8b0e8ac5f5
Eliminates SkFlattenable{Read,Write}Buffer, promoting SkOrdered{Read,Write}Buffer a step each in the hierarchy. What used to be this: SkFlattenableWriteBuffer -> SkOrderedWriteBuffer SkFlattenableReadBuffer -> SkOrderedReadBuffer SkFlattenableReadBuffer -> SkValidatingReadBuffer is now SkWriteBuffer SkReadBuffer -> SkValidatingReadBuffer Benefits: - code is simpler, names are less wordy - the generic SkFlattenableFooBuffer code in SkPaint was incorrect; removed - write buffers are completely devirtualized, important for record speed This refactoring was mostly mechanical. You aren't going to find anything interesting in files with less than 10 lines changed. BUG=skia: R=reed@google.com, scroggo@google.com, djsollen@google.com, mtklein@google.com Author: mtklein@chromium.org Review URL: https://codereview.chromium.org/134163010 git-svn-id: http://skia.googlecode.com/svn/trunk@13245 2bbb7eff-a529-9590-31e7-b0007b416f81
276 lines
8.1 KiB
C++
276 lines
8.1 KiB
C++
/*
|
|
* Copyright 2013 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "SkBitmap.h"
|
|
#include "SkErrorInternals.h"
|
|
#include "SkValidatingReadBuffer.h"
|
|
#include "SkStream.h"
|
|
#include "SkTypeface.h"
|
|
|
|
SkValidatingReadBuffer::SkValidatingReadBuffer(const void* data, size_t size) :
|
|
fError(false) {
|
|
this->setMemory(data, size);
|
|
this->setFlags(SkReadBuffer::kValidation_Flag);
|
|
}
|
|
|
|
SkValidatingReadBuffer::~SkValidatingReadBuffer() {
|
|
}
|
|
|
|
bool SkValidatingReadBuffer::validate(bool isValid) {
|
|
if (!fError && !isValid) {
|
|
// When an error is found, send the read cursor to the end of the stream
|
|
fReader.skip(fReader.available());
|
|
fError = true;
|
|
}
|
|
return !fError;
|
|
}
|
|
|
|
bool SkValidatingReadBuffer::isValid() const {
|
|
return !fError;
|
|
}
|
|
|
|
void SkValidatingReadBuffer::setMemory(const void* data, size_t size) {
|
|
this->validate(IsPtrAlign4(data) && (SkAlign4(size) == size));
|
|
if (!fError) {
|
|
fReader.setMemory(data, size);
|
|
}
|
|
}
|
|
|
|
const void* SkValidatingReadBuffer::skip(size_t size) {
|
|
size_t inc = SkAlign4(size);
|
|
const void* addr = fReader.peek();
|
|
this->validate(IsPtrAlign4(addr) && fReader.isAvailable(inc));
|
|
if (!fError) {
|
|
fReader.skip(size);
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
// All the methods in this file funnel down into either readInt(), readScalar() or skip(),
|
|
// followed by a memcpy. So we've got all our validation in readInt(), readScalar() and skip();
|
|
// if they fail they'll return a zero value or skip nothing, respectively, and set fError to
|
|
// true, which the caller should check to see if an error occurred during the read operation.
|
|
|
|
bool SkValidatingReadBuffer::readBool() {
|
|
uint32_t value = this->readInt();
|
|
// Boolean value should be either 0 or 1
|
|
this->validate(!(value & ~1));
|
|
return value != 0;
|
|
}
|
|
|
|
SkColor SkValidatingReadBuffer::readColor() {
|
|
return this->readInt();
|
|
}
|
|
|
|
SkFixed SkValidatingReadBuffer::readFixed() {
|
|
return this->readInt();
|
|
}
|
|
|
|
int32_t SkValidatingReadBuffer::readInt() {
|
|
const size_t inc = sizeof(int32_t);
|
|
this->validate(IsPtrAlign4(fReader.peek()) && fReader.isAvailable(inc));
|
|
return fError ? 0 : fReader.readInt();
|
|
}
|
|
|
|
SkScalar SkValidatingReadBuffer::readScalar() {
|
|
const size_t inc = sizeof(SkScalar);
|
|
this->validate(IsPtrAlign4(fReader.peek()) && fReader.isAvailable(inc));
|
|
return fError ? 0 : fReader.readScalar();
|
|
}
|
|
|
|
uint32_t SkValidatingReadBuffer::readUInt() {
|
|
return this->readInt();
|
|
}
|
|
|
|
int32_t SkValidatingReadBuffer::read32() {
|
|
return this->readInt();
|
|
}
|
|
|
|
void SkValidatingReadBuffer::readString(SkString* string) {
|
|
const size_t len = this->readInt();
|
|
const void* ptr = fReader.peek();
|
|
const char* cptr = (const char*)ptr;
|
|
|
|
// skip over the string + '\0' and then pad to a multiple of 4
|
|
const size_t alignedSize = SkAlign4(len + 1);
|
|
this->skip(alignedSize);
|
|
if (!fError) {
|
|
this->validate(cptr[len] == '\0');
|
|
}
|
|
if (!fError) {
|
|
string->set(cptr, len);
|
|
}
|
|
}
|
|
|
|
void* SkValidatingReadBuffer::readEncodedString(size_t* length, SkPaint::TextEncoding encoding) {
|
|
const int32_t encodingType = this->readInt();
|
|
this->validate(encodingType == encoding);
|
|
*length = this->readInt();
|
|
const void* ptr = this->skip(SkAlign4(*length));
|
|
void* data = NULL;
|
|
if (!fError) {
|
|
data = sk_malloc_throw(*length);
|
|
memcpy(data, ptr, *length);
|
|
}
|
|
return data;
|
|
}
|
|
|
|
void SkValidatingReadBuffer::readPoint(SkPoint* point) {
|
|
point->fX = this->readScalar();
|
|
point->fY = this->readScalar();
|
|
}
|
|
|
|
void SkValidatingReadBuffer::readMatrix(SkMatrix* matrix) {
|
|
size_t size = 0;
|
|
if (!fError) {
|
|
size = matrix->readFromMemory(fReader.peek(), fReader.available());
|
|
this->validate((SkAlign4(size) == size) && (0 != size));
|
|
}
|
|
if (!fError) {
|
|
(void)this->skip(size);
|
|
}
|
|
}
|
|
|
|
void SkValidatingReadBuffer::readIRect(SkIRect* rect) {
|
|
const void* ptr = this->skip(sizeof(SkIRect));
|
|
if (!fError) {
|
|
memcpy(rect, ptr, sizeof(SkIRect));
|
|
}
|
|
}
|
|
|
|
void SkValidatingReadBuffer::readRect(SkRect* rect) {
|
|
const void* ptr = this->skip(sizeof(SkRect));
|
|
if (!fError) {
|
|
memcpy(rect, ptr, sizeof(SkRect));
|
|
}
|
|
}
|
|
|
|
void SkValidatingReadBuffer::readRegion(SkRegion* region) {
|
|
size_t size = 0;
|
|
if (!fError) {
|
|
size = region->readFromMemory(fReader.peek(), fReader.available());
|
|
this->validate((SkAlign4(size) == size) && (0 != size));
|
|
}
|
|
if (!fError) {
|
|
(void)this->skip(size);
|
|
}
|
|
}
|
|
|
|
void SkValidatingReadBuffer::readPath(SkPath* path) {
|
|
size_t size = 0;
|
|
if (!fError) {
|
|
size = path->readFromMemory(fReader.peek(), fReader.available());
|
|
this->validate((SkAlign4(size) == size) && (0 != size));
|
|
}
|
|
if (!fError) {
|
|
(void)this->skip(size);
|
|
}
|
|
}
|
|
|
|
bool SkValidatingReadBuffer::readArray(void* value, size_t size, size_t elementSize) {
|
|
const uint32_t count = this->getArrayCount();
|
|
this->validate(size == count);
|
|
(void)this->skip(sizeof(uint32_t)); // Skip array count
|
|
const size_t byteLength = count * elementSize;
|
|
const void* ptr = this->skip(SkAlign4(byteLength));
|
|
if (!fError) {
|
|
memcpy(value, ptr, byteLength);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool SkValidatingReadBuffer::readByteArray(void* value, size_t size) {
|
|
return readArray(static_cast<unsigned char*>(value), size, sizeof(unsigned char));
|
|
}
|
|
|
|
bool SkValidatingReadBuffer::readColorArray(SkColor* colors, size_t size) {
|
|
return readArray(colors, size, sizeof(SkColor));
|
|
}
|
|
|
|
bool SkValidatingReadBuffer::readIntArray(int32_t* values, size_t size) {
|
|
return readArray(values, size, sizeof(int32_t));
|
|
}
|
|
|
|
bool SkValidatingReadBuffer::readPointArray(SkPoint* points, size_t size) {
|
|
return readArray(points, size, sizeof(SkPoint));
|
|
}
|
|
|
|
bool SkValidatingReadBuffer::readScalarArray(SkScalar* values, size_t size) {
|
|
return readArray(values, size, sizeof(SkScalar));
|
|
}
|
|
|
|
uint32_t SkValidatingReadBuffer::getArrayCount() {
|
|
const size_t inc = sizeof(uint32_t);
|
|
fError = fError || !IsPtrAlign4(fReader.peek()) || !fReader.isAvailable(inc);
|
|
return fError ? 0 : *(uint32_t*)fReader.peek();
|
|
}
|
|
|
|
void SkValidatingReadBuffer::readBitmap(SkBitmap* bitmap) {
|
|
const int width = this->readInt();
|
|
const int height = this->readInt();
|
|
const size_t length = this->readUInt();
|
|
// A size of zero means the SkBitmap was simply flattened.
|
|
this->validate(length == 0);
|
|
if (fError) {
|
|
return;
|
|
}
|
|
bitmap->unflatten(*this);
|
|
this->validate((bitmap->width() == width) && (bitmap->height() == height));
|
|
}
|
|
|
|
SkTypeface* SkValidatingReadBuffer::readTypeface() {
|
|
// TODO: Implement this (securely) when needed
|
|
return NULL;
|
|
}
|
|
|
|
bool SkValidatingReadBuffer::validateAvailable(size_t size) {
|
|
return this->validate((size <= SK_MaxU32) && fReader.isAvailable(static_cast<uint32_t>(size)));
|
|
}
|
|
|
|
SkFlattenable* SkValidatingReadBuffer::readFlattenable(SkFlattenable::Type type) {
|
|
SkString name;
|
|
this->readString(&name);
|
|
if (fError) {
|
|
return NULL;
|
|
}
|
|
|
|
// Is this the type we wanted ?
|
|
const char* cname = name.c_str();
|
|
SkFlattenable::Type baseType;
|
|
if (!SkFlattenable::NameToType(cname, &baseType) || (baseType != type)) {
|
|
return NULL;
|
|
}
|
|
|
|
SkFlattenable::Factory factory = SkFlattenable::NameToFactory(cname);
|
|
if (NULL == factory) {
|
|
return NULL; // writer failed to give us the flattenable
|
|
}
|
|
|
|
// if we get here, factory may still be null, but if that is the case, the
|
|
// failure was ours, not the writer.
|
|
SkFlattenable* obj = NULL;
|
|
uint32_t sizeRecorded = this->readUInt();
|
|
if (factory) {
|
|
uint32_t offset = fReader.offset();
|
|
obj = (*factory)(*this);
|
|
// check that we read the amount we expected
|
|
uint32_t sizeRead = fReader.offset() - offset;
|
|
this->validate(sizeRecorded == sizeRead);
|
|
if (fError) {
|
|
// we could try to fix up the offset...
|
|
delete obj;
|
|
obj = NULL;
|
|
}
|
|
} else {
|
|
// we must skip the remaining data
|
|
this->skip(sizeRecorded);
|
|
SkASSERT(false);
|
|
}
|
|
return obj;
|
|
}
|