2)
, fHeight(2)
, fText("Hello World")
, fPoints2(kTestPoints2)
, fBitmap(TestBitmap())
{ }
SkRect fRect;
SkMatrix fMatrix;;
SkPath fPath;
SkPath fNearlyZeroLengthPath;
SkIRect fIRect;
SkRegion fRegion;
SkColor fColor;
SkPaint fPaint;
const SkPoint* fPoints;
size_t fPointCount;
int fWidth;
int fHeight;
SkString fText;
const SkPoint* fPoints2;
SkBitmap fBitmap;
private:
static SkMatrix TestMatrix() {
SkMatrix matrix;
matrix.reset();
matrix.setScale(SkIntToScalar(2), SkIntToScalar(3));
return matrix;
}
static SkPath TestPath() {
SkPath path;
path.addRect(SkRect::MakeXYWH(SkIntToScalar(0), SkIntToScalar(0),
SkIntToScalar(2), SkIntToScalar(1)));
return path;
}
static SkPath TestNearlyZeroLengthPath() {
SkPath path;
SkPoint pt1 = { 0, 0 };
SkPoint pt2 = { 0, SK_ScalarNearlyZero };
SkPoint pt3 = { SkIntToScalar(1), 0 };
SkPoint pt4 = { SkIntToScalar(1), SK_ScalarNearlyZero/2 };
path.moveTo(pt1);
path.lineTo(pt2);
path.lineTo(pt3);
path.lineTo(pt4);
return path;
}
static SkRegion TestRegion() {
SkRegion region;
SkIRect rect = SkIRect::MakeXYWH(0, 0, 2, 1);
region.setRect(rect);
return region;
}
static SkBitmap TestBitmap() {
SkBitmap bitmap;
createBitmap(&bitmap, 0x05060708);
return bitmap;
}
};
static bool equal_clips(const SkCanvas& a, const SkCanvas& b) {
if (a.isClipEmpty()) {
return b.isClipEmpty();
}
if (!a.isClipRect()) {
// this is liberally true, since we don't expose a way to know this exactly (for non-rects)
return !b.isClipRect();
}
SkIRect ar, br;
a.getClipDeviceBounds(&ar);
b.getClipDeviceBounds(&br);
return ar == br;
}
class Canvas2CanvasClipVisitor : public SkCanvas::ClipVisitor {
public:
Canvas2CanvasClipVisitor(SkCanvas* target) : fTarget(target) {}
void clipRect(const SkRect& r, SkRegion::Op op, bool aa) SK_OVERRIDE {
fTarget->clipRect(r, op, aa);
}
void clipRRect(const SkRRect& r, SkRegion::Op op, bool aa) SK_OVERRIDE {
fTarget->clipRRect(r, op, aa);
}
void clipPath(const SkPath& p, SkRegion::Op op, bool aa) SK_OVERRIDE {
fTarget->clipPath(p, op, aa);
}
private:
SkCanvas* fTarget;
};
static void test_clipVisitor(skiatest::Reporter* reporter, SkCanvas* canvas) {
SkISize size = canvas->getDeviceSize();
SkBitmap bm;
bm.setInfo(SkImageInfo::MakeN32Premul(size.width(), size.height()));
SkCanvas c(bm);
Canvas2CanvasClipVisitor visitor(&c);
canvas->replayClips(&visitor);
REPORTER_ASSERT(reporter, equal_clips(c, *canvas));
}
// Format strings that describe the test context. The %s token is where
// the name of the test step is inserted. The context is required for
// disambiguating the error in the case of failures that are reported in
// functions that are called multiple times in different contexts (test
// cases and test steps).
static const char* const kDefaultAssertMessageFormat = "%s";
static const char* const kCanvasDrawAssertMessageFormat =
"Drawing test step %s with SkCanvas";
static const char* const kDeferredDrawAssertMessageFormat =
"Drawing test step %s with SkDeferredCanvas";
static const char* const kNWayDrawAssertMessageFormat =
"Drawing test step %s with SkNWayCanvas";
static const char* const kDeferredPreFlushAssertMessageFormat =
"test step %s, SkDeferredCanvas state consistency before flush";
static const char* const kDeferredPostFlushPlaybackAssertMessageFormat =
"test step %s, SkDeferredCanvas playback canvas state consistency after flush";
static const char* const kDeferredPostSilentFlushPlaybackAssertMessageFormat =
"test step %s, SkDeferredCanvas playback canvas state consistency after silent flush";
static const char* const kNWayStateAssertMessageFormat =
"test step %s, SkNWayCanvas state consistency";
static const char* const kNWayIndirect1StateAssertMessageFormat =
"test step %s, SkNWayCanvas indirect canvas 1 state consistency";
static const char* const kNWayIndirect2StateAssertMessageFormat =
"test step %s, SkNWayCanvas indirect canvas 2 state consistency";
static const char* const kPdfAssertMessageFormat =
"PDF sanity check failed %s";
class CanvasTestStep;
static SkTDArray<CanvasTestStep*>& testStepArray() {
static SkTDArray<CanvasTestStep*> theTests;
return theTests;
}
class CanvasTestStep {
public:
CanvasTestStep(bool fEnablePdfTesting = true) {
*testStepArray().append() = this;
fAssertMessageFormat = kDefaultAssertMessageFormat;
this->fEnablePdfTesting = fEnablePdfTesting;
}
virtual ~CanvasTestStep() { }
virtual void draw(SkCanvas*, const TestData&, skiatest::Reporter*) = 0;
virtual const char* name() const = 0;
const char* assertMessage() {
fAssertMessage.printf(fAssertMessageFormat, name());
return fAssertMessage.c_str();
}
void setAssertMessageFormat(const char* format) {
fAssertMessageFormat = format;
}
bool enablePdfTesting() { return fEnablePdfTesting; }
private:
SkString fAssertMessage;
const char* fAssertMessageFormat;
bool fEnablePdfTesting;
};
///////////////////////////////////////////////////////////////////////////////
// Macros for defining test steps
#define TEST_STEP(NAME, FUNCTION) \
class NAME##_TestStep : public CanvasTestStep{ \
public: \
virtual void draw(SkCanvas* canvas, const TestData& d, \
skiatest::Reporter* reporter) { \
FUNCTION (canvas, d, reporter, this); \
} \
virtual const char* name() const {return #NAME ;} \
}; \
static NAME##_TestStep NAME##_TestStepInstance;
#define TEST_STEP_NO_PDF(NAME, FUNCTION) \
class NAME##_TestStep : public CanvasTestStep{ \
public: \
NAME##_TestStep() : CanvasTestStep(false) {} \
virtual void draw(SkCanvas* canvas, const TestData& d, \
skiatest::Reporter* reporter) { \
FUNCTION (canvas, d, reporter, this); \
} \
virtual const char* name() const {return #NAME ;} \
}; \
static NAME##_TestStep NAME##_TestStepInstance;
#define SIMPLE_TEST_STEP(NAME, CALL) \
static void NAME##TestStep(SkCanvas* canvas, const TestData& d, \
skiatest::Reporter*, CanvasTestStep*) { \
canvas-> CALL ; \
} \
TEST_STEP(NAME, NAME##TestStep )
#define SIMPLE_TEST_STEP_WITH_ASSERT(NAME, CALL) \
static void NAME##TestStep(SkCanvas* canvas, const TestData& d, \
skiatest::Reporter*, CanvasTestStep* testStep) { \
REPORTER_ASSERT_MESSAGE(reporter, canvas-> CALL , \
testStep->assertMessage()); \
} \
TEST_STEP(NAME, NAME##TestStep )
///////////////////////////////////////////////////////////////////////////////
// Basic test steps for most virtual methods in SkCanvas that draw or affect
// the state of the canvas.
SIMPLE_TEST_STEP(Translate, translate(SkIntToScalar(1), SkIntToScalar(2)));
SIMPLE_TEST_STEP(Scale, scale(SkIntToScalar(1), SkIntToScalar(2)));
SIMPLE_TEST_STEP(Rotate, rotate(SkIntToScalar(1)));
SIMPLE_TEST_STEP(Skew, skew(SkIntToScalar(1), SkIntToScalar(2)));
SIMPLE_TEST_STEP(Concat, concat(d.fMatrix));
SIMPLE_TEST_STEP(SetMatrix, setMatrix(d.fMatrix));
SIMPLE_TEST_STEP(ClipRect, clipRect(d.fRect));
SIMPLE_TEST_STEP(ClipPath, clipPath(d.fPath));
SIMPLE_TEST_STEP(ClipRegion, clipRegion(d.fRegion, SkRegion::kReplace_Op));
SIMPLE_TEST_STEP(Clear, clear(d.fColor));
SIMPLE_TEST_STEP(BeginGroup, beginCommentGroup(d.fText.c_str()));
SIMPLE_TEST_STEP(AddComment, addComment(d.fText.c_str(), d.fText.c_str()));
SIMPLE_TEST_STEP(EndGroup, endCommentGroup());
///////////////////////////////////////////////////////////////////////////////
// Complex test steps
static void SaveMatrixClipStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter* reporter, CanvasTestStep* testStep) {
int saveCount = canvas->getSaveCount();
canvas->save();
canvas->translate(SkIntToScalar(1), SkIntToScalar(2));
canvas->clipRegion(d.fRegion);
canvas->restore();
REPORTER_ASSERT_MESSAGE(reporter, canvas->getSaveCount() == saveCount,
testStep->assertMessage());
REPORTER_ASSERT_MESSAGE(reporter, canvas->getTotalMatrix().isIdentity(),
testStep->assertMessage());
// REPORTER_ASSERT_MESSAGE(reporter, canvas->getTotalClip() != kTestRegion, testStep->assertMessage());
}
TEST_STEP(SaveMatrixClip, SaveMatrixClipStep);
static void SaveLayerStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter* reporter, CanvasTestStep* testStep) {
int saveCount = canvas->getSaveCount();
canvas->saveLayer(NULL, NULL);
canvas->restore();
REPORTER_ASSERT_MESSAGE(reporter, canvas->getSaveCount() == saveCount,
testStep->assertMessage());
}
TEST_STEP(SaveLayer, SaveLayerStep);
static void BoundedSaveLayerStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter* reporter, CanvasTestStep* testStep) {
int saveCount = canvas->getSaveCount();
canvas->saveLayer(&d.fRect, NULL);
canvas->restore();
REPORTER_ASSERT_MESSAGE(reporter, canvas->getSaveCount() == saveCount,
testStep->assertMessage());
}
TEST_STEP(BoundedSaveLayer, BoundedSaveLayerStep);
static void PaintSaveLayerStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter* reporter, CanvasTestStep* testStep) {
int saveCount = canvas->getSaveCount();
canvas->saveLayer(NULL, &d.fPaint);
canvas->restore();
REPORTER_ASSERT_MESSAGE(reporter, canvas->getSaveCount() == saveCount,
testStep->assertMessage());
}
TEST_STEP(PaintSaveLayer, PaintSaveLayerStep);
static void TwoClipOpsStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter*, CanvasTestStep*) {
// This test exercises a functionality in SkPicture that leads to the
// recording of restore offset placeholders. This test will trigger an
// assertion at playback time if the placeholders are not properly
// filled when the recording ends.
canvas->clipRect(d.fRect);
canvas->clipRegion(d.fRegion);
}
TEST_STEP(TwoClipOps, TwoClipOpsStep);
// exercise fix for http://code.google.com/p/skia/issues/detail?id=560
// ('SkPathStroker::lineTo() fails for line with length SK_ScalarNearlyZero')
static void DrawNearlyZeroLengthPathTestStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter*, CanvasTestStep*) {
SkPaint paint;
paint.setStrokeWidth(SkIntToScalar(1));
paint.setStyle(SkPaint::kStroke_Style);
canvas->drawPath(d.fNearlyZeroLengthPath, paint);
}
TEST_STEP(DrawNearlyZeroLengthPath, DrawNearlyZeroLengthPathTestStep);
static void DrawVerticesShaderTestStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter*, CanvasTestStep*) {
SkPoint pts[4];
pts[0].set(0, 0);
pts[1].set(SkIntToScalar(d.fWidth), 0);
pts[2].set(SkIntToScalar(d.fWidth), SkIntToScalar(d.fHeight));
pts[3].set(0, SkIntToScalar(d.fHeight));
SkPaint paint;
SkShader* shader = SkShader::CreateBitmapShader(d.fBitmap,
SkShader::kClamp_TileMode, SkShader::kClamp_TileMode);
paint.setShader(shader)->unref();
canvas->drawVertices(SkCanvas::kTriangleFan_VertexMode, 4, pts, pts,
NULL, NULL, NULL, 0, paint);
}
// NYI: issue 240.
TEST_STEP_NO_PDF(DrawVerticesShader, DrawVerticesShaderTestStep);
static void DrawPictureTestStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter*, CanvasTestStep*) {
SkPictureRecorder recorder;
SkCanvas* testCanvas = recorder.beginRecording(SkIntToScalar(d.fWidth), SkIntToScalar(d.fHeight),
NULL, 0);
testCanvas->scale(SkIntToScalar(2), SkIntToScalar(1));
testCanvas->clipRect(d.fRect);
testCanvas->drawRect(d.fRect, d.fPaint);
SkAutoTUnref<SkPicture> testPicture(recorder.endRecording());
canvas->drawPicture(testPicture);
}
TEST_STEP(DrawPicture, DrawPictureTestStep);
static void SaveRestoreTestStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter* reporter, CanvasTestStep* testStep) {
int baseSaveCount = canvas->getSaveCount();
int n = canvas->save();
REPORTER_ASSERT_MESSAGE(reporter, baseSaveCount == n, testStep->assertMessage());
REPORTER_ASSERT_MESSAGE(reporter, baseSaveCount + 1 == canvas->getSaveCount(),
testStep->assertMessage());
canvas->save();
canvas->save();
REPORTER_ASSERT_MESSAGE(reporter, baseSaveCount + 3 == canvas->getSaveCount(),
testStep->assertMessage());
canvas->restoreToCount(baseSaveCount + 1);
REPORTER_ASSERT_MESSAGE(reporter, baseSaveCount + 1 == canvas->getSaveCount(),
testStep->assertMessage());
// should this pin to 1, or be a no-op, or crash?
canvas->restoreToCount(0);
REPORTER_ASSERT_MESSAGE(reporter, 1 == canvas->getSaveCount(),
testStep->assertMessage());
}
TEST_STEP(SaveRestore, SaveRestoreTestStep);
static void NestedSaveRestoreWithSolidPaintTestStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter*, CanvasTestStep*) {
// This test step challenges the TestDeferredCanvasStateConsistency
// test cases because the opaque paint can trigger an optimization
// that discards previously recorded commands. The challenge is to maintain
// correct clip and matrix stack state.
canvas->resetMatrix();
canvas->rotate(SkIntToScalar(30));
canvas->save();
canvas->translate(SkIntToScalar(2), SkIntToScalar(1));
canvas->save();
canvas->scale(SkIntToScalar(3), SkIntToScalar(3));
SkPaint paint;
paint.setColor(0xFFFFFFFF);
canvas->drawPaint(paint);
canvas->restore();
canvas->restore();
}
TEST_STEP(NestedSaveRestoreWithSolidPaint, \
NestedSaveRestoreWithSolidPaintTestStep);
static void NestedSaveRestoreWithFlushTestStep(SkCanvas* canvas, const TestData& d,
skiatest::Reporter*, CanvasTestStep*) {
// This test step challenges the TestDeferredCanvasStateConsistency
// test case because the canvas flush on a deferred canvas will
// reset the recording session. The challenge is to maintain correct
// clip and matrix stack state on the playback canvas.
canvas->resetMatrix();
canvas->rotate(SkIntToScalar(30));
canvas->save();
canvas->translate(SkIntToScalar(2), SkIntToScalar(1));
canvas->save();
canvas->scale(SkIntToScalar(3), SkIntToScalar(3));
canvas->drawRect(d.fRect,d.fPaint);
canvas->flush();
canvas->restore();
canvas->restore();
}
TEST_STEP(NestedSaveRestoreWithFlush, NestedSaveRestoreWithFlushTestStep);
static void AssertCanvasStatesEqual(skiatest::Reporter* reporter, const TestData& d,
const SkCanvas* canvas1, const SkCanvas* canvas2,
CanvasTestStep* testStep) {
REPORTER_ASSERT_MESSAGE(reporter, canvas1->getDeviceSize() ==
canvas2->getDeviceSize(), testStep->assertMessage());
REPORTER_ASSERT_MESSAGE(reporter, canvas1->getSaveCount() ==
canvas2->getSaveCount(), testStep->assertMessage());
SkRect bounds1, bounds2;
REPORTER_ASSERT_MESSAGE(reporter,
canvas1->getClipBounds(&bounds1) == canvas2->getClipBounds(&bounds2),
testStep->assertMessage());
REPORTER_ASSERT_MESSAGE(reporter, bounds1 == bounds2,
testStep->assertMessage());
REPORTER_ASSERT_MESSAGE(reporter, canvas1->getDrawFilter() ==
canvas2->getDrawFilter(), testStep->assertMessage());
SkIRect deviceBounds1, deviceBounds2;
REPORTER_ASSERT_MESSAGE(reporter,
canvas1->getClipDeviceBounds(&deviceBounds1) ==
canvas2->getClipDeviceBounds(&deviceBounds2),
testStep->assertMessage());
REPORTER_ASSERT_MESSAGE(reporter, deviceBounds1 == deviceBounds2, testStep->assertMessage());
REPORTER_ASSERT_MESSAGE(reporter, canvas1->getTotalMatrix() ==
canvas2->getTotalMatrix(), testStep->assertMessage());
REPORTER_ASSERT_MESSAGE(reporter, equal_clips(*canvas1, *canvas2), testStep->assertMessage());
SkCanvas::LayerIter layerIter1(const_cast<SkCanvas*>(canvas1), false);
SkCanvas::LayerIter layerIter2(const_cast<SkCanvas*>(canvas2), false);
while (!layerIter1.done() && !layerIter2.done()) {
REPORTER_ASSERT_MESSAGE(reporter, layerIter1.matrix() ==
layerIter2.matrix(), testStep->assertMessage());
REPORTER_ASSERT_MESSAGE(reporter, layerIter1.clip() ==
layerIter2.clip(), testStep->assertMessage());
REPORTER_ASSERT_MESSAGE(reporter, layerIter1.paint() ==
layerIter2.paint(), testStep->assertMessage());
REPORTER_ASSERT_MESSAGE(reporter, layerIter1.x() ==
layerIter2.x(), testStep->assertMessage());
REPORTER_ASSERT_MESSAGE(reporter, layerIter1.y() ==
layerIter2.y(), testStep->assertMessage());
layerIter1.next();
layerIter2.next();
}
REPORTER_ASSERT_MESSAGE(reporter, layerIter1.done(),
testStep->assertMessage());
REPORTER_ASSERT_MESSAGE(reporter, layerIter2.done(),
testStep->assertMessage());
}
static void TestPdfDevice(skiatest::Reporter* reporter,
const TestData& d,
CanvasTestStep* testStep) {
SkISize pageSize = SkISize::Make(d.fWidth, d.fHeight);
SkPDFCanon canon;
SkAutoTUnref<SkPDFDevice> pdfDevice(
SkPDFDevice::Create(pageSize, 72.0f, &canon));
SkCanvas canvas(pdfDevice.get());
testStep->setAssertMessageFormat(kPdfAssertMessageFormat);
testStep->draw(&canvas, d, reporter);
SkPDFDocument doc;
doc.appendPage(pdfDevice.get());
SkDynamicMemoryWStream stream;
doc.emitPDF(&stream);
}
// The following class groups static functions that need to access
// the privates members of SkDeferredCanvas
class SkDeferredCanvasTester {
public:
static void TestDeferredCanvasStateConsistency(
skiatest::Reporter* reporter,
const TestData& d,
CanvasTestStep* testStep,
const SkCanvas& referenceCanvas, bool silent) {
SkAutoTUnref<SkSurface> surface(createSurface(0xFFFFFFFF));
SkAutoTUnref<SkDeferredCanvas> deferredCanvas(SkDeferredCanvas::Create(surface.get()));
testStep->setAssertMessageFormat(kDeferredDrawAssertMessageFormat);
testStep->draw(deferredCanvas, d, reporter);
testStep->setAssertMessageFormat(kDeferredPreFlushAssertMessageFormat);
AssertCanvasStatesEqual(reporter, d, deferredCanvas, &referenceCanvas, testStep);
if (silent) {
deferredCanvas->silentFlush();
} else {
deferredCanvas->flush();
}
testStep->setAssertMessageFormat(
silent ? kDeferredPostSilentFlushPlaybackAssertMessageFormat :
kDeferredPostFlushPlaybackAssertMessageFormat);
AssertCanvasStatesEqual(reporter, d, deferredCanvas->immediateCanvas(),
&referenceCanvas, testStep);
// Verified that deferred canvas state is not affected by flushing
// pending draw operations
// The following test code is commented out because it currently fails.
// Issue: http://code.google.com/p/skia/issues/detail?id=496
/*
testStep->setAssertMessageFormat(kDeferredPostFlushAssertMessageFormat);
AssertCanvasStatesEqual(reporter, &deferredCanvas, &referenceCanvas,
testStep);
*/
}
};
// unused
static void TestNWayCanvasStateConsistency(
skiatest::Reporter* reporter,
const TestData& d,
CanvasTestStep* testStep,
const SkCanvas& referenceCanvas) {
SkBitmap indirectStore1;
createBitmap(&indirectStore1, 0xFFFFFFFF);
SkCanvas indirectCanvas1(indirectStore1);
SkBitmap indirectStore2;
createBitmap(&indirectStore2, 0xFFFFFFFF);
SkCanvas indirectCanvas2(indirectStore2);
SkISize canvasSize = referenceCanvas.getDeviceSize();
SkNWayCanvas nWayCanvas(canvasSize.width(), canvasSize.height());
nWayCanvas.addCanvas(&indirectCanvas1);
nWayCanvas.addCanvas(&indirectCanvas2);
testStep->setAssertMessageFormat(kNWayDrawAssertMessageFormat);
testStep->draw(&nWayCanvas, d, reporter);
// Verify that the SkNWayCanvas reports consitent state
testStep->setAssertMessageFormat(kNWayStateAssertMessageFormat);
AssertCanvasStatesEqual(reporter, d, &nWayCanvas, &referenceCanvas, testStep);
// Verify that the indirect canvases report consitent state
testStep->setAssertMessageFormat(kNWayIndirect1StateAssertMessageFormat);
AssertCanvasStatesEqual(reporter, d, &indirectCanvas1, &referenceCanvas, testStep);
testStep->setAssertMessageFormat(kNWayIndirect2StateAssertMessageFormat);
AssertCanvasStatesEqual(reporter, d, &indirectCanvas2, &referenceCanvas, testStep);
}
/*
* This sub-test verifies that the test step passes when executed
* with SkCanvas and with classes derrived from SkCanvas. It also verifies
* that the all canvas derivatives report the same state as an SkCanvas
* after having executed the test step.
*/
static void TestOverrideStateConsistency(skiatest::Reporter* reporter, const TestData& d,
CanvasTestStep* testStep) {
SkBitmap referenceStore;
createBitmap(&referenceStore, 0xFFFFFFFF);
SkCanvas referenceCanvas(referenceStore);
testStep->setAssertMessageFormat(kCanvasDrawAssertMessageFormat);
testStep->draw(&referenceCanvas, d, reporter);
SkDeferredCanvasTester::TestDeferredCanvasStateConsistency(reporter, d, testStep, referenceCanvas, false);
SkDeferredCanvasTester::TestDeferredCanvasStateConsistency(reporter, d, testStep, referenceCanvas, true);
// The following test code is disabled because SkNWayCanvas does not
// report correct clipping and device bounds information
// Issue: http://code.google.com/p/skia/issues/detail?id=501
if (false) { // avoid bit rot, suppress warning
TestNWayCanvasStateConsistency(reporter, d, testStep, referenceCanvas);
}
if (false) { // avoid bit rot, suppress warning
test_clipVisitor(reporter, &referenceCanvas);
}
}
static void test_newraster(skiatest::Reporter* reporter) {
SkImageInfo info = SkImageInfo::MakeN32Premul(10, 10);
const size_t minRowBytes = info.minRowBytes();
const size_t size = info.getSafeSize(minRowBytes);
SkAutoMalloc storage(size);
SkPMColor* baseAddr = static_cast<SkPMColor*>(storage.get());
sk_bzero(baseAddr, size);
SkCanvas* canvas = SkCanvas::NewRasterDirect(info, baseAddr, minRowBytes);
REPORTER_ASSERT(reporter, canvas);
SkImageInfo info2;
size_t rowBytes;
const SkPMColor* addr = (const SkPMColor*)canvas->peekPixels(&info2, &rowBytes);
REPORTER_ASSERT(reporter, addr);
REPORTER_ASSERT(reporter, info == info2);
REPORTER_ASSERT(reporter, minRowBytes == rowBytes);
for (int y = 0; y < info.height(); ++y) {
for (int x = 0; x < info.width(); ++x) {
REPORTER_ASSERT(reporter, 0 == addr[x]);
}
addr = (const SkPMColor*)((const char*)addr + rowBytes);
}
SkDELETE(canvas);
// now try a deliberately bad info
info = info.makeWH(-1, info.height());
REPORTER_ASSERT(reporter, NULL == SkCanvas::NewRasterDirect(info, baseAddr, minRowBytes));
// too big
info = info.makeWH(1 << 30, 1 << 30);
REPORTER_ASSERT(reporter, NULL == SkCanvas::NewRasterDirect(info, baseAddr, minRowBytes));
// not a valid pixel type
info = SkImageInfo::Make(10, 10, kUnknown_SkColorType, info.alphaType());
REPORTER_ASSERT(reporter, NULL == SkCanvas::NewRasterDirect(info, baseAddr, minRowBytes));
// We should succeed with a zero-sized valid info
info = SkImageInfo::MakeN32Premul(0, 0);
canvas = SkCanvas::NewRasterDirect(info, baseAddr, minRowBytes);
REPORTER_ASSERT(reporter, canvas);
SkDELETE(canvas);
}
DEF_TEST(Canvas, reporter) {
TestData d;
for (int testStep = 0; testStep < testStepArray().count(); testStep++) {
TestOverrideStateConsistency(reporter, d, testStepArray()[testStep]);
if (testStepArray()[testStep]->enablePdfTesting()) {
TestPdfDevice(reporter, d, testStepArray()[testStep]);
}
}
test_newraster(reporter);
}
DEF_TEST(Canvas_SaveState, reporter) {
SkCanvas canvas(10, 10);
REPORTER_ASSERT(reporter, 1 == canvas.getSaveCount());
int n = canvas.save();
REPORTER_ASSERT(reporter, 1 == n);
REPORTER_ASSERT(reporter, 2 == canvas.getSaveCount());
n = canvas.saveLayer(NULL, NULL);
REPORTER_ASSERT(reporter, 2 == n);
REPORTER_ASSERT(reporter, 3 == canvas.getSaveCount());
canvas.restore();
REPORTER_ASSERT(reporter, 2 == canvas.getSaveCount());
canvas.restore();
REPORTER_ASSERT(reporter, 1 == canvas.getSaveCount());
}