5aaa69e433
Review URL http://codereview.appspot.com/4250056/ git-svn-id: http://skia.googlecode.com/svn/trunk@891 2bbb7eff-a529-9590-31e7-b0007b416f81
335 lines
9.7 KiB
C++
335 lines
9.7 KiB
C++
/*
|
|
Copyright 2010 Google Inc.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
|
|
#ifndef GrPoint_DEFINED
|
|
#define GrPoint_DEFINED
|
|
|
|
#include "GrTypes.h"
|
|
#include "GrScalar.h"
|
|
|
|
/**
|
|
* 2D Point struct
|
|
*/
|
|
struct GrPoint {
|
|
public:
|
|
GrScalar fX, fY;
|
|
|
|
GrPoint() {}
|
|
GrPoint(GrScalar x, GrScalar y) { fX = x; fY = y; }
|
|
|
|
GrScalar x() const { return fX; }
|
|
GrScalar y() const { return fY; }
|
|
|
|
void set(GrScalar x, GrScalar y) {
|
|
fX = x;
|
|
fY = y;
|
|
}
|
|
|
|
void setAsMidPoint(const GrPoint& a, const GrPoint& b) {
|
|
fX = GrScalarAve(a.fX, b.fX);
|
|
fY = GrScalarAve(a.fY, b.fY);
|
|
}
|
|
|
|
void offset(GrScalar dx, GrScalar dy) {
|
|
fX += dx;
|
|
fY += dy;
|
|
}
|
|
|
|
GrScalar distanceToSqd(const GrPoint& p) const {
|
|
GrScalar dx = (p.fX - fX);
|
|
GrScalar dy = (p.fY - fY);
|
|
return GrMul(dx, dx) + GrMul(dy, dy);
|
|
}
|
|
|
|
GrScalar distanceTo(const GrPoint& p) const {
|
|
// TODO: fixed point sqrt
|
|
return GrFloatToScalar(sqrtf(GrScalarToFloat(distanceToSqd(p))));
|
|
}
|
|
|
|
GrScalar distanceToOriginSqd() const {
|
|
return GrMul(fX, fX) + GrMul(fY, fY);
|
|
}
|
|
|
|
GrScalar distanceToOrigin() const {
|
|
return GrFloatToScalar(sqrtf(GrScalarToFloat(distanceToOriginSqd())));
|
|
}
|
|
|
|
inline GrScalar distanceToLineBetweenSqd(const GrPoint& a,
|
|
const GrPoint& b) const;
|
|
|
|
inline GrScalar distanceToLineBetween(const GrPoint& a,
|
|
const GrPoint& b) const;
|
|
|
|
inline GrScalar distanceToLineSegmentBetweenSqd(const GrPoint& a,
|
|
const GrPoint& b) const;
|
|
|
|
inline GrScalar distanceToLineSegmentBetween(const GrPoint& a,
|
|
const GrPoint& b) const;
|
|
|
|
// counter-clockwise fan
|
|
void setRectFan(GrScalar l, GrScalar t, GrScalar r, GrScalar b) {
|
|
GrPoint* v = this;
|
|
v[0].set(l, t);
|
|
v[1].set(l, b);
|
|
v[2].set(r, b);
|
|
v[3].set(r, t);
|
|
}
|
|
|
|
void setRectFan(GrScalar l, GrScalar t, GrScalar r, GrScalar b, size_t stride) {
|
|
GrAssert(stride >= sizeof(GrPoint));
|
|
((GrPoint*)((intptr_t)this + 0 * stride))->set(l, t);
|
|
((GrPoint*)((intptr_t)this + 1 * stride))->set(l, b);
|
|
((GrPoint*)((intptr_t)this + 2 * stride))->set(r, b);
|
|
((GrPoint*)((intptr_t)this + 3 * stride))->set(r, t);
|
|
}
|
|
|
|
// counter-clockwise fan
|
|
void setIRectFan(int l, int t, int r, int b) {
|
|
GrPoint* v = this;
|
|
v[0].set(GrIntToScalar(l), GrIntToScalar(t));
|
|
v[1].set(GrIntToScalar(l), GrIntToScalar(b));
|
|
v[2].set(GrIntToScalar(r), GrIntToScalar(b));
|
|
v[3].set(GrIntToScalar(r), GrIntToScalar(t));
|
|
}
|
|
|
|
void setIRectFan(int l, int t, int r, int b, size_t stride) {
|
|
GrAssert(stride >= sizeof(GrPoint));
|
|
((GrPoint*)((intptr_t)this + 0 * stride))->set(GrIntToScalar(l),
|
|
GrIntToScalar(t));
|
|
((GrPoint*)((intptr_t)this + 1 * stride))->set(GrIntToScalar(l),
|
|
GrIntToScalar(b));
|
|
((GrPoint*)((intptr_t)this + 2 * stride))->set(GrIntToScalar(r),
|
|
GrIntToScalar(b));
|
|
((GrPoint*)((intptr_t)this + 3 * stride))->set(GrIntToScalar(r),
|
|
GrIntToScalar(t));
|
|
}
|
|
|
|
bool operator ==(const GrPoint& p) const {
|
|
return fX == p.fX && fY == p.fY;
|
|
}
|
|
|
|
bool operator !=(const GrPoint& p) const {
|
|
return fX != p.fX || fY != p.fY;
|
|
}
|
|
};
|
|
|
|
struct GrIPoint16 {
|
|
int16_t fX, fY;
|
|
|
|
void set(intptr_t x, intptr_t y) {
|
|
fX = GrToS16(x);
|
|
fY = GrToS16(y);
|
|
}
|
|
};
|
|
|
|
struct GrVec {
|
|
public:
|
|
GrScalar fX, fY;
|
|
|
|
GrVec() {}
|
|
GrVec(GrScalar x, GrScalar y) { fX = x; fY = y; }
|
|
|
|
GrScalar x() const { return fX; }
|
|
GrScalar y() const { return fY; }
|
|
|
|
/**
|
|
* set x and y length of the vector.
|
|
*/
|
|
void set(GrScalar x, GrScalar y) {
|
|
fX = x;
|
|
fY = y;
|
|
}
|
|
|
|
/**
|
|
* set vector to point from a to b.
|
|
*/
|
|
void setBetween(const GrPoint& a, const GrPoint& b) {
|
|
fX = b.fX - a.fX;
|
|
fY = b.fY - a.fY;
|
|
}
|
|
|
|
/**
|
|
* Make this vector be orthogonal to vec. Looking down vec the
|
|
* new vector will point left.
|
|
*/
|
|
void setOrthogLeft(const GrVec& vec) {
|
|
// vec could be this
|
|
GrVec v = vec;
|
|
fX = -v.fY;
|
|
fY = v.fX;
|
|
}
|
|
|
|
/**
|
|
* Make this vector be orthogonal to vec. Looking down vec the
|
|
* new vector will point right.
|
|
*/
|
|
void setOrthogRight(const GrVec& vec) {
|
|
// vec could be this
|
|
GrVec v = vec;
|
|
fX = v.fY;
|
|
fY = -v.fX;
|
|
}
|
|
|
|
/**
|
|
* set orthogonal to vec from a to b. Will be facing left relative to a,b
|
|
* vec
|
|
*/
|
|
void setOrthogLeftToVecBetween(const GrPoint& a, const GrPoint& b) {
|
|
fX = a.fY - b.fY;
|
|
fY = b.fX - a.fX;
|
|
}
|
|
|
|
/**
|
|
* set orthogonal to vec from a to b. Will be facing right relative to a,b
|
|
* vec.
|
|
*/
|
|
void setOrthogRightToVecBetween(const GrPoint& a, const GrPoint& b) {
|
|
fX = b.fY - a.fY;
|
|
fY = a.fX - b.fX;
|
|
}
|
|
|
|
/**
|
|
* length of the vector squared.
|
|
*/
|
|
GrScalar lengthSqd() const {
|
|
return GrMul(fX, fX) + GrMul(fY, fY);
|
|
}
|
|
|
|
/**
|
|
* length of the vector.
|
|
*/
|
|
GrScalar length() const {
|
|
// TODO: fixed point sqrt
|
|
return GrFloatToScalar(sqrtf(GrScalarToFloat(lengthSqd())));
|
|
}
|
|
|
|
/**
|
|
* normalizes the vector if it's length is not 0.
|
|
* @return true if normalized, otherwise false.
|
|
*/
|
|
bool normalize() {
|
|
GrScalar l = lengthSqd();
|
|
if (l) {
|
|
// TODO: fixed point sqrt and invert
|
|
l = 1 / sqrtf(l);
|
|
fX *= l;
|
|
fY *= l;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Dot product of this with vec.
|
|
*/
|
|
GrScalar dot(const GrVec& vec) const {
|
|
return GrMul(vec.fX, fX) + GrMul(vec.fY, fY);
|
|
}
|
|
|
|
/**
|
|
* Dot product of this vec with vector from (0,0) to a pt.
|
|
*/
|
|
GrScalar dotWithVecToPt(const GrPoint& pt) const {
|
|
return GrMul(pt.fX, fX) + GrMul(pt.fY, fY);
|
|
}
|
|
|
|
/**
|
|
* z-value of this cross vec.
|
|
*/
|
|
GrScalar cross(const GrVec& vec) const {
|
|
return GrMul(fX, vec.fY) - GrMul(fY, vec.fX);
|
|
}
|
|
|
|
bool operator ==(const GrPoint& p) const {
|
|
return fX == p.fX && fY == p.fY;
|
|
}
|
|
|
|
bool operator !=(const GrPoint& p) const {
|
|
return fX != p.fX || fY != p.fY;
|
|
}
|
|
};
|
|
|
|
GrScalar GrPoint::distanceToLineBetweenSqd(const GrPoint& a,
|
|
const GrPoint& b) const {
|
|
// Let d be the distance between c (this) and line ab.
|
|
// The area of the triangle defined by a, b, and c is
|
|
// A = |b-a|*d/2. Let u = b-a and v = c-a. The cross product of
|
|
// u and v is aligned with the z axis and its magnitude is 2A.
|
|
// So d = |u x v| / |u|.
|
|
GrVec u, v;
|
|
u.setBetween(a,b);
|
|
v.setBetween(a,*this);
|
|
|
|
GrScalar det = u.cross(v);
|
|
return (GrMul(det, det)) / u.lengthSqd();
|
|
}
|
|
|
|
GrScalar GrPoint::distanceToLineBetween(const GrPoint& a,
|
|
const GrPoint& b) const {
|
|
GrVec u, v;
|
|
u.setBetween(a,b);
|
|
v.setBetween(a,*this);
|
|
|
|
GrScalar det = u.cross(v);
|
|
return (GrScalarAbs(det)) / u.length();
|
|
}
|
|
|
|
GrScalar GrPoint::distanceToLineSegmentBetweenSqd(const GrPoint& a,
|
|
const GrPoint& b) const {
|
|
// See comments to distanceToLineBetweenSqd. If the projection of c onto
|
|
// u is between a and b then this returns the same result as that
|
|
// function. Otherwise, it returns the distance to the closer of a and
|
|
// b. Let the projection of v onto u be v'. There are three cases:
|
|
// 1. v' points opposite to u. c is not between a and b and is closer
|
|
// to a than b.
|
|
// 2. v' points along u and has magnitude less than y. c is between
|
|
// a and b and the distance to the segment is the same as distance
|
|
// to the line ab.
|
|
// 3. v' points along u and has greater magnitude than u. c is not
|
|
// not between a and b and is closer to b than a.
|
|
// v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
|
|
// in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
|
|
// we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
|
|
// avoid a sqrt to compute |u|.
|
|
|
|
GrVec u, v;
|
|
u.setBetween(a,b);
|
|
v.setBetween(a,*this);
|
|
|
|
GrScalar uLengthSqd = u.lengthSqd();
|
|
GrScalar uDotV = u.dot(v);
|
|
|
|
if (uDotV <= 0) {
|
|
return v.lengthSqd();
|
|
} else if (uDotV > uLengthSqd) {
|
|
return b.distanceToSqd(*this);
|
|
} else {
|
|
GrScalar det = u.cross(v);
|
|
return (GrMul(det, det)) / uLengthSqd;
|
|
}
|
|
}
|
|
|
|
GrScalar GrPoint::distanceToLineSegmentBetween(const GrPoint& a,
|
|
const GrPoint& b) const {
|
|
// TODO: fixed point sqrt
|
|
return GrFloatToScalar(sqrtf(GrScalarToFloat(distanceToLineSegmentBetweenSqd(a,b))));
|
|
}
|
|
|
|
|
|
#endif
|
|
|