skia2/gm/samplelocations.cpp
Chris Dalton aa0e45c232 Add pass-through helper methods from GrOpFlushState to GrOpsRenderPass
Change-Id: Ifa18e909978367a4502dbf6b35a62a437e83b5c2
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/276842
Reviewed-by: Robert Phillips <robertphillips@google.com>
Commit-Queue: Chris Dalton <csmartdalton@google.com>
2020-03-16 19:53:26 +00:00

383 lines
15 KiB
C++

/*
* Copyright 2019 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm/gm.h"
#include "include/core/SkBlendMode.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColorSpace.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkRect.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkSize.h"
#include "include/core/SkString.h"
#include "include/core/SkTypes.h"
#include "include/gpu/GrContext.h"
#include "include/gpu/GrTypes.h"
#include "include/private/GrRecordingContext.h"
#include "include/private/GrTypesPriv.h"
#include "include/private/SkColorData.h"
#include "src/gpu/GrBuffer.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrClip.h"
#include "src/gpu/GrColorSpaceXform.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrGeometryProcessor.h"
#include "src/gpu/GrMemoryPool.h"
#include "src/gpu/GrOpFlushState.h"
#include "src/gpu/GrOpsRenderPass.h"
#include "src/gpu/GrPaint.h"
#include "src/gpu/GrPipeline.h"
#include "src/gpu/GrPrimitiveProcessor.h"
#include "src/gpu/GrProcessor.h"
#include "src/gpu/GrProcessorSet.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrRenderTargetContext.h"
#include "src/gpu/GrRenderTargetContextPriv.h"
#include "src/gpu/GrSamplerState.h"
#include "src/gpu/GrShaderCaps.h"
#include "src/gpu/GrShaderVar.h"
#include "src/gpu/GrSurfaceProxy.h"
#include "src/gpu/GrTextureProxy.h"
#include "src/gpu/GrUserStencilSettings.h"
#include "src/gpu/effects/GrPorterDuffXferProcessor.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLGeometryProcessor.h"
#include "src/gpu/glsl/GrGLSLPrimitiveProcessor.h"
#include "src/gpu/glsl/GrGLSLProgramBuilder.h"
#include "src/gpu/glsl/GrGLSLVarying.h"
#include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
#include "src/gpu/ops/GrDrawOp.h"
#include "src/gpu/ops/GrOp.h"
#include "tools/gpu/ProxyUtils.h"
#include <memory>
#include <utility>
class GrAppliedClip;
class GrGLSLProgramDataManager;
namespace skiagm {
enum class GradType : bool {
kHW,
kSW
};
/**
* This test ensures that the shaderBuilder's sample offsets and sample mask are correlated with
* actual HW sample locations. It does so by drawing pseudo-random subpixel boxes, and only turning
* off the samples whose locations fall inside the boxes.
*/
class SampleLocationsGM : public GpuGM {
public:
SampleLocationsGM(GradType gradType, GrSurfaceOrigin origin)
: fGradType(gradType)
, fOrigin(origin) {}
private:
SkString onShortName() override {
return SkStringPrintf("samplelocations%s%s",
(GradType::kHW == fGradType) ? "_hwgrad" : "_swgrad",
(kTopLeft_GrSurfaceOrigin == fOrigin) ? "_topleft" : "_botleft");
}
SkISize onISize() override { return SkISize::Make(200, 200); }
DrawResult onDraw(GrContext*, GrRenderTargetContext*, SkCanvas*, SkString* errorMsg) override;
const GradType fGradType;
const GrSurfaceOrigin fOrigin;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// SkSL code.
class SampleLocationsTestProcessor : public GrGeometryProcessor {
public:
static GrGeometryProcessor* Make(SkArenaAlloc* arena, GradType gradType) {
return arena->make<SampleLocationsTestProcessor>(gradType);
}
const char* name() const override { return "SampleLocationsTestProcessor"; }
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const final {
b->add32((uint32_t)fGradType);
}
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const final;
private:
friend class ::SkArenaAlloc; // for access to ctor
SampleLocationsTestProcessor(GradType gradType)
: GrGeometryProcessor(kSampleLocationsTestProcessor_ClassID)
, fGradType(gradType) {
this->setWillUseCustomFeature(CustomFeatures::kSampleLocations);
}
const GradType fGradType;
class Impl;
typedef GrGeometryProcessor INHERITED;
};
class SampleLocationsTestProcessor::Impl : public GrGLSLGeometryProcessor {
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const auto& proc = args.fGP.cast<SampleLocationsTestProcessor>();
auto* v = args.fVertBuilder;
auto* f = args.fFragBuilder;
GrGLSLVarying coord(kFloat2_GrSLType);
GrGLSLVarying grad(kFloat2_GrSLType);
args.fVaryingHandler->addVarying("coord", &coord);
if (GradType::kSW == proc.fGradType) {
args.fVaryingHandler->addVarying("grad", &grad);
}
// Pixel grid.
v->codeAppendf("int x = sk_InstanceID %% 200;");
v->codeAppendf("int y = sk_InstanceID / 200;");
// Create pseudo-random rectangles inside a 16x16 subpixel grid. This works out nicely
// because there are 17 positions on the grid (including both edges), and 17 is a great
// prime number for generating pseudo-random numbers.
v->codeAppendf("int ileft = (sk_InstanceID*929) %% 17;");
v->codeAppendf("int iright = ileft + 1 + ((sk_InstanceID*1637) %% (17 - ileft));");
v->codeAppendf("int itop = (sk_InstanceID*313) %% 17;");
v->codeAppendf("int ibot = itop + 1 + ((sk_InstanceID*1901) %% (17 - itop));");
// Outset (or inset) the rectangle, for the very likely scenario that samples fall on exact
// 16ths of a pixel. GL_SUBPIXEL_BITS is allowed to be as low as 4, so try not to let the
// outset value to get too small.
v->codeAppendf("float outset = 1/32.0;");
v->codeAppendf("outset = (0 == (x + y) %% 2) ? -outset : +outset;");
v->codeAppendf("float l = ileft/16.0 - outset;");
v->codeAppendf("float r = iright/16.0 + outset;");
v->codeAppendf("float t = itop/16.0 - outset;");
v->codeAppendf("float b = ibot/16.0 + outset;");
v->codeAppendf("float2 vertexpos;");
v->codeAppendf("vertexpos.x = float(x) + ((0 == (sk_VertexID %% 2)) ? l : r);");
v->codeAppendf("vertexpos.y = float(y) + ((0 == (sk_VertexID / 2)) ? t : b);");
gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertexpos");
v->codeAppendf("%s.x = (0 == (sk_VertexID %% 2)) ? -1 : +1;", coord.vsOut());
v->codeAppendf("%s.y = (0 == (sk_VertexID / 2)) ? -1 : +1;", coord.vsOut());
if (GradType::kSW == proc.fGradType) {
v->codeAppendf("%s = 2/float2(r - l, b - t);", grad.vsOut());
}
// Fragment shader: Output RED.
f->codeAppendf("%s = half4(1,0,0,1);", args.fOutputColor);
f->codeAppendf("%s = half4(1);", args.fOutputCoverage);
// Now turn off all the samples inside our sub-rectangle. As long as the shaderBuilder's
// sample offsets and sample mask are correlated with actual HW sample locations, no red
// will bleed through.
f->codeAppendf("for (int i = 0; i < %i; ++i) {",
f->getProgramBuilder()->effectiveSampleCnt());
if (GradType::kHW == proc.fGradType) {
f->codeAppendf("float2x2 grad = float2x2(dFdx(%s), dFdy(%s));",
coord.fsIn(), coord.fsIn());
} else {
f->codeAppendf("float2x2 grad = float2x2(%s.x, 0, 0, %s.y);", grad.fsIn(), grad.fsIn());
}
f->codeAppendf( "float2 samplecoord = %s[i] * grad + %s;",
f->sampleOffsets(), coord.fsIn());
f->codeAppendf( "if (all(lessThanEqual(abs(samplecoord), float2(1)))) {");
f->maskOffMultisampleCoverage(
"~(1 << i)", GrGLSLFPFragmentBuilder::ScopeFlags::kInsideLoop);
f->codeAppendf( "}");
f->codeAppendf("}");
}
void setData(const GrGLSLProgramDataManager&, const GrPrimitiveProcessor&,
const CoordTransformRange&) override {}
};
GrGLSLPrimitiveProcessor* SampleLocationsTestProcessor::createGLSLInstance(
const GrShaderCaps&) const {
return new Impl();
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Draw Op.
static constexpr GrUserStencilSettings gStencilWrite(
GrUserStencilSettings::StaticInit<
0x0001,
GrUserStencilTest::kAlways,
0xffff,
GrUserStencilOp::kReplace,
GrUserStencilOp::kKeep,
0xffff>()
);
class SampleLocationsTestOp : public GrDrawOp {
public:
DEFINE_OP_CLASS_ID
static std::unique_ptr<GrDrawOp> Make(
GrRecordingContext* ctx, const SkMatrix& viewMatrix, GradType gradType) {
GrOpMemoryPool* pool = ctx->priv().opMemoryPool();
return pool->allocate<SampleLocationsTestOp>(gradType);
}
private:
SampleLocationsTestOp(GradType gradType) : GrDrawOp(ClassID()), fGradType(gradType) {
this->setBounds(SkRect::MakeIWH(200, 200), HasAABloat::kNo, IsHairline::kNo);
}
const char* name() const override { return "SampleLocationsTestOp"; }
FixedFunctionFlags fixedFunctionFlags() const override {
return FixedFunctionFlags::kUsesHWAA | FixedFunctionFlags::kUsesStencil;
}
GrProcessorSet::Analysis finalize(const GrCaps&, const GrAppliedClip*,
bool hasMixedSampledCoverage, GrClampType) override {
return GrProcessorSet::EmptySetAnalysis();
}
GrProgramInfo* createProgramInfo(const GrCaps* caps,
SkArenaAlloc* arena,
const GrSurfaceProxyView* outputView,
GrAppliedClip&& appliedClip,
const GrXferProcessor::DstProxyView& dstProxyView) const {
GrGeometryProcessor* geomProc = SampleLocationsTestProcessor::Make(arena, fGradType);
GrPipeline::InputFlags flags = GrPipeline::InputFlags::kHWAntialias;
return sk_gpu_test::CreateProgramInfo(caps, arena, outputView,
std::move(appliedClip), dstProxyView,
geomProc, SkBlendMode::kSrcOver,
GrPrimitiveType::kTriangleStrip,
flags, &gStencilWrite);
}
GrProgramInfo* createProgramInfo(GrOpFlushState* flushState) const {
return this->createProgramInfo(&flushState->caps(),
flushState->allocator(),
flushState->outputView(),
flushState->detachAppliedClip(),
flushState->dstProxyView());
}
void onPrePrepare(GrRecordingContext* context,
const GrSurfaceProxyView* outputView,
GrAppliedClip* clip,
const GrXferProcessor::DstProxyView& dstProxyView) final {
// We're going to create the GrProgramInfo (and the GrPipeline and geometry processor
// it relies on) in the DDL-record-time arena.
SkArenaAlloc* arena = context->priv().recordTimeAllocator();
// This is equivalent to a GrOpFlushState::detachAppliedClip
GrAppliedClip appliedClip = clip ? std::move(*clip) : GrAppliedClip();
fProgramInfo = this->createProgramInfo(context->priv().caps(), arena, outputView,
std::move(appliedClip), dstProxyView);
context->priv().recordProgramInfo(fProgramInfo);
}
void onPrepare(GrOpFlushState*) final {}
void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) final {
if (!fProgramInfo) {
fProgramInfo = this->createProgramInfo(flushState);
}
flushState->bindPipelineAndScissorClip(*fProgramInfo, SkRect::MakeIWH(200, 200));
flushState->bindBuffers(nullptr, nullptr, nullptr);
flushState->drawInstanced(200*200, 0, 4, 0);
}
const GradType fGradType;
// The program info (and both the GrPipeline and GrPrimitiveProcessor it relies on), when
// allocated, are allocated in either the ddl-record-time or flush-time arena. It is the
// arena's job to free up their memory so we just have a bare programInfo pointer here. We
// don't even store the GrPipeline and GrPrimitiveProcessor pointers here bc they are
// guaranteed to have the same lifetime as the program info.
GrProgramInfo* fProgramInfo = nullptr;
friend class ::GrOpMemoryPool; // for ctor
typedef GrDrawOp INHERITED;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Test.
DrawResult SampleLocationsGM::onDraw(
GrContext* ctx, GrRenderTargetContext* rtc, SkCanvas* canvas, SkString* errorMsg) {
if (!ctx->priv().caps()->sampleLocationsSupport()) {
*errorMsg = "Requires support for sample locations.";
return DrawResult::kSkip;
}
if (!ctx->priv().caps()->shaderCaps()->sampleMaskSupport()) {
*errorMsg = "Requires support for sample mask.";
return DrawResult::kSkip;
}
if (rtc->numSamples() <= 1 && !ctx->priv().caps()->mixedSamplesSupport()) {
*errorMsg = "MSAA and mixed samples only.";
return DrawResult::kSkip;
}
auto offscreenRTC = GrRenderTargetContext::Make(
ctx, rtc->colorInfo().colorType(), nullptr, SkBackingFit::kExact, {200, 200},
rtc->numSamples(), GrMipMapped::kNo, GrProtected::kNo, fOrigin);
if (!offscreenRTC) {
*errorMsg = "Failed to create offscreen render target.";
return DrawResult::kFail;
}
if (offscreenRTC->numSamples() <= 1 &&
!offscreenRTC->asRenderTargetProxy()->canUseMixedSamples(*ctx->priv().caps())) {
*errorMsg = "MSAA and mixed samples only.";
return DrawResult::kSkip;
}
static constexpr GrUserStencilSettings kStencilCover(
GrUserStencilSettings::StaticInit<
0x0000,
GrUserStencilTest::kNotEqual,
0xffff,
GrUserStencilOp::kZero,
GrUserStencilOp::kKeep,
0xffff>()
);
offscreenRTC->clear(nullptr, {0,1,0,1}, GrRenderTargetContext::CanClearFullscreen::kYes);
// Stencil.
offscreenRTC->priv().testingOnly_addDrawOp(
SampleLocationsTestOp::Make(ctx, canvas->getTotalMatrix(), fGradType));
// Cover.
GrPaint coverPaint;
coverPaint.setColor4f({1,0,0,1});
coverPaint.setXPFactory(GrPorterDuffXPFactory::Get(SkBlendMode::kSrcOver));
rtc->priv().stencilRect(GrNoClip(), &kStencilCover, std::move(coverPaint), GrAA::kNo,
SkMatrix::I(), SkRect::MakeWH(200, 200));
// Copy offscreen texture to canvas.
rtc->drawTexture(GrNoClip(), offscreenRTC->readSurfaceView(),
offscreenRTC->colorInfo().alphaType(),
GrSamplerState::Filter::kNearest, SkBlendMode::kSrc, SK_PMColor4fWHITE,
{0,0,200,200}, {0,0,200,200}, GrAA::kNo, GrQuadAAFlags::kNone,
SkCanvas::SrcRectConstraint::kStrict_SrcRectConstraint, SkMatrix::I(),
nullptr);
return skiagm::DrawResult::kOk;
}
DEF_GM( return new SampleLocationsGM(GradType::kHW, kTopLeft_GrSurfaceOrigin); )
DEF_GM( return new SampleLocationsGM(GradType::kHW, kBottomLeft_GrSurfaceOrigin); )
DEF_GM( return new SampleLocationsGM(GradType::kSW, kTopLeft_GrSurfaceOrigin); )
DEF_GM( return new SampleLocationsGM(GradType::kSW, kBottomLeft_GrSurfaceOrigin); )
}