4dd3c8cbef
We finally have a reference and derivation of Wang's formula, thanks to tdenniston@. And it turns out that the formula we had been using for cubics wasn't quite right. It was overly conservative for certain types of curves. This CL fixes the incorrect cubic formulas and adds a citation to the "Pyramid Algorithms" book. We should now be getting by with fewer linear segments. Bug: skia:10419 Change-Id: Ib850c7b4d17b8d9f9abed800cc7cb5f074df6e17 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/331156 Reviewed-by: Tyler Denniston <tdenniston@google.com> Commit-Queue: Chris Dalton <csmartdalton@google.com>
298 lines
12 KiB
C++
298 lines
12 KiB
C++
/*
|
|
* Copyright 2020 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "include/utils/SkRandom.h"
|
|
#include "src/core/SkGeometry.h"
|
|
#include "src/gpu/tessellate/GrWangsFormula.h"
|
|
#include "tests/Test.h"
|
|
|
|
constexpr static int kIntolerance = 4; // 1/4 pixel max error.
|
|
|
|
const SkPoint kSerp[4] = {
|
|
{285.625f, 499.687f}, {411.625f, 808.188f}, {1064.62f, 135.688f}, {1042.63f, 585.187f}};
|
|
|
|
const SkPoint kLoop[4] = {
|
|
{635.625f, 614.687f}, {171.625f, 236.188f}, {1064.62f, 135.688f}, {516.625f, 570.187f}};
|
|
|
|
const SkPoint kQuad[4] = {
|
|
{460.625f, 557.187f}, {707.121f, 209.688f}, {779.628f, 577.687f}};
|
|
|
|
static float wangs_formula_quadratic_reference_impl(float intolerance, const SkPoint p[3]) {
|
|
float k = (2 * 1) / 8.f * intolerance;
|
|
return sqrtf(k * (p[0] - p[1]*2 + p[2]).length());
|
|
}
|
|
|
|
static float wangs_formula_cubic_reference_impl(float intolerance, const SkPoint p[4]) {
|
|
float k = (3 * 2) / 8.f * intolerance;
|
|
return sqrtf(k * std::max((p[0] - p[1]*2 + p[2]).length(),
|
|
(p[1] - p[2]*2 + p[3]).length()));
|
|
}
|
|
|
|
static void for_random_matrices(SkRandom* rand, std::function<void(const SkMatrix&)> f) {
|
|
SkMatrix m;
|
|
m.setIdentity();
|
|
f(m);
|
|
|
|
for (int i = -10; i <= 30; ++i) {
|
|
for (int j = -10; j <= 30; ++j) {
|
|
m.setScaleX(std::ldexp(1 + rand->nextF(), i));
|
|
m.setSkewX(0);
|
|
m.setSkewY(0);
|
|
m.setScaleY(std::ldexp(1 + rand->nextF(), j));
|
|
f(m);
|
|
|
|
m.setScaleX(std::ldexp(1 + rand->nextF(), i));
|
|
m.setSkewX(std::ldexp(1 + rand->nextF(), (j + i) / 2));
|
|
m.setSkewY(std::ldexp(1 + rand->nextF(), (j + i) / 2));
|
|
m.setScaleY(std::ldexp(1 + rand->nextF(), j));
|
|
f(m);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void for_random_beziers(int numPoints, SkRandom* rand,
|
|
std::function<void(const SkPoint[])> f) {
|
|
SkASSERT(numPoints <= 4);
|
|
SkPoint pts[4];
|
|
for (int i = -10; i <= 30; ++i) {
|
|
for (int j = 0; j < numPoints; ++j) {
|
|
pts[j].set(std::ldexp(1 + rand->nextF(), i), std::ldexp(1 + rand->nextF(), i));
|
|
}
|
|
f(pts);
|
|
}
|
|
}
|
|
|
|
// Ensure the optimized "*_log2" versions return the same value as ceil(std::log2(f)).
|
|
DEF_TEST(WangsFormula_log2, r) {
|
|
// Constructs a cubic such that the 'length' term in wang's formula == term.
|
|
//
|
|
// f = sqrt(k * length(max(abs(p0 - p1*2 + p2),
|
|
// abs(p1 - p2*2 + p3))));
|
|
auto setupCubicLengthTerm = [](int seed, SkPoint pts[], float term) {
|
|
memset(pts, 0, sizeof(SkPoint) * 4);
|
|
|
|
SkPoint term2d = (seed & 1) ?
|
|
SkPoint::Make(term, 0) : SkPoint::Make(.5f, std::sqrt(3)/2) * term;
|
|
seed >>= 1;
|
|
|
|
if (seed & 1) {
|
|
term2d.fX = -term2d.fX;
|
|
}
|
|
seed >>= 1;
|
|
|
|
if (seed & 1) {
|
|
std::swap(term2d.fX, term2d.fY);
|
|
}
|
|
seed >>= 1;
|
|
|
|
switch (seed % 4) {
|
|
case 0:
|
|
pts[0] = term2d;
|
|
pts[3] = term2d * .75f;
|
|
return;
|
|
case 1:
|
|
pts[1] = term2d * -.5f;
|
|
return;
|
|
case 2:
|
|
pts[1] = term2d * -.5f;
|
|
return;
|
|
case 3:
|
|
pts[3] = term2d;
|
|
pts[0] = term2d * .75f;
|
|
return;
|
|
}
|
|
};
|
|
|
|
// Constructs a quadratic such that the 'length' term in wang's formula == term.
|
|
//
|
|
// f = sqrt(k * length(p0 - p1*2 + p2));
|
|
auto setupQuadraticLengthTerm = [](int seed, SkPoint pts[], float term) {
|
|
memset(pts, 0, sizeof(SkPoint) * 3);
|
|
|
|
SkPoint term2d = (seed & 1) ?
|
|
SkPoint::Make(term, 0) : SkPoint::Make(.5f, std::sqrt(3)/2) * term;
|
|
seed >>= 1;
|
|
|
|
if (seed & 1) {
|
|
term2d.fX = -term2d.fX;
|
|
}
|
|
seed >>= 1;
|
|
|
|
if (seed & 1) {
|
|
std::swap(term2d.fX, term2d.fY);
|
|
}
|
|
seed >>= 1;
|
|
|
|
switch (seed % 3) {
|
|
case 0:
|
|
pts[0] = term2d;
|
|
return;
|
|
case 1:
|
|
pts[1] = term2d * -.5f;
|
|
return;
|
|
case 2:
|
|
pts[2] = term2d;
|
|
return;
|
|
}
|
|
};
|
|
|
|
// GrWangsFormula::cubic and ::quadratic both use rsqrt instead of sqrt for speed. Linearization
|
|
// is all approximate anyway, so as long as we are within ~1/2 tessellation segment of the
|
|
// reference value we are good enough.
|
|
constexpr static float kTessellationTolerance = 1/128.f;
|
|
|
|
for (int level = 0; level < 30; ++level) {
|
|
float epsilon = std::ldexp(SK_ScalarNearlyZero, level * 2);
|
|
SkPoint pts[4];
|
|
|
|
{
|
|
// Test cubic boundaries.
|
|
// f = sqrt(k * length(max(abs(p0 - p1*2 + p2),
|
|
// abs(p1 - p2*2 + p3))));
|
|
constexpr static float k = (3 * 2) / (8 * (1.f/kIntolerance));
|
|
float x = std::ldexp(1, level * 2) / k;
|
|
setupCubicLengthTerm(level << 1, pts, x - epsilon);
|
|
float referenceValue = wangs_formula_cubic_reference_impl(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level);
|
|
float c = GrWangsFormula::cubic(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(c/referenceValue, 1, kTessellationTolerance));
|
|
REPORTER_ASSERT(r, GrWangsFormula::cubic_log2(kIntolerance, pts) == level);
|
|
setupCubicLengthTerm(level << 1, pts, x + epsilon);
|
|
referenceValue = wangs_formula_cubic_reference_impl(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level + 1);
|
|
c = GrWangsFormula::cubic(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(c/referenceValue, 1, kTessellationTolerance));
|
|
REPORTER_ASSERT(r, GrWangsFormula::cubic_log2(kIntolerance, pts) == level + 1);
|
|
}
|
|
|
|
{
|
|
// Test quadratic boundaries.
|
|
// f = std::sqrt(k * Length(p0 - p1*2 + p2));
|
|
constexpr static float k = 2 / (8 * (1.f/kIntolerance));
|
|
float x = std::ldexp(1, level * 2) / k;
|
|
setupQuadraticLengthTerm(level << 1, pts, x - epsilon);
|
|
float referenceValue = wangs_formula_quadratic_reference_impl(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level);
|
|
float q = GrWangsFormula::quadratic(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(q/referenceValue, 1, kTessellationTolerance));
|
|
REPORTER_ASSERT(r, GrWangsFormula::quadratic_log2(kIntolerance, pts) == level);
|
|
setupQuadraticLengthTerm(level << 1, pts, x + epsilon);
|
|
referenceValue = wangs_formula_quadratic_reference_impl(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level+1);
|
|
q = GrWangsFormula::quadratic(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(q/referenceValue, 1, kTessellationTolerance));
|
|
REPORTER_ASSERT(r, GrWangsFormula::quadratic_log2(kIntolerance, pts) == level + 1);
|
|
}
|
|
}
|
|
|
|
auto check_cubic_log2 = [&](const SkPoint* pts) {
|
|
float f = std::max(1.f, wangs_formula_cubic_reference_impl(kIntolerance, pts));
|
|
int f_log2 = GrWangsFormula::cubic_log2(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, SkScalarCeilToInt(std::log2(f)) == f_log2);
|
|
float c = std::max(1.f, GrWangsFormula::cubic(kIntolerance, pts));
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(c/f, 1, kTessellationTolerance));
|
|
};
|
|
|
|
auto check_quadratic_log2 = [&](const SkPoint* pts) {
|
|
float f = std::max(1.f, wangs_formula_quadratic_reference_impl(kIntolerance, pts));
|
|
int f_log2 = GrWangsFormula::quadratic_log2(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, SkScalarCeilToInt(std::log2(f)) == f_log2);
|
|
float q = std::max(1.f, GrWangsFormula::quadratic(kIntolerance, pts));
|
|
REPORTER_ASSERT(r, SkScalarNearlyEqual(q/f, 1, kTessellationTolerance));
|
|
};
|
|
|
|
SkRandom rand;
|
|
|
|
for_random_matrices(&rand, [&](const SkMatrix& m) {
|
|
SkPoint pts[4];
|
|
m.mapPoints(pts, kSerp, 4);
|
|
check_cubic_log2(pts);
|
|
|
|
m.mapPoints(pts, kLoop, 4);
|
|
check_cubic_log2(pts);
|
|
|
|
m.mapPoints(pts, kQuad, 3);
|
|
check_quadratic_log2(pts);
|
|
});
|
|
|
|
for_random_beziers(4, &rand, [&](const SkPoint pts[]) {
|
|
check_cubic_log2(pts);
|
|
});
|
|
|
|
for_random_beziers(3, &rand, [&](const SkPoint pts[]) {
|
|
check_quadratic_log2(pts);
|
|
});
|
|
}
|
|
|
|
// Ensure using transformations gives the same result as pre-transforming all points.
|
|
DEF_TEST(WangsFormula_vectorXforms, r) {
|
|
auto check_cubic_log2_with_transform = [&](const SkPoint* pts, const SkMatrix& m){
|
|
SkPoint ptsXformed[4];
|
|
m.mapPoints(ptsXformed, pts, 4);
|
|
int expected = GrWangsFormula::cubic_log2(kIntolerance, ptsXformed);
|
|
int actual = GrWangsFormula::cubic_log2(kIntolerance, pts, GrVectorXform(m));
|
|
REPORTER_ASSERT(r, actual == expected);
|
|
};
|
|
|
|
auto check_quadratic_log2_with_transform = [&](const SkPoint* pts, const SkMatrix& m) {
|
|
SkPoint ptsXformed[3];
|
|
m.mapPoints(ptsXformed, pts, 3);
|
|
int expected = GrWangsFormula::quadratic_log2(kIntolerance, ptsXformed);
|
|
int actual = GrWangsFormula::quadratic_log2(kIntolerance, pts, GrVectorXform(m));
|
|
REPORTER_ASSERT(r, actual == expected);
|
|
};
|
|
|
|
SkRandom rand;
|
|
|
|
for_random_matrices(&rand, [&](const SkMatrix& m) {
|
|
check_cubic_log2_with_transform(kSerp, m);
|
|
check_cubic_log2_with_transform(kLoop, m);
|
|
check_quadratic_log2_with_transform(kQuad, m);
|
|
|
|
for_random_beziers(4, &rand, [&](const SkPoint pts[]) {
|
|
check_cubic_log2_with_transform(pts, m);
|
|
});
|
|
|
|
for_random_beziers(3, &rand, [&](const SkPoint pts[]) {
|
|
check_quadratic_log2_with_transform(pts, m);
|
|
});
|
|
});
|
|
}
|
|
|
|
DEF_TEST(WangsFormula_worst_case_cubic, r) {
|
|
{
|
|
SkPoint worstP[] = {{0,0}, {100,100}, {0,0}, {0,0}};
|
|
REPORTER_ASSERT(r, GrWangsFormula::worst_case_cubic(kIntolerance, 100, 100) ==
|
|
wangs_formula_cubic_reference_impl(kIntolerance, worstP));
|
|
REPORTER_ASSERT(r, GrWangsFormula::worst_case_cubic_log2(kIntolerance, 100, 100) ==
|
|
GrWangsFormula::cubic_log2(kIntolerance, worstP));
|
|
}
|
|
{
|
|
SkPoint worstP[] = {{100,100}, {100,100}, {200,200}, {100,100}};
|
|
REPORTER_ASSERT(r, GrWangsFormula::worst_case_cubic(kIntolerance, 100, 100) ==
|
|
wangs_formula_cubic_reference_impl(kIntolerance, worstP));
|
|
REPORTER_ASSERT(r, GrWangsFormula::worst_case_cubic_log2(kIntolerance, 100, 100) ==
|
|
GrWangsFormula::cubic_log2(kIntolerance, worstP));
|
|
}
|
|
auto check_worst_case_cubic = [&](const SkPoint* pts) {
|
|
SkRect bbox;
|
|
bbox.setBoundsNoCheck(pts, 4);
|
|
float worst = GrWangsFormula::worst_case_cubic(kIntolerance, bbox.width(), bbox.height());
|
|
int worst_log2 = GrWangsFormula::worst_case_cubic_log2(kIntolerance, bbox.width(),
|
|
bbox.height());
|
|
float actual = wangs_formula_cubic_reference_impl(kIntolerance, pts);
|
|
REPORTER_ASSERT(r, worst >= actual);
|
|
REPORTER_ASSERT(r, std::ceil(std::log2(std::max(1.f, worst))) == worst_log2);
|
|
};
|
|
SkRandom rand;
|
|
for (int i = 0; i < 100; ++i) {
|
|
for_random_beziers(4, &rand, [&](const SkPoint pts[]) {
|
|
check_worst_case_cubic(pts);
|
|
});
|
|
}
|
|
}
|