skia2/bench/subset/SubsetTranslateBench.cpp
scroggo 9b2cdbf481 Allow creating multiple scanline decoders.
Make getScanlineDecoder return a new object each time, which is
owned by the caller, and independent from any existing scanline
decoders and the SkCodec itself.

Since the SkCodec already contains the entire state machine, and it
is used by the scanline decoders, simply create a new SkCodec which
is now owned by the scanline decoder.

Move code that cleans up after using a scanline decoder into its
destructor

One side effect is that creating the first scanline decoder requires
a duplication of the stream and re-reading the header. (With some
more complexity/changes, we could pass the state machine to the
scanline decoder and make the SkCodec recreate its own state machine
instead.) The typical client of the scanline decoder (region decoder)
uses an SkMemoryStream, so the duplication is cheap, although we
should consider the extra time to reread the header/recreate the state
machine. (If/when we use the scanline decoder for other purposes,
where the stream may not be cheaply duplicated, we should consider
passing the state machine.)

One (intended) result of this change is that a client can create a
new scanline decoder in a new thread, and decode different pieces of
the image simultaneously.

In SkPngCodec::decodePalette, use fBitDepth rather than a parameter.

Review URL: https://codereview.chromium.org/1230033004
2015-07-10 12:07:02 -07:00

127 lines
5.4 KiB
C++

/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SubsetTranslateBench.h"
#include "SubsetBenchPriv.h"
#include "SkData.h"
#include "SkCodec.h"
#include "SkImageDecoder.h"
#include "SkOSFile.h"
#include "SkScanlineDecoder.h"
#include "SkStream.h"
/*
*
* This benchmark is designed to test the performance of subset decoding.
* It uses input dimensions to decode the entire image where each block is susbetW x subsetH.
*
*/
SubsetTranslateBench::SubsetTranslateBench(const SkString& path,
SkColorType colorType,
uint32_t subsetWidth,
uint32_t subsetHeight,
bool useCodec)
: fColorType(colorType)
, fSubsetWidth(subsetWidth)
, fSubsetHeight(subsetHeight)
, fUseCodec(useCodec)
{
// Parse the filename
SkString baseName = SkOSPath::Basename(path.c_str());
// Choose an informative color name
const char* colorName = get_color_name(fColorType);
fName.printf("%sSubsetTranslate_%dx%d_%s_%s", fUseCodec ? "Codec" : "Image", fSubsetWidth,
fSubsetHeight, baseName.c_str(), colorName);
// Perform the decode setup
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(path.c_str()));
fStream.reset(new SkMemoryStream(encoded));
}
const char* SubsetTranslateBench::onGetName() {
return fName.c_str();
}
bool SubsetTranslateBench::isSuitableFor(Backend backend) {
return kNonRendering_Backend == backend;
}
void SubsetTranslateBench::onDraw(const int n, SkCanvas* canvas) {
// When the color type is kIndex8, we will need to store the color table. If it is
// used, it will be initialized by the codec.
int colorCount;
SkPMColor colors[256];
if (fUseCodec) {
for (int count = 0; count < n; count++) {
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromStream(fStream->duplicate()));
const SkImageInfo info = codec->getInfo().makeColorType(fColorType);
SkAutoTDeleteArray<uint8_t> row(SkNEW_ARRAY(uint8_t, info.minRowBytes()));
SkAutoTDelete<SkScanlineDecoder> scanlineDecoder(codec->getScanlineDecoder(
info, NULL, colors, &colorCount));
SkBitmap bitmap;
// Note that we use the same bitmap for all of the subsets.
// It might be larger than necessary for the end subsets.
SkImageInfo subsetInfo = info.makeWH(fSubsetWidth, fSubsetHeight);
alloc_pixels(&bitmap, subsetInfo, colors, colorCount);
for (int x = 0; x < info.width(); x += fSubsetWidth) {
for (int y = 0; y < info.height(); y += fSubsetHeight) {
scanlineDecoder->skipScanlines(y);
const uint32_t currSubsetWidth =
x + (int) fSubsetWidth > info.width() ?
info.width() - x : fSubsetWidth;
const uint32_t currSubsetHeight =
y + (int) fSubsetHeight > info.height() ?
info.height() - y : fSubsetHeight;
const uint32_t bpp = info.bytesPerPixel();
for (uint32_t y = 0; y < currSubsetHeight; y++) {
scanlineDecoder->getScanlines(row.get(), 1, 0);
memcpy(bitmap.getAddr(0, y), row.get() + x * bpp,
currSubsetWidth * bpp);
}
}
}
}
} else {
// We create a color table here to satisfy allocPixels() when the output
// type is kIndex8. It's okay that this is uninitialized since we never
// use it.
SkColorTable* colorTable = SkNEW_ARGS(SkColorTable, (colors, 0));
for (int count = 0; count < n; count++) {
int width, height;
SkAutoTDelete<SkImageDecoder> decoder(SkImageDecoder::Factory(fStream));
decoder->buildTileIndex(fStream->duplicate(), &width, &height);
SkBitmap bitmap;
// Note that we use the same bitmap for all of the subsets.
// It might be larger than necessary for the end subsets.
// If we do not include this step, decodeSubset() would allocate space
// for the pixels automatically, but this would not allow us to reuse the
// same bitmap as the other subsets. We want to reuse the same bitmap
// because it gives a more fair comparison with SkCodec and is a common
// use case of BitmapRegionDecoder.
bitmap.allocPixels(SkImageInfo::Make(fSubsetWidth, fSubsetHeight,
fColorType, kOpaque_SkAlphaType), NULL, colorTable);
for (int x = 0; x < width; x += fSubsetWidth) {
for (int y = 0; y < height; y += fSubsetHeight) {
const uint32_t currSubsetWidth = x + (int) fSubsetWidth > width ?
width - x : fSubsetWidth;
const uint32_t currSubsetHeight = y + (int) fSubsetHeight > height ?
height - y : fSubsetHeight;
SkIRect rect = SkIRect::MakeXYWH(x, y, currSubsetWidth,
currSubsetHeight);
decoder->decodeSubset(&bitmap, rect, fColorType);
}
}
}
}
}