70fa84a9bf
GrSurfaceContext::rescale uses GrSurfaceFillContext instead of GrSurfaceDrawContext. Change-Id: I9c2d647d8f221c129ec4485a4ed936202aee6362 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/351923 Reviewed-by: Robert Phillips <robertphillips@google.com> Commit-Queue: Brian Salomon <bsalomon@google.com>
734 lines
38 KiB
C++
734 lines
38 KiB
C++
/*
|
|
* Copyright 2020 Google LLC.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "include/core/SkCanvas.h"
|
|
#include "include/core/SkImage.h"
|
|
#include "include/core/SkSurface.h"
|
|
#include "include/effects/SkGradientShader.h"
|
|
#include "include/gpu/GrDirectContext.h"
|
|
#include "src/core/SkAutoPixmapStorage.h"
|
|
#include "src/core/SkConvertPixels.h"
|
|
#include "src/gpu/GrDirectContextPriv.h"
|
|
#include "src/gpu/GrImageInfo.h"
|
|
#include "src/gpu/GrSurfaceContext.h"
|
|
#include "tests/Test.h"
|
|
#include "tests/TestUtils.h"
|
|
#include "tools/ToolUtils.h"
|
|
#include "tools/gpu/BackendTextureImageFactory.h"
|
|
#include "tools/gpu/GrContextFactory.h"
|
|
#include "tools/gpu/ProxyUtils.h"
|
|
|
|
#include <initializer_list>
|
|
|
|
static constexpr int min_rgb_channel_bits(SkColorType ct) {
|
|
switch (ct) {
|
|
case kUnknown_SkColorType: return 0;
|
|
case kAlpha_8_SkColorType: return 0;
|
|
case kA16_unorm_SkColorType: return 0;
|
|
case kA16_float_SkColorType: return 0;
|
|
case kRGB_565_SkColorType: return 5;
|
|
case kARGB_4444_SkColorType: return 4;
|
|
case kR8G8_unorm_SkColorType: return 8;
|
|
case kR16G16_unorm_SkColorType: return 16;
|
|
case kR16G16_float_SkColorType: return 16;
|
|
case kRGBA_8888_SkColorType: return 8;
|
|
case kRGB_888x_SkColorType: return 8;
|
|
case kBGRA_8888_SkColorType: return 8;
|
|
case kRGBA_1010102_SkColorType: return 10;
|
|
case kRGB_101010x_SkColorType: return 10;
|
|
case kBGRA_1010102_SkColorType: return 10;
|
|
case kBGR_101010x_SkColorType: return 10;
|
|
case kGray_8_SkColorType: return 8; // counting gray as "rgb"
|
|
case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa
|
|
case kRGBA_F16_SkColorType: return 10; // just counting the mantissa
|
|
case kRGBA_F32_SkColorType: return 23; // just counting the mantissa
|
|
case kR16G16B16A16_unorm_SkColorType: return 16;
|
|
}
|
|
SkUNREACHABLE;
|
|
}
|
|
|
|
static constexpr int alpha_channel_bits(SkColorType ct) {
|
|
switch (ct) {
|
|
case kUnknown_SkColorType: return 0;
|
|
case kAlpha_8_SkColorType: return 8;
|
|
case kA16_unorm_SkColorType: return 16;
|
|
case kA16_float_SkColorType: return 16;
|
|
case kRGB_565_SkColorType: return 0;
|
|
case kARGB_4444_SkColorType: return 4;
|
|
case kR8G8_unorm_SkColorType: return 0;
|
|
case kR16G16_unorm_SkColorType: return 0;
|
|
case kR16G16_float_SkColorType: return 0;
|
|
case kRGBA_8888_SkColorType: return 8;
|
|
case kRGB_888x_SkColorType: return 0;
|
|
case kBGRA_8888_SkColorType: return 8;
|
|
case kRGBA_1010102_SkColorType: return 2;
|
|
case kRGB_101010x_SkColorType: return 0;
|
|
case kBGRA_1010102_SkColorType: return 2;
|
|
case kBGR_101010x_SkColorType: return 0;
|
|
case kGray_8_SkColorType: return 0;
|
|
case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa
|
|
case kRGBA_F16_SkColorType: return 10; // just counting the mantissa
|
|
case kRGBA_F32_SkColorType: return 23; // just counting the mantissa
|
|
case kR16G16B16A16_unorm_SkColorType: return 16;
|
|
}
|
|
SkUNREACHABLE;
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct GpuReadPixelTestRules {
|
|
// Test unpremul sources? We could omit this and detect that creating the source of the read
|
|
// failed but having it lets us skip generating reference color data.
|
|
bool fAllowUnpremulSrc = true;
|
|
// Are reads that are overlapping but not contained by the src bounds expected to succeed?
|
|
bool fUncontainedRectSucceeds = true;
|
|
};
|
|
|
|
// Makes a src populated with the pixmap. The src should get its image info (or equivalent) from
|
|
// the pixmap.
|
|
template <typename T> using GpuSrcFactory = T(SkPixmap&);
|
|
|
|
enum class GpuReadResult {
|
|
kFail,
|
|
kSuccess,
|
|
kExcusedFailure,
|
|
};
|
|
|
|
// Does a read from the T into the pixmap.
|
|
template <typename T>
|
|
using GpuReadSrcFn = GpuReadResult(const T&, const SkIVector& offset, const SkPixmap&);
|
|
|
|
} // anonymous namespace
|
|
|
|
template <typename T>
|
|
static void gpu_read_pixels_test_driver(skiatest::Reporter* reporter,
|
|
const GpuReadPixelTestRules& rules,
|
|
const std::function<GpuSrcFactory<T>>& srcFactory,
|
|
const std::function<GpuReadSrcFn<T>>& read) {
|
|
// Separate this out just to give it some line width to breathe. Note 'srcPixels' should have
|
|
// the same image info as src. We will do a converting readPixels() on it to get the data
|
|
// to compare with the results of 'read'.
|
|
auto runTest = [&](const T& src,
|
|
const SkPixmap& srcPixels,
|
|
const SkImageInfo& readInfo,
|
|
const SkIVector& offset) {
|
|
const bool csConversion =
|
|
!SkColorSpace::Equals(readInfo.colorSpace(), srcPixels.info().colorSpace());
|
|
const auto readCT = readInfo.colorType();
|
|
const auto readAT = readInfo.alphaType();
|
|
const auto srcCT = srcPixels.info().colorType();
|
|
const auto srcAT = srcPixels.info().alphaType();
|
|
const auto rect = SkIRect::MakeWH(readInfo.width(), readInfo.height()).makeOffset(offset);
|
|
const auto surfBounds = SkIRect::MakeWH(srcPixels.width(), srcPixels.height());
|
|
const size_t readBpp = SkColorTypeBytesPerPixel(readCT);
|
|
|
|
// Make the row bytes in the dst be loose for extra stress.
|
|
const size_t dstRB = readBpp * readInfo.width() + 10 * readBpp;
|
|
// This will make the last row tight.
|
|
const size_t dstSize = readInfo.computeByteSize(dstRB);
|
|
std::unique_ptr<char[]> dstData(new char[dstSize]);
|
|
SkPixmap dstPixels(readInfo, dstData.get(), dstRB);
|
|
// Initialize with an arbitrary value for each byte. Later we will check that only the
|
|
// correct part of the destination gets overwritten by 'read'.
|
|
static constexpr auto kInitialByte = static_cast<char>(0x1B);
|
|
std::fill_n(static_cast<char*>(dstPixels.writable_addr()),
|
|
dstPixels.computeByteSize(),
|
|
kInitialByte);
|
|
|
|
const GpuReadResult result = read(src, offset, dstPixels);
|
|
|
|
if (!SkIRect::Intersects(rect, surfBounds)) {
|
|
REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess);
|
|
} else if (readCT == kUnknown_SkColorType) {
|
|
REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess);
|
|
} else if ((readAT == kUnknown_SkAlphaType) != (srcAT == kUnknown_SkAlphaType)) {
|
|
REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess);
|
|
} else if (!rules.fUncontainedRectSucceeds && !surfBounds.contains(rect)) {
|
|
REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess);
|
|
} else if (result == GpuReadResult::kFail) {
|
|
// TODO: Support RGB/BGR 101010x, BGRA 1010102 on the GPU.
|
|
if (SkColorTypeToGrColorType(readCT) != GrColorType::kUnknown) {
|
|
ERRORF(reporter,
|
|
"Read failed. Src CT: %s, Src AT: %s Read CT: %s, Read AT: %s, "
|
|
"Rect [%d, %d, %d, %d], CS conversion: %d\n",
|
|
ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT),
|
|
ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT),
|
|
rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool guardOk = true;
|
|
auto guardCheck = [](char x) { return x == kInitialByte; };
|
|
|
|
// Considering the rect we tried to read and the surface bounds figure out which pixels in
|
|
// both src and dst space should actually have been read and written.
|
|
SkIRect srcReadRect;
|
|
if (result == GpuReadResult::kSuccess && srcReadRect.intersect(surfBounds, rect)) {
|
|
SkIRect dstWriteRect = srcReadRect.makeOffset(-rect.fLeft, -rect.fTop);
|
|
|
|
const bool lumConversion =
|
|
!(SkColorTypeChannelFlags(srcCT) & kGray_SkColorChannelFlag) &&
|
|
(SkColorTypeChannelFlags(readCT) & kGray_SkColorChannelFlag);
|
|
// A CS or luminance conversion allows a 3 value difference and otherwise a 2 value
|
|
// difference. Note that sometimes read back on GPU can be lossy even when there no
|
|
// conversion at all because GPU->CPU read may go to a lower bit depth format and then
|
|
// be promoted back to the original type. For example, GL ES cannot read to 1010102, so
|
|
// we go through 8888.
|
|
float numer = (lumConversion || csConversion) ? 3.f : 2.f;
|
|
// Allow some extra tolerance if unpremuling.
|
|
if (srcAT == kPremul_SkAlphaType && readAT == kUnpremul_SkAlphaType) {
|
|
numer += 1;
|
|
}
|
|
int rgbBits = std::min({min_rgb_channel_bits(readCT), min_rgb_channel_bits(srcCT), 8});
|
|
float tol = numer / (1 << rgbBits);
|
|
float alphaTol = 0;
|
|
if (readAT != kOpaque_SkAlphaType && srcAT != kOpaque_SkAlphaType) {
|
|
// Alpha can also get squashed down to 8 bits going through an intermediate
|
|
// color format.
|
|
const int alphaBits = std::min({alpha_channel_bits(readCT),
|
|
alpha_channel_bits(srcCT),
|
|
8});
|
|
alphaTol = 2.f / (1 << alphaBits);
|
|
}
|
|
|
|
const float tols[4] = {tol, tol, tol, alphaTol};
|
|
auto error = std::function<ComparePixmapsErrorReporter>([&](int x, int y,
|
|
const float diffs[4]) {
|
|
SkASSERT(x >= 0 && y >= 0);
|
|
ERRORF(reporter,
|
|
"Src CT: %s, Src AT: %s, Read CT: %s, Read AT: %s, Rect [%d, %d, %d, %d]"
|
|
", CS conversion: %d\n"
|
|
"Error at %d, %d. Diff in floats: (%f, %f, %f %f)",
|
|
ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT),
|
|
ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT),
|
|
rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion, x, y,
|
|
diffs[0], diffs[1], diffs[2], diffs[3]);
|
|
});
|
|
SkAutoPixmapStorage ref;
|
|
SkImageInfo refInfo = readInfo.makeDimensions(dstWriteRect.size());
|
|
ref.alloc(refInfo);
|
|
if (readAT == kUnknown_SkAlphaType) {
|
|
// Do a spoofed read where src and dst alpha type are both kUnpremul. This will
|
|
// allow SkPixmap readPixels to succeed and won't do any alpha type conversion.
|
|
SkPixmap unpremulRef(refInfo.makeAlphaType(kUnpremul_SkAlphaType),
|
|
ref.addr(),
|
|
ref.rowBytes());
|
|
SkPixmap unpremulSRc(srcPixels.info().makeAlphaType(kUnpremul_SkAlphaType),
|
|
srcPixels.addr(),
|
|
srcPixels.rowBytes());
|
|
|
|
unpremulSRc.readPixels(unpremulRef, srcReadRect.x(), srcReadRect.y());
|
|
} else {
|
|
srcPixels.readPixels(ref, srcReadRect.x(), srcReadRect.y());
|
|
}
|
|
// This is the part of dstPixels that should have been updated.
|
|
SkPixmap actual;
|
|
SkAssertResult(dstPixels.extractSubset(&actual, dstWriteRect));
|
|
ComparePixels(ref, actual, tols, error);
|
|
|
|
const auto* v = dstData.get();
|
|
const auto* end = dstData.get() + dstSize;
|
|
guardOk = std::all_of(v, v + dstWriteRect.top() * dstPixels.rowBytes(), guardCheck);
|
|
v += dstWriteRect.top() * dstPixels.rowBytes();
|
|
for (int y = dstWriteRect.top(); y < dstWriteRect.bottom(); ++y) {
|
|
guardOk |= std::all_of(v, v + dstWriteRect.left() * readBpp, guardCheck);
|
|
auto pad = v + dstWriteRect.right() * readBpp;
|
|
auto rowEnd = std::min(end, v + dstPixels.rowBytes());
|
|
// min protects against reading past the end of the tight last row.
|
|
guardOk |= std::all_of(pad, rowEnd, guardCheck);
|
|
v = rowEnd;
|
|
}
|
|
guardOk |= std::all_of(v, end, guardCheck);
|
|
} else {
|
|
guardOk = std::all_of(dstData.get(), dstData.get() + dstSize, guardCheck);
|
|
}
|
|
if (!guardOk) {
|
|
ERRORF(reporter,
|
|
"Result pixels modified result outside read rect [%d, %d, %d, %d]. "
|
|
"Src CT: %s, Read CT: %s, CS conversion: %d",
|
|
rect.fLeft, rect.fTop, rect.fRight, rect.fBottom,
|
|
ToolUtils::colortype_name(srcCT), ToolUtils::colortype_name(readCT),
|
|
csConversion);
|
|
}
|
|
return result;
|
|
};
|
|
|
|
static constexpr int kW = 16;
|
|
static constexpr int kH = 16;
|
|
|
|
// Makes the reference data that is used to populate the src. Always F32 regardless of srcCT.
|
|
auto make_ref_f32_data = [](SkAlphaType srcAT, SkColorType srcCT) -> SkAutoPixmapStorage {
|
|
// Make src data in F32 with srcAT. We will convert it to each color type we test to
|
|
// initialize the src.
|
|
auto surfInfo = SkImageInfo::Make(kW, kH,
|
|
kRGBA_F32_SkColorType,
|
|
srcAT,
|
|
SkColorSpace::MakeSRGB());
|
|
// Can't make a kUnknown_SkAlphaType surface.
|
|
if (srcAT == kUnknown_SkAlphaType) {
|
|
surfInfo = surfInfo.makeAlphaType(kUnpremul_SkAlphaType);
|
|
}
|
|
auto refSurf = SkSurface::MakeRaster(surfInfo);
|
|
static constexpr SkPoint kPts1[] = {{0, 0}, {kW, kH}};
|
|
static constexpr SkColor kColors1[] = {SK_ColorGREEN, SK_ColorRED};
|
|
SkPaint paint;
|
|
paint.setShader(
|
|
SkGradientShader::MakeLinear(kPts1, kColors1, nullptr, 2, SkTileMode::kClamp));
|
|
refSurf->getCanvas()->drawPaint(paint);
|
|
static constexpr SkPoint kPts2[] = {{kW, 0}, {0, kH}};
|
|
static constexpr SkColor kColors2[] = {SK_ColorBLUE, SK_ColorBLACK};
|
|
paint.setShader(
|
|
SkGradientShader::MakeLinear(kPts2, kColors2, nullptr, 2, SkTileMode::kClamp));
|
|
paint.setBlendMode(SkBlendMode::kPlus);
|
|
refSurf->getCanvas()->drawPaint(paint);
|
|
// Keep everything opaque if the src alpha type is opaque. Also, there is an issue with
|
|
// 1010102 (the only color type where the number of alpha bits is non-zero and not the
|
|
// same as r, g, and b). Because of the different precisions the draw below can create
|
|
// data that isn't strictly premul (e.g. alpha is 1/3 but green is .4). SW will clamp
|
|
// r, g, b to a if the dst is premul and a different color type. GPU doesn't do this.
|
|
// We could but 1010102 premul is kind of dubious anyway. So for now just keep the data
|
|
// opaque.
|
|
if (srcAT != kOpaque_SkAlphaType &&
|
|
(srcAT == kPremul_SkAlphaType && srcCT != kRGBA_1010102_SkColorType &&
|
|
srcCT != kBGRA_1010102_SkColorType)) {
|
|
static constexpr SkColor kColors3[] = {SK_ColorWHITE,
|
|
SK_ColorWHITE,
|
|
0x60FFFFFF,
|
|
SK_ColorWHITE,
|
|
SK_ColorWHITE};
|
|
static constexpr SkScalar kPos3[] = {0.f, 0.15f, 0.5f, 0.85f, 1.f};
|
|
paint.setShader(SkGradientShader::MakeRadial({kW / 2.f, kH / 2.f}, (kW + kH) / 10.f,
|
|
kColors3, kPos3, 5, SkTileMode::kMirror));
|
|
paint.setBlendMode(SkBlendMode::kDstIn);
|
|
refSurf->getCanvas()->drawPaint(paint);
|
|
}
|
|
|
|
const auto srcInfo = SkImageInfo::Make(kW, kH, srcCT, srcAT, SkColorSpace::MakeSRGB());
|
|
SkAutoPixmapStorage srcPixels;
|
|
srcPixels.alloc(srcInfo);
|
|
SkPixmap readPixmap = srcPixels;
|
|
// Spoof the alpha type to kUnpremul so the read will succeed without doing any conversion
|
|
// (because we made our surface also be kUnpremul).
|
|
if (srcAT == kUnknown_SkAlphaType) {
|
|
readPixmap.reset(srcPixels.info().makeAlphaType(kUnpremul_SkAlphaType),
|
|
srcPixels.addr(),
|
|
srcPixels.rowBytes());
|
|
}
|
|
refSurf->readPixels(readPixmap, 0, 0);
|
|
return srcPixels;
|
|
};
|
|
const std::vector<SkIRect> longRectArray = {
|
|
// entire thing
|
|
SkIRect::MakeWH(kW, kH),
|
|
// larger on all sides
|
|
SkIRect::MakeLTRB(-10, -10, kW + 10, kH + 10),
|
|
// fully contained
|
|
SkIRect::MakeLTRB(kW / 4, kH / 4, 3 * kW / 4, 3 * kH / 4),
|
|
// outside top left
|
|
SkIRect::MakeLTRB(-10, -10, -1, -1),
|
|
// touching top left corner
|
|
SkIRect::MakeLTRB(-10, -10, 0, 0),
|
|
// overlapping top left corner
|
|
SkIRect::MakeLTRB(-10, -10, kW / 4, kH / 4),
|
|
// overlapping top left and top right corners
|
|
SkIRect::MakeLTRB(-10, -10, kW + 10, kH / 4),
|
|
// touching entire top edge
|
|
SkIRect::MakeLTRB(-10, -10, kW + 10, 0),
|
|
// overlapping top right corner
|
|
SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH / 4),
|
|
// contained in x, overlapping top edge
|
|
SkIRect::MakeLTRB(kW / 4, -10, 3 * kW / 4, kH / 4),
|
|
// outside top right corner
|
|
SkIRect::MakeLTRB(kW + 1, -10, kW + 10, -1),
|
|
// touching top right corner
|
|
SkIRect::MakeLTRB(kW, -10, kW + 10, 0),
|
|
// overlapping top left and bottom left corners
|
|
SkIRect::MakeLTRB(-10, -10, kW / 4, kH + 10),
|
|
// touching entire left edge
|
|
SkIRect::MakeLTRB(-10, -10, 0, kH + 10),
|
|
// overlapping bottom left corner
|
|
SkIRect::MakeLTRB(-10, 3 * kH / 4, kW / 4, kH + 10),
|
|
// contained in y, overlapping left edge
|
|
SkIRect::MakeLTRB(-10, kH / 4, kW / 4, 3 * kH / 4),
|
|
// outside bottom left corner
|
|
SkIRect::MakeLTRB(-10, kH + 1, -1, kH + 10),
|
|
// touching bottom left corner
|
|
SkIRect::MakeLTRB(-10, kH, 0, kH + 10),
|
|
// overlapping bottom left and bottom right corners
|
|
SkIRect::MakeLTRB(-10, 3 * kH / 4, kW + 10, kH + 10),
|
|
// touching entire left edge
|
|
SkIRect::MakeLTRB(0, kH, kW, kH + 10),
|
|
// overlapping bottom right corner
|
|
SkIRect::MakeLTRB(3 * kW / 4, 3 * kH / 4, kW + 10, kH + 10),
|
|
// overlapping top right and bottom right corners
|
|
SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH + 10),
|
|
};
|
|
const std::vector<SkIRect> shortRectArray = {
|
|
// entire thing
|
|
SkIRect::MakeWH(kW, kH),
|
|
// fully contained
|
|
SkIRect::MakeLTRB(kW / 4, kH / 4, 3 * kW / 4, 3 * kH / 4),
|
|
// overlapping top right corner
|
|
SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH / 4),
|
|
};
|
|
// We ensure we use the long array once per src and read color type and otherwise use the
|
|
// short array to improve test run time.
|
|
// Also, some color types have no alpha values and thus Opaque Premul and Unpremul are
|
|
// equivalent. Just ensure each redundant AT is tested once with each CT (src and read).
|
|
// Similarly, alpha-only color types behave the same for all alpha types so just test premul
|
|
// after one iter.
|
|
// We consider a src or read CT thoroughly tested once it has run through the short rect array
|
|
// and full complement of alpha types with one successful read in the loop.
|
|
std::array<bool, kLastEnum_SkColorType + 1> srcCTTestedThoroughly = {},
|
|
readCTTestedThoroughly = {};
|
|
for (int sat = 0; sat < kLastEnum_SkAlphaType; ++sat) {
|
|
const auto srcAT = static_cast<SkAlphaType>(sat);
|
|
if (srcAT == kUnpremul_SkAlphaType && !rules.fAllowUnpremulSrc) {
|
|
continue;
|
|
}
|
|
for (int sct = 0; sct <= kLastEnum_SkColorType; ++sct) {
|
|
const auto srcCT = static_cast<SkColorType>(sct);
|
|
// Note that we only currently use srcCT for a 1010102 workaround. If we remove this we
|
|
// can also put the ref data setup above the srcCT loop.
|
|
SkAutoPixmapStorage srcPixels = make_ref_f32_data(srcAT, srcCT);
|
|
auto src = srcFactory(srcPixels);
|
|
if (!src) {
|
|
continue;
|
|
}
|
|
if (SkColorTypeIsAlwaysOpaque(srcCT) && srcCTTestedThoroughly[srcCT] &&
|
|
(kPremul_SkAlphaType == srcAT || kUnpremul_SkAlphaType == srcAT)) {
|
|
continue;
|
|
}
|
|
if (SkColorTypeIsAlphaOnly(srcCT) && srcCTTestedThoroughly[srcCT] &&
|
|
(kUnpremul_SkAlphaType == srcAT ||
|
|
kOpaque_SkAlphaType == srcAT ||
|
|
kUnknown_SkAlphaType == srcAT)) {
|
|
continue;
|
|
}
|
|
for (int rct = 0; rct <= kLastEnum_SkColorType; ++rct) {
|
|
const auto readCT = static_cast<SkColorType>(rct);
|
|
for (const sk_sp<SkColorSpace>& readCS :
|
|
{SkColorSpace::MakeSRGB(), SkColorSpace::MakeSRGBLinear()}) {
|
|
for (int at = 0; at <= kLastEnum_SkAlphaType; ++at) {
|
|
const auto readAT = static_cast<SkAlphaType>(at);
|
|
if (srcAT != kOpaque_SkAlphaType && readAT == kOpaque_SkAlphaType) {
|
|
// This doesn't make sense.
|
|
continue;
|
|
}
|
|
if (SkColorTypeIsAlwaysOpaque(readCT) && readCTTestedThoroughly[readCT] &&
|
|
(kPremul_SkAlphaType == readAT || kUnpremul_SkAlphaType == readAT)) {
|
|
continue;
|
|
}
|
|
if (SkColorTypeIsAlphaOnly(readCT) && readCTTestedThoroughly[readCT] &&
|
|
(kUnpremul_SkAlphaType == readAT ||
|
|
kOpaque_SkAlphaType == readAT ||
|
|
kUnknown_SkAlphaType == readAT)) {
|
|
continue;
|
|
}
|
|
const auto& rects =
|
|
srcCTTestedThoroughly[sct] && readCTTestedThoroughly[rct]
|
|
? shortRectArray
|
|
: longRectArray;
|
|
for (const auto& rect : rects) {
|
|
const auto readInfo = SkImageInfo::Make(rect.width(), rect.height(),
|
|
readCT, readAT, readCS);
|
|
const SkIVector offset = rect.topLeft();
|
|
GpuReadResult r = runTest(src, srcPixels, readInfo, offset);
|
|
if (r == GpuReadResult::kSuccess) {
|
|
srcCTTestedThoroughly[sct] = true;
|
|
readCTTestedThoroughly[rct] = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceContextReadPixels, reporter, ctxInfo) {
|
|
using Surface = std::unique_ptr<GrSurfaceContext>;
|
|
GrDirectContext* direct = ctxInfo.directContext();
|
|
auto reader = std::function<GpuReadSrcFn<Surface>>(
|
|
[direct](const Surface& surface, const SkIVector& offset, const SkPixmap& pixels) {
|
|
if (surface->readPixels(direct, pixels, {offset.fX, offset.fY})) {
|
|
return GpuReadResult::kSuccess;
|
|
} else {
|
|
// Reading from a non-renderable format is not guaranteed to work on GL.
|
|
// We'd have to be able to force a copy or draw draw to a renderable format.
|
|
const auto& caps = *direct->priv().caps();
|
|
if (direct->backend() == GrBackendApi::kOpenGL &&
|
|
!caps.isFormatRenderable(surface->asSurfaceProxy()->backendFormat(), 1)) {
|
|
return GpuReadResult::kExcusedFailure;
|
|
}
|
|
return GpuReadResult::kFail;
|
|
}
|
|
});
|
|
GpuReadPixelTestRules rules;
|
|
rules.fAllowUnpremulSrc = true;
|
|
rules.fUncontainedRectSucceeds = true;
|
|
|
|
for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) {
|
|
for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) {
|
|
auto factory = std::function<GpuSrcFactory<Surface>>(
|
|
[direct, origin, renderable](const SkPixmap& src) {
|
|
if (src.colorType() == kRGB_888x_SkColorType) {
|
|
return Surface();
|
|
}
|
|
auto surfContext = GrSurfaceContext::Make(
|
|
direct, src.info(), SkBackingFit::kExact, origin, renderable);
|
|
if (surfContext) {
|
|
surfContext->writePixels(direct, src, {0, 0});
|
|
}
|
|
return surfContext;
|
|
});
|
|
gpu_read_pixels_test_driver(reporter, rules, factory, reader);
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct AsyncContext {
|
|
bool fCalled = false;
|
|
std::unique_ptr<const SkImage::AsyncReadResult> fResult;
|
|
};
|
|
} // anonymous namespace
|
|
|
|
// Making this a lambda in the test functions caused:
|
|
// "error: cannot compile this forwarded non-trivially copyable parameter yet"
|
|
// on x86/Win/Clang bot, referring to 'result'.
|
|
static void async_callback(void* c, std::unique_ptr<const SkImage::AsyncReadResult> result) {
|
|
auto context = static_cast<AsyncContext*>(c);
|
|
context->fResult = std::move(result);
|
|
context->fCalled = true;
|
|
};
|
|
|
|
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceAsyncReadPixels, reporter, ctxInfo) {
|
|
using Surface = sk_sp<SkSurface>;
|
|
auto reader = std::function<GpuReadSrcFn<Surface>>(
|
|
[](const Surface& surface, const SkIVector& offset, const SkPixmap& pixels) {
|
|
auto direct = surface->recordingContext()->asDirectContext();
|
|
SkASSERT(direct);
|
|
|
|
AsyncContext context;
|
|
auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset);
|
|
|
|
// Rescale quality and linearity don't matter since we're doing a non-scaling
|
|
// readback.
|
|
surface->asyncRescaleAndReadPixels(pixels.info(), rect,
|
|
SkImage::RescaleGamma::kSrc,
|
|
SkImage::RescaleMode::kNearest,
|
|
async_callback, &context);
|
|
direct->submit();
|
|
while (!context.fCalled) {
|
|
direct->checkAsyncWorkCompletion();
|
|
}
|
|
if (!context.fResult) {
|
|
return GpuReadResult::kFail;
|
|
}
|
|
SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), context.fResult->data(0),
|
|
context.fResult->rowBytes(0), pixels.info().minRowBytes(),
|
|
pixels.height());
|
|
return GpuReadResult::kSuccess;
|
|
});
|
|
GpuReadPixelTestRules rules;
|
|
rules.fAllowUnpremulSrc = false;
|
|
rules.fUncontainedRectSucceeds = false;
|
|
|
|
for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) {
|
|
auto factory = std::function<GpuSrcFactory<Surface>>(
|
|
[context = ctxInfo.directContext(), origin](const SkPixmap& src) {
|
|
if (src.colorType() == kRGB_888x_SkColorType) {
|
|
return Surface();
|
|
}
|
|
auto surf = SkSurface::MakeRenderTarget(context,
|
|
SkBudgeted::kYes,
|
|
src.info(),
|
|
0,
|
|
origin,
|
|
nullptr);
|
|
if (surf) {
|
|
surf->writePixels(src, 0, 0);
|
|
}
|
|
return surf;
|
|
});
|
|
gpu_read_pixels_test_driver(reporter, rules, factory, reader);
|
|
}
|
|
}
|
|
|
|
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageAsyncReadPixels, reporter, ctxInfo) {
|
|
using Image = sk_sp<SkImage>;
|
|
auto context = ctxInfo.directContext();
|
|
auto reader = std::function<GpuReadSrcFn<Image>>([context](const Image& image,
|
|
const SkIVector& offset,
|
|
const SkPixmap& pixels) {
|
|
AsyncContext asyncContext;
|
|
auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset);
|
|
// The GPU implementation is based on rendering and will fail for non-renderable color
|
|
// types.
|
|
auto ct = SkColorTypeToGrColorType(image->colorType());
|
|
auto format = context->priv().caps()->getDefaultBackendFormat(ct, GrRenderable::kYes);
|
|
if (!context->priv().caps()->isFormatAsColorTypeRenderable(ct, format)) {
|
|
return GpuReadResult::kExcusedFailure;
|
|
}
|
|
|
|
// Rescale quality and linearity don't matter since we're doing a non-scaling readback.
|
|
image->asyncRescaleAndReadPixels(pixels.info(), rect,
|
|
SkImage::RescaleGamma::kSrc,
|
|
SkImage::RescaleMode::kNearest,
|
|
async_callback, &asyncContext);
|
|
context->submit();
|
|
while (!asyncContext.fCalled) {
|
|
context->checkAsyncWorkCompletion();
|
|
}
|
|
if (!asyncContext.fResult) {
|
|
return GpuReadResult::kFail;
|
|
}
|
|
SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), asyncContext.fResult->data(0),
|
|
asyncContext.fResult->rowBytes(0), pixels.info().minRowBytes(),
|
|
pixels.height());
|
|
return GpuReadResult::kSuccess;
|
|
});
|
|
|
|
GpuReadPixelTestRules rules;
|
|
rules.fAllowUnpremulSrc = true;
|
|
rules.fUncontainedRectSucceeds = false;
|
|
|
|
for (auto origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) {
|
|
for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) {
|
|
auto factory = std::function<GpuSrcFactory<Image>>([&](const SkPixmap& src) {
|
|
if (src.colorType() == kRGB_888x_SkColorType) {
|
|
return Image();
|
|
}
|
|
return sk_gpu_test::MakeBackendTextureImage(ctxInfo.directContext(), src,
|
|
renderable, origin);
|
|
});
|
|
gpu_read_pixels_test_driver(reporter, rules, factory, reader);
|
|
}
|
|
}
|
|
}
|
|
|
|
DEF_GPUTEST(AsyncReadPixelsContextShutdown, reporter, options) {
|
|
const auto ii = SkImageInfo::Make(10, 10, kRGBA_8888_SkColorType, kPremul_SkAlphaType,
|
|
SkColorSpace::MakeSRGB());
|
|
enum class ShutdownSequence {
|
|
kFreeResult_DestroyContext,
|
|
kDestroyContext_FreeResult,
|
|
kFreeResult_ReleaseAndAbandon_DestroyContext,
|
|
kFreeResult_Abandon_DestroyContext,
|
|
kReleaseAndAbandon_FreeResult_DestroyContext,
|
|
kAbandon_FreeResult_DestroyContext,
|
|
kReleaseAndAbandon_DestroyContext_FreeResult,
|
|
kAbandon_DestroyContext_FreeResult,
|
|
};
|
|
for (int t = 0; t < sk_gpu_test::GrContextFactory::kContextTypeCnt; ++t) {
|
|
auto type = static_cast<sk_gpu_test::GrContextFactory::ContextType>(t);
|
|
for (auto sequence : {ShutdownSequence::kFreeResult_DestroyContext,
|
|
ShutdownSequence::kDestroyContext_FreeResult,
|
|
ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext,
|
|
ShutdownSequence::kFreeResult_Abandon_DestroyContext,
|
|
ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext,
|
|
ShutdownSequence::kAbandon_FreeResult_DestroyContext,
|
|
ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult,
|
|
ShutdownSequence::kAbandon_DestroyContext_FreeResult}) {
|
|
// Vulkan context abandoning without resource release has issues outside of the scope of
|
|
// this test.
|
|
if (type == sk_gpu_test::GrContextFactory::kVulkan_ContextType &&
|
|
(sequence == ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext ||
|
|
sequence == ShutdownSequence::kFreeResult_Abandon_DestroyContext ||
|
|
sequence == ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext ||
|
|
sequence == ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult ||
|
|
sequence == ShutdownSequence::kAbandon_FreeResult_DestroyContext ||
|
|
sequence == ShutdownSequence::kAbandon_DestroyContext_FreeResult)) {
|
|
continue;
|
|
}
|
|
for (bool yuv : {false, true}) {
|
|
sk_gpu_test::GrContextFactory factory(options);
|
|
auto direct = factory.get(type);
|
|
if (!direct) {
|
|
continue;
|
|
}
|
|
// This test is only meaningful for contexts that support transfer buffers for
|
|
// reads.
|
|
if (!direct->priv().caps()->transferFromSurfaceToBufferSupport()) {
|
|
continue;
|
|
}
|
|
auto surf = SkSurface::MakeRenderTarget(direct, SkBudgeted::kYes, ii, 1, nullptr);
|
|
if (!surf) {
|
|
continue;
|
|
}
|
|
AsyncContext cbContext;
|
|
if (yuv) {
|
|
surf->asyncRescaleAndReadPixelsYUV420(
|
|
kIdentity_SkYUVColorSpace, SkColorSpace::MakeSRGB(), ii.bounds(),
|
|
ii.dimensions(), SkImage::RescaleGamma::kSrc,
|
|
SkImage::RescaleMode::kNearest, &async_callback, &cbContext);
|
|
} else {
|
|
surf->asyncRescaleAndReadPixels(ii, ii.bounds(), SkImage::RescaleGamma::kSrc,
|
|
SkImage::RescaleMode::kNearest, &async_callback,
|
|
&cbContext);
|
|
}
|
|
direct->submit();
|
|
while (!cbContext.fCalled) {
|
|
direct->checkAsyncWorkCompletion();
|
|
}
|
|
if (!cbContext.fResult) {
|
|
ERRORF(reporter, "Callback failed on %s. is YUV: %d",
|
|
sk_gpu_test::GrContextFactory::ContextTypeName(type), yuv);
|
|
continue;
|
|
}
|
|
// For vulkan we need to release all refs to the GrDirectContext before trying to
|
|
// destroy the test context. The surface here is holding a ref.
|
|
surf.reset();
|
|
|
|
// The real test is that we don't crash, get Vulkan validation errors, etc, during
|
|
// this shutdown sequence.
|
|
switch (sequence) {
|
|
case ShutdownSequence::kFreeResult_DestroyContext:
|
|
case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext:
|
|
case ShutdownSequence::kFreeResult_Abandon_DestroyContext:
|
|
break;
|
|
case ShutdownSequence::kDestroyContext_FreeResult:
|
|
factory.destroyContexts();
|
|
break;
|
|
case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext:
|
|
factory.releaseResourcesAndAbandonContexts();
|
|
break;
|
|
case ShutdownSequence::kAbandon_FreeResult_DestroyContext:
|
|
factory.abandonContexts();
|
|
break;
|
|
case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult:
|
|
factory.releaseResourcesAndAbandonContexts();
|
|
factory.destroyContexts();
|
|
break;
|
|
case ShutdownSequence::kAbandon_DestroyContext_FreeResult:
|
|
factory.abandonContexts();
|
|
factory.destroyContexts();
|
|
break;
|
|
}
|
|
cbContext.fResult.reset();
|
|
switch (sequence) {
|
|
case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext:
|
|
factory.releaseResourcesAndAbandonContexts();
|
|
break;
|
|
case ShutdownSequence::kFreeResult_Abandon_DestroyContext:
|
|
factory.abandonContexts();
|
|
break;
|
|
case ShutdownSequence::kFreeResult_DestroyContext:
|
|
case ShutdownSequence::kDestroyContext_FreeResult:
|
|
case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext:
|
|
case ShutdownSequence::kAbandon_FreeResult_DestroyContext:
|
|
case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult:
|
|
case ShutdownSequence::kAbandon_DestroyContext_FreeResult:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|