skia2/gm/wacky_yuv_formats.cpp
Robert Phillips 9b16f81858 Switch over to using new direct allocation API in our tests (as much as possible at least)
To fully switch over we need the entry point that uploads data but most of the old call
sites can be switched over now.

Change-Id: I362b1dfde7d88bf8d3f8f90155f53d9ac442a329
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/214300
Reviewed-by: Greg Daniel <egdaniel@google.com>
Commit-Queue: Robert Phillips <robertphillips@google.com>
2019-05-17 15:41:50 +00:00

1261 lines
48 KiB
C++

/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm/gm.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkBlendMode.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkColorFilter.h"
#include "include/core/SkColorPriv.h"
#include "include/core/SkColorSpace.h"
#include "include/core/SkFilterQuality.h"
#include "include/core/SkFont.h"
#include "include/core/SkFontStyle.h"
#include "include/core/SkFontTypes.h"
#include "include/core/SkImage.h"
#include "include/core/SkImageGenerator.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPath.h"
#include "include/core/SkPixmap.h"
#include "include/core/SkPoint.h"
#include "include/core/SkRect.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkScalar.h"
#include "include/core/SkSize.h"
#include "include/core/SkString.h"
#include "include/core/SkTypeface.h"
#include "include/core/SkTypes.h"
#include "include/core/SkYUVAIndex.h"
#include "include/core/SkYUVASizeInfo.h"
#include "include/gpu/GrBackendSurface.h"
#include "include/gpu/GrConfig.h"
#include "include/gpu/GrContext.h"
#include "include/gpu/GrTypes.h"
#include "include/private/GrTypesPriv.h"
#include "include/private/SkTArray.h"
#include "include/private/SkTDArray.h"
#include "include/private/SkTemplates.h"
#include "include/utils/SkTextUtils.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrGpu.h"
#include "tools/ToolUtils.h"
#include <math.h>
#include <string.h>
#include <initializer_list>
#include <memory>
#include <utility>
class GrRenderTargetContext;
static const int kTileWidthHeight = 128;
static const int kLabelWidth = 64;
static const int kLabelHeight = 32;
static const int kDomainPadding = 8;
static const int kPad = 1;
enum YUVFormat {
// 4:4:4 formats, 32 bpp
kAYUV_YUVFormat, // 8-bit YUVA values all interleaved
kY410_YUVFormat, // AVYU w/ 10bpp for YUV and 2 for A all interleaved
// 4:2:0 formats, 12 bpp
kNV12_YUVFormat, // 8-bit Y plane + 2x2 down sampled interleaved U/V planes
kNV21_YUVFormat, // same as kNV12 but w/ U/V reversed in the interleaved plane
kI420_YUVFormat, // 8-bit Y plane + 2x2 down sampled U and V planes
kYV12_YUVFormat, // 8-bit Y plane + 2x2 down sampled V and U planes
kLast_YUVFormat = kYV12_YUVFormat
};
// Helper to setup the SkYUVAIndex array correctly
// Skia allows the client to tack an additional alpha plane onto any of the standard opaque
// formats (via the addExtraAlpha) flag. In this case it is assumed to be a stand-alone single-
// channel plane.
static void setup_yuv_indices(YUVFormat yuvFormat, bool addExtraAlpha, SkYUVAIndex yuvaIndices[4]) {
switch (yuvFormat) {
case kAYUV_YUVFormat:
SkASSERT(!addExtraAlpha); // this format already has an alpha channel
yuvaIndices[0].fIndex = 0;
yuvaIndices[0].fChannel = SkColorChannel::kR;
yuvaIndices[1].fIndex = 0;
yuvaIndices[1].fChannel = SkColorChannel::kG;
yuvaIndices[2].fIndex = 0;
yuvaIndices[2].fChannel = SkColorChannel::kB;
yuvaIndices[3].fIndex = 0;
yuvaIndices[3].fChannel = SkColorChannel::kA;
break;
case kY410_YUVFormat:
SkASSERT(!addExtraAlpha); // this format already has an alpha channel
yuvaIndices[0].fIndex = 0;
yuvaIndices[0].fChannel = SkColorChannel::kG;
yuvaIndices[1].fIndex = 0;
yuvaIndices[1].fChannel = SkColorChannel::kB;
yuvaIndices[2].fIndex = 0;
yuvaIndices[2].fChannel = SkColorChannel::kR;
yuvaIndices[3].fIndex = 0;
yuvaIndices[3].fChannel = SkColorChannel::kA;
break;
case kNV12_YUVFormat:
yuvaIndices[0].fIndex = 0;
yuvaIndices[0].fChannel = SkColorChannel::kA;
yuvaIndices[1].fIndex = 1;
yuvaIndices[1].fChannel = SkColorChannel::kR;
yuvaIndices[2].fIndex = 1;
yuvaIndices[2].fChannel = SkColorChannel::kG;
if (addExtraAlpha) {
yuvaIndices[3].fIndex = 2;
yuvaIndices[3].fChannel = SkColorChannel::kA;
} else {
yuvaIndices[3].fIndex = -1; // No alpha channel
}
break;
case kNV21_YUVFormat:
yuvaIndices[0].fIndex = 0;
yuvaIndices[0].fChannel = SkColorChannel::kA;
yuvaIndices[1].fIndex = 1;
yuvaIndices[1].fChannel = SkColorChannel::kG;
yuvaIndices[2].fIndex = 1;
yuvaIndices[2].fChannel = SkColorChannel::kR;
if (addExtraAlpha) {
yuvaIndices[3].fIndex = 2;
yuvaIndices[3].fChannel = SkColorChannel::kA;
} else {
yuvaIndices[3].fIndex = -1; // No alpha channel
}
break;
case kI420_YUVFormat:
yuvaIndices[0].fIndex = 0;
yuvaIndices[0].fChannel = SkColorChannel::kA;
yuvaIndices[1].fIndex = 1;
yuvaIndices[1].fChannel = SkColorChannel::kA;
yuvaIndices[2].fIndex = 2;
yuvaIndices[2].fChannel = SkColorChannel::kA;
if (addExtraAlpha) {
yuvaIndices[3].fIndex = 3;
yuvaIndices[3].fChannel = SkColorChannel::kA;
} else {
yuvaIndices[3].fIndex = -1; // No alpha channel
}
break;
case kYV12_YUVFormat:
yuvaIndices[0].fIndex = 0;
yuvaIndices[0].fChannel = SkColorChannel::kA;
yuvaIndices[1].fIndex = 2;
yuvaIndices[1].fChannel = SkColorChannel::kA;
yuvaIndices[2].fIndex = 1;
yuvaIndices[2].fChannel = SkColorChannel::kA;
if (addExtraAlpha) {
yuvaIndices[3].fIndex = 3;
yuvaIndices[3].fChannel = SkColorChannel::kA;
} else {
yuvaIndices[3].fIndex = -1; // No alpha channel
}
break;
}
}
// All the planes we need to construct the various YUV formats
struct PlaneData {
SkBitmap fYFull;
SkBitmap fUFull;
SkBitmap fVFull;
SkBitmap fAFull;
SkBitmap fUQuarter; // 2x2 downsampled U channel
SkBitmap fVQuarter; // 2x2 downsampled V channel
};
// Add a portion of a circle to 'path'. The points 'o1' and 'o2' are on the border of the circle
// and have tangents 'v1' and 'v2'.
static void add_arc(SkPath* path,
const SkPoint& o1, const SkVector& v1,
const SkPoint& o2, const SkVector& v2,
SkTDArray<SkRect>* circles, bool takeLongWayRound) {
SkVector v3 = { -v1.fY, v1.fX };
SkVector v4 = { v2.fY, -v2.fX };
SkScalar t = ((o2.fX - o1.fX) * v4.fY - (o2.fY - o1.fY) * v4.fX) / v3.cross(v4);
SkPoint center = { o1.fX + t * v3.fX, o1.fY + t * v3.fY };
SkRect r = { center.fX - t, center.fY - t, center.fX + t, center.fY + t };
if (circles) {
circles->push_back(r);
}
SkVector startV = o1 - center, endV = o2 - center;
startV.normalize();
endV.normalize();
SkScalar startDeg = SkRadiansToDegrees(SkScalarATan2(startV.fY, startV.fX));
SkScalar endDeg = SkRadiansToDegrees(SkScalarATan2(endV.fY, endV.fX));
startDeg += 360.0f;
startDeg = fmodf(startDeg, 360.0f);
endDeg += 360.0f;
endDeg = fmodf(endDeg, 360.0f);
if (endDeg < startDeg) {
endDeg += 360.0f;
}
SkScalar sweepDeg = SkTAbs(endDeg - startDeg);
if (!takeLongWayRound) {
sweepDeg = sweepDeg - 360;
}
path->arcTo(r, startDeg, sweepDeg, false);
}
static SkPath create_splat(const SkPoint& o, SkScalar innerRadius, SkScalar outerRadius,
SkScalar ratio, int numLobes, SkTDArray<SkRect>* circles) {
if (numLobes <= 1) {
return SkPath();
}
SkPath p;
int numDivisions = 2 * numLobes;
SkScalar fullLobeDegrees = 360.0f / numLobes;
SkScalar outDegrees = ratio * fullLobeDegrees / (ratio + 1.0f);
SkScalar innerDegrees = fullLobeDegrees / (ratio + 1.0f);
SkMatrix outerStep, innerStep;
outerStep.setRotate(outDegrees);
innerStep.setRotate(innerDegrees);
SkVector curV = SkVector::Make(0.0f, 1.0f);
if (circles) {
circles->push_back(SkRect::MakeLTRB(o.fX - innerRadius, o.fY - innerRadius,
o.fX + innerRadius, o.fY + innerRadius));
}
p.moveTo(o.fX + innerRadius * curV.fX, o.fY + innerRadius * curV.fY);
for (int i = 0; i < numDivisions; ++i) {
SkVector nextV;
if (0 == (i % 2)) {
nextV = outerStep.mapVector(curV.fX, curV.fY);
SkPoint top = SkPoint::Make(o.fX + outerRadius * curV.fX,
o.fY + outerRadius * curV.fY);
SkPoint nextTop = SkPoint::Make(o.fX + outerRadius * nextV.fX,
o.fY + outerRadius * nextV.fY);
p.lineTo(top);
add_arc(&p, top, curV, nextTop, nextV, circles, true);
} else {
nextV = innerStep.mapVector(curV.fX, curV.fY);
SkPoint bot = SkPoint::Make(o.fX + innerRadius * curV.fX,
o.fY + innerRadius * curV.fY);
SkPoint nextBot = SkPoint::Make(o.fX + innerRadius * nextV.fX,
o.fY + innerRadius * nextV.fY);
p.lineTo(bot);
add_arc(&p, bot, curV, nextBot, nextV, nullptr, false);
}
curV = nextV;
}
p.close();
return p;
}
static SkBitmap make_bitmap(SkColorType colorType, const SkPath& path,
const SkTDArray<SkRect>& circles, bool opaque, bool padWithRed) {
const SkColor kGreen = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 178, 240, 104));
const SkColor kBlue = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 173, 167, 252));
const SkColor kYellow = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 255, 221, 117));
int widthHeight = kTileWidthHeight + (padWithRed ? 2 * kDomainPadding : 0);
SkImageInfo ii = SkImageInfo::Make(widthHeight, widthHeight,
colorType, kPremul_SkAlphaType);
SkBitmap bm;
bm.allocPixels(ii);
std::unique_ptr<SkCanvas> canvas = SkCanvas::MakeRasterDirect(ii,
bm.getPixels(),
bm.rowBytes());
if (padWithRed) {
canvas->clear(SK_ColorRED);
canvas->translate(kDomainPadding, kDomainPadding);
canvas->clipRect(SkRect::MakeWH(kTileWidthHeight, kTileWidthHeight));
}
canvas->clear(opaque ? kGreen : SK_ColorTRANSPARENT);
SkPaint paint;
paint.setAntiAlias(false); // serialize-8888 doesn't seem to work well w/ partial transparency
paint.setColor(kBlue);
canvas->drawPath(path, paint);
paint.setColor(opaque ? kYellow : SK_ColorTRANSPARENT);
paint.setBlendMode(SkBlendMode::kSrc);
for (int i = 0; i < circles.count(); ++i) {
SkRect r = circles[i];
r.inset(r.width()/4, r.height()/4);
canvas->drawOval(r, paint);
}
return bm;
}
static void convert_rgba_to_yuva_601_shared(SkColor col, uint8_t yuv[4],
uint8_t off, uint8_t range) {
static const float Kr = 0.299f;
static const float Kb = 0.114f;
static const float Kg = 1.0f - Kr - Kb;
float r = SkColorGetR(col) / 255.0f;
float g = SkColorGetG(col) / 255.0f;
float b = SkColorGetB(col) / 255.0f;
float Ey = Kr * r + Kg * g + Kb * b;
float Ecb = (b - Ey) / 1.402f;
float Ecr = (r - Ey) / 1.772;
yuv[0] = SkScalarRoundToInt( range * Ey + off );
yuv[1] = SkScalarRoundToInt( 224 * Ecb + 128 );
yuv[2] = SkScalarRoundToInt( 224 * Ecr + 128 );
yuv[3] = SkColorGetA(col);
}
static void convert_rgba_to_yuva_jpeg(SkColor col, uint8_t yuv[4]) {
// full swing from 0..255
convert_rgba_to_yuva_601_shared(col, yuv, 0, 255);
}
static void convert_rgba_to_yuva_601(SkColor col, uint8_t yuv[4]) {
// partial swing from 16..235
convert_rgba_to_yuva_601_shared(col, yuv, 16, 219);
}
static void convert_rgba_to_yuva_709(SkColor col, uint8_t yuv[4]) {
static const float Kr = 0.2126f;
static const float Kb = 0.0722f;
static const float Kg = 1.0f - Kr - Kb;
float r = SkColorGetR(col) / 255.0f;
float g = SkColorGetG(col) / 255.0f;
float b = SkColorGetB(col) / 255.0f;
float Ey = Kr * r + Kg * g + Kb * b;
float Ecb = (b - Ey) / 1.8556f;
float Ecr = (r - Ey) / 1.5748;
yuv[0] = SkScalarRoundToInt( 219 * Ey + 16 );
yuv[1] = SkScalarRoundToInt( 224 * Ecb + 128 );
yuv[2] = SkScalarRoundToInt( 224 * Ecr + 128 );
yuv[3] = SkColorGetA(col);
}
static SkPMColor convert_yuva_to_rgba_jpeg(uint8_t y, uint8_t u, uint8_t v, uint8_t a) {
uint8_t r = SkScalarPin(SkScalarRoundToInt( 1.0f * y + 1.402f * v - 0.703749f * 255),
0, 255);
uint8_t g = SkScalarPin(SkScalarRoundToInt( 1.0f * y - (0.344136f * u) - (0.714136f * v) + 0.531211f * 255),
0, 255);
uint8_t b = SkScalarPin(SkScalarRoundToInt( 1.0f * y + 1.772f * u - 0.889475f * 255),
0, 255);
SkPMColor c = SkPremultiplyARGBInline(a, b, g, r);
return c;
}
static SkPMColor convert_yuva_to_rgba_601(uint8_t y, uint8_t u, uint8_t v, uint8_t a) {
uint8_t r = SkScalarPin(SkScalarRoundToInt( 1.164f * y + 1.596f * v - 0.87075f * 255), 0, 255);
uint8_t g = SkScalarPin(SkScalarRoundToInt( 1.164f * y - (0.391f * u) - (0.813f * v) + 0.52925f * 255), 0, 255);
uint8_t b = SkScalarPin(SkScalarRoundToInt( 1.164f * y + 2.018f * u - 1.08175f * 255), 0, 255);
SkPMColor c = SkPremultiplyARGBInline(a, b, g, r);
return c;
}
static SkPMColor convert_yuva_to_rgba_709(uint8_t y, uint8_t u, uint8_t v, uint8_t a) {
uint8_t r = SkScalarPin(SkScalarRoundToInt( 1.164f * y + (1.793f * v) - 0.96925f * 255), 0, 255);
uint8_t g = SkScalarPin(SkScalarRoundToInt( 1.164f * y - (0.213f * u) - (0.533f * v) + 0.30025f * 255), 0, 255);
uint8_t b = SkScalarPin(SkScalarRoundToInt( 1.164f * y + (2.112f * u) - 1.12875f * 255), 0, 255);
SkPMColor c = SkPremultiplyARGBInline(a, b, g, r);
return c;
}
static void extract_planes(const SkBitmap& bm, SkYUVColorSpace yuvColorSpace, PlaneData* planes) {
if (kIdentity_SkYUVColorSpace == yuvColorSpace) {
// To test the identity color space we use JPEG YUV planes
yuvColorSpace = kJPEG_SkYUVColorSpace;
}
SkASSERT(!(bm.width() % 2));
SkASSERT(!(bm.height() % 2));
planes->fYFull.allocPixels(SkImageInfo::MakeA8(bm.width(), bm.height()));
planes->fUFull.allocPixels(SkImageInfo::MakeA8(bm.width(), bm.height()));
planes->fVFull.allocPixels(SkImageInfo::MakeA8(bm.width(), bm.height()));
planes->fAFull.allocPixels(SkImageInfo::MakeA8(bm.width(), bm.height()));
planes->fUQuarter.allocPixels(SkImageInfo::MakeA8(bm.width()/2, bm.height()/2));
planes->fVQuarter.allocPixels(SkImageInfo::MakeA8(bm.width()/2, bm.height()/2));
for (int y = 0; y < bm.height(); ++y) {
for (int x = 0; x < bm.width(); ++x) {
SkColor col = bm.getColor(x, y);
uint8_t yuva[4];
if (kJPEG_SkYUVColorSpace == yuvColorSpace) {
convert_rgba_to_yuva_jpeg(col, yuva);
} else if (kRec601_SkYUVColorSpace == yuvColorSpace) {
convert_rgba_to_yuva_601(col, yuva);
} else {
SkASSERT(kRec709_SkYUVColorSpace == yuvColorSpace);
convert_rgba_to_yuva_709(col, yuva);
}
*planes->fYFull.getAddr8(x, y) = yuva[0];
*planes->fUFull.getAddr8(x, y) = yuva[1];
*planes->fVFull.getAddr8(x, y) = yuva[2];
*planes->fAFull.getAddr8(x, y) = yuva[3];
}
}
for (int y = 0; y < bm.height()/2; ++y) {
for (int x = 0; x < bm.width()/2; ++x) {
uint32_t uAccum = 0, vAccum = 0;
uAccum += *planes->fUFull.getAddr8(2*x, 2*y);
uAccum += *planes->fUFull.getAddr8(2*x+1, 2*y);
uAccum += *planes->fUFull.getAddr8(2*x, 2*y+1);
uAccum += *planes->fUFull.getAddr8(2*x+1, 2*y+1);
*planes->fUQuarter.getAddr8(x, y) = uAccum / 4.0f;
vAccum += *planes->fVFull.getAddr8(2*x, 2*y);
vAccum += *planes->fVFull.getAddr8(2*x+1, 2*y);
vAccum += *planes->fVFull.getAddr8(2*x, 2*y+1);
vAccum += *planes->fVFull.getAddr8(2*x+1, 2*y+1);
*planes->fVQuarter.getAddr8(x, y) = vAccum / 4.0f;
}
}
}
// Recombine the separate planes into some YUV format
static void create_YUV(const PlaneData& planes, YUVFormat yuvFormat,
SkBitmap resultBMs[], SkYUVAIndex yuvaIndices[4], bool opaque) {
int nextLayer = 0;
switch (yuvFormat) {
case kAYUV_YUVFormat: {
SkBitmap yuvaFull;
yuvaFull.allocPixels(SkImageInfo::Make(planes.fYFull.width(), planes.fYFull.height(),
kRGBA_8888_SkColorType, kUnpremul_SkAlphaType));
for (int y = 0; y < planes.fYFull.height(); ++y) {
for (int x = 0; x < planes.fYFull.width(); ++x) {
uint8_t Y = *planes.fYFull.getAddr8(x, y);
uint8_t U = *planes.fUFull.getAddr8(x, y);
uint8_t V = *planes.fVFull.getAddr8(x, y);
uint8_t A = *planes.fAFull.getAddr8(x, y);
// NOT premul!
// V and Y swapped to match RGBA layout
SkColor c = SkColorSetARGB(A, V, U, Y);
*yuvaFull.getAddr32(x, y) = c;
}
}
resultBMs[nextLayer++] = yuvaFull;
setup_yuv_indices(yuvFormat, false, yuvaIndices);
break;
}
case kY410_YUVFormat: {
SkBitmap yuvaFull;
yuvaFull.allocPixels(SkImageInfo::Make(planes.fYFull.width(), planes.fYFull.height(),
kRGBA_1010102_SkColorType,
kUnpremul_SkAlphaType));
for (int y = 0; y < planes.fYFull.height(); ++y) {
for (int x = 0; x < planes.fYFull.width(); ++x) {
uint32_t Y = (*planes.fYFull.getAddr8(x, y) / 255.0f) * 1023.0f;
uint32_t U = (*planes.fUFull.getAddr8(x, y) / 255.0f) * 1023.0f;
uint32_t V = (*planes.fVFull.getAddr8(x, y) / 255.0f) * 1023.0f;
uint8_t A = (*planes.fAFull.getAddr8(x, y) / 255.0f) * 3.0f;
// NOT premul!
// AVYU but w/ V and U swapped to match RGBA layout
*yuvaFull.getAddr32(x, y) = (A << 30) | (U << 20) | (Y << 10) | (V << 0);
}
}
resultBMs[nextLayer++] = yuvaFull;
setup_yuv_indices(yuvFormat, false, yuvaIndices);
break;
}
case kNV12_YUVFormat: {
SkBitmap uvQuarter;
// There isn't a RG color type. Approx w/ RGBA.
uvQuarter.allocPixels(SkImageInfo::Make(planes.fYFull.width()/2,
planes.fYFull.height()/2,
kRGBA_8888_SkColorType,
kUnpremul_SkAlphaType));
for (int y = 0; y < planes.fYFull.height()/2; ++y) {
for (int x = 0; x < planes.fYFull.width()/2; ++x) {
uint8_t U = *planes.fUQuarter.getAddr8(x, y);
uint8_t V = *planes.fVQuarter.getAddr8(x, y);
// NOT premul!
// U and 0 swapped to match RGBA layout
*uvQuarter.getAddr32(x, y) = SkColorSetARGB(0xFF, 0, V, U);
}
}
resultBMs[nextLayer++] = planes.fYFull;
resultBMs[nextLayer++] = uvQuarter;
setup_yuv_indices(yuvFormat, !opaque, yuvaIndices);
break;
}
case kNV21_YUVFormat: {
SkBitmap vuQuarter;
// There isn't a RG color type. Approx w/ RGBA.
vuQuarter.allocPixels(SkImageInfo::Make(planes.fYFull.width()/2,
planes.fYFull.height()/2,
kRGBA_8888_SkColorType,
kUnpremul_SkAlphaType));
for (int y = 0; y < planes.fYFull.height()/2; ++y) {
for (int x = 0; x < planes.fYFull.width()/2; ++x) {
uint8_t U = *planes.fUQuarter.getAddr8(x, y);
uint8_t V = *planes.fVQuarter.getAddr8(x, y);
// NOT premul!
// V and 0 swapped to match RGBA layout
*vuQuarter.getAddr32(x, y) = SkColorSetARGB(0xFF, 0, U, V);
}
}
resultBMs[nextLayer++] = planes.fYFull;
resultBMs[nextLayer++] = vuQuarter;
setup_yuv_indices(yuvFormat, !opaque, yuvaIndices);
break;
}
case kI420_YUVFormat:
resultBMs[nextLayer++] = planes.fYFull;
resultBMs[nextLayer++] = planes.fUQuarter;
resultBMs[nextLayer++] = planes.fVQuarter;
setup_yuv_indices(yuvFormat, !opaque, yuvaIndices);
break;
case kYV12_YUVFormat:
resultBMs[nextLayer++] = planes.fYFull;
resultBMs[nextLayer++] = planes.fVQuarter;
resultBMs[nextLayer++] = planes.fUQuarter;
setup_yuv_indices(yuvFormat, !opaque, yuvaIndices);
break;
}
if (kAYUV_YUVFormat != yuvFormat && kY410_YUVFormat != yuvFormat && !opaque) {
resultBMs[nextLayer] = planes.fAFull;
}
}
static uint8_t look_up(float x1, float y1, const SkBitmap& bm, SkColorChannel channel) {
uint8_t result;
SkASSERT(x1 > 0 && x1 < 1.0f);
SkASSERT(y1 > 0 && y1 < 1.0f);
int x = SkScalarFloorToInt(x1 * bm.width());
int y = SkScalarFloorToInt(y1 * bm.height());
if (kAlpha_8_SkColorType == bm.colorType()) {
SkASSERT(SkColorChannel::kA == channel);
result = *bm.getAddr8(x, y);
} else if (kRGBA_8888_SkColorType == bm.colorType()) {
SkColor c = *bm.getAddr32(x, y);
switch (channel) {
case SkColorChannel::kR:
result = SkColorGetB(c);
break;
case SkColorChannel::kG:
result = SkColorGetG(c);
break;
case SkColorChannel::kB:
result = SkColorGetR(c);
break;
case SkColorChannel::kA:
result = SkColorGetA(c);
break;
}
} else {
SkASSERT(kRGBA_1010102_SkColorType == bm.colorType());
SkColor c = *bm.getAddr32(x, y);
switch (channel) {
case SkColorChannel::kR:
result = ((c >> 0) & 0x3ff) * (255.0f/1023.0f);
break;
case SkColorChannel::kG:
result = ((c >> 10) & 0x3ff) * (255.0f/1023.0f);
break;
case SkColorChannel::kB:
result = ((c >> 20) & 0x3ff) * (255.0f/1023.0f);
break;
case SkColorChannel::kA:
result = ((c >> 30) & 0x3) * (255.0f/3.0f);
break;
}
}
return result;
}
class YUVGenerator : public SkImageGenerator {
public:
YUVGenerator(const SkImageInfo& ii,
SkYUVColorSpace yuvColorSpace,
SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount],
SkBitmap bitmaps[SkYUVASizeInfo::kMaxCount])
: SkImageGenerator(ii)
, fYUVColorSpace(yuvColorSpace)
, fAllA8(true) {
memcpy(fYUVAIndices, yuvaIndices, sizeof(fYUVAIndices));
SkAssertResult(SkYUVAIndex::AreValidIndices(fYUVAIndices, &fNumBitmaps));
SkASSERT(fNumBitmaps > 0 && fNumBitmaps <= SkYUVASizeInfo::kMaxCount);
for (int i = 0; i < fNumBitmaps; ++i) {
fYUVBitmaps[i] = bitmaps[i];
if (kAlpha_8_SkColorType != fYUVBitmaps[i].colorType()) {
fAllA8 = false;
}
}
}
protected:
bool onGetPixels(const SkImageInfo& info, void* pixels, size_t rowBytes,
const Options&) override {
if (kUnknown_SkColorType == fFlattened.colorType()) {
fFlattened.allocPixels(info);
SkASSERT(kPremul_SkAlphaType == info.alphaType());
for (int y = 0; y < info.height(); ++y) {
for (int x = 0; x < info.width(); ++x) {
float x1 = (x + 0.5f) / info.width();
float y1 = (y + 0.5f) / info.height();
uint8_t Y = look_up(x1, y1,
fYUVBitmaps[fYUVAIndices[0].fIndex],
fYUVAIndices[0].fChannel);
uint8_t U = look_up(x1, y1,
fYUVBitmaps[fYUVAIndices[1].fIndex],
fYUVAIndices[1].fChannel);
uint8_t V = look_up(x1, y1,
fYUVBitmaps[fYUVAIndices[2].fIndex],
fYUVAIndices[2].fChannel);
uint8_t A = 255;
if (fYUVAIndices[3].fIndex >= 0) {
A = look_up(x1, y1,
fYUVBitmaps[fYUVAIndices[3].fIndex],
fYUVAIndices[3].fChannel);
}
// Making premul here.
switch (fYUVColorSpace) {
case kJPEG_SkYUVColorSpace:
*fFlattened.getAddr32(x, y) = convert_yuva_to_rgba_jpeg(Y, U, V, A);
break;
case kRec601_SkYUVColorSpace:
*fFlattened.getAddr32(x, y) = convert_yuva_to_rgba_601(Y, U, V, A);
break;
case kRec709_SkYUVColorSpace:
*fFlattened.getAddr32(x, y) = convert_yuva_to_rgba_709(Y, U, V, A);
break;
case kIdentity_SkYUVColorSpace:
*fFlattened.getAddr32(x, y) = SkPremultiplyARGBInline(A, V, U, Y);
break;
}
}
}
}
return fFlattened.readPixels(info, pixels, rowBytes, 0, 0);
}
bool onQueryYUVA8(SkYUVASizeInfo* size,
SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount],
SkYUVColorSpace* yuvColorSpace) const override {
// The onQueryYUVA8/onGetYUVA8Planes can only handle A8 planes
if (!fAllA8) {
return false;
}
memcpy(yuvaIndices, fYUVAIndices, sizeof(fYUVAIndices));
*yuvColorSpace = fYUVColorSpace;
int i = 0;
for ( ; i < fNumBitmaps; ++i) {
size->fSizes[i].fWidth = fYUVBitmaps[i].width();
size->fSizes[i].fHeight = fYUVBitmaps[i].height();
size->fWidthBytes[i] = fYUVBitmaps[i].rowBytes();
}
for ( ; i < SkYUVASizeInfo::kMaxCount; ++i) {
size->fSizes[i].fWidth = 0;
size->fSizes[i].fHeight = 0;
size->fWidthBytes[i] = 0;
}
return true;
}
bool onGetYUVA8Planes(const SkYUVASizeInfo&, const SkYUVAIndex[SkYUVAIndex::kIndexCount],
void* planes[SkYUVASizeInfo::kMaxCount]) override {
SkASSERT(fAllA8);
for (int i = 0; i < fNumBitmaps; ++i) {
planes[i] = fYUVBitmaps[i].getPixels();
}
return true;
}
private:
SkYUVColorSpace fYUVColorSpace;
SkYUVAIndex fYUVAIndices[SkYUVAIndex::kIndexCount];
int fNumBitmaps;
SkBitmap fYUVBitmaps[SkYUVASizeInfo::kMaxCount];
SkBitmap fFlattened;
bool fAllA8; // are all the SkBitmaps in "fYUVBitmaps" A8?
};
static sk_sp<SkImage> make_yuv_gen_image(const SkImageInfo& ii,
SkYUVColorSpace yuvColorSpace,
SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount],
SkBitmap bitmaps[]) {
std::unique_ptr<SkImageGenerator> gen(new YUVGenerator(ii, yuvColorSpace,
yuvaIndices, bitmaps));
return SkImage::MakeFromGenerator(std::move(gen));
}
static void draw_col_label(SkCanvas* canvas, int x, int yuvColorSpace, bool opaque) {
static const char* kYUVColorSpaceNames[] = { "JPEG", "601", "709", "Identity" };
GR_STATIC_ASSERT(SK_ARRAY_COUNT(kYUVColorSpaceNames) == kLastEnum_SkYUVColorSpace+1);
SkPaint paint;
SkFont font(ToolUtils::create_portable_typeface(nullptr, SkFontStyle::Bold()), 16);
font.setEdging(SkFont::Edging::kAlias);
SkRect textRect;
SkString colLabel;
colLabel.printf("%s", kYUVColorSpaceNames[yuvColorSpace]);
font.measureText(colLabel.c_str(), colLabel.size(), SkTextEncoding::kUTF8, &textRect);
int y = textRect.height();
SkTextUtils::DrawString(canvas, colLabel.c_str(), x, y, font, paint, SkTextUtils::kCenter_Align);
colLabel.printf("%s", opaque ? "Opaque" : "Transparent");
font.measureText(colLabel.c_str(), colLabel.size(), SkTextEncoding::kUTF8, &textRect);
y += textRect.height();
SkTextUtils::DrawString(canvas, colLabel.c_str(), x, y, font, paint, SkTextUtils::kCenter_Align);
}
static void draw_row_label(SkCanvas* canvas, int y, int yuvFormat) {
static const char* kYUVFormatNames[] = { "AYUV", "Y410", "NV12", "NV21", "I420", "YV12" };
GR_STATIC_ASSERT(SK_ARRAY_COUNT(kYUVFormatNames) == kLast_YUVFormat+1);
SkPaint paint;
SkFont font(ToolUtils::create_portable_typeface(nullptr, SkFontStyle::Bold()), 16);
font.setEdging(SkFont::Edging::kAlias);
SkRect textRect;
SkString rowLabel;
rowLabel.printf("%s", kYUVFormatNames[yuvFormat]);
font.measureText(rowLabel.c_str(), rowLabel.size(), SkTextEncoding::kUTF8, &textRect);
y += kTileWidthHeight/2 + textRect.height()/2;
canvas->drawString(rowLabel, 0, y, font, paint);
}
static GrBackendTexture create_yuva_texture(GrGpu* gpu, const SkBitmap& bm,
SkYUVAIndex yuvaIndices[4], int texIndex) {
const GrCaps* caps = gpu->caps();
SkASSERT(texIndex >= 0 && texIndex <= 3);
int channelCount = 0;
for (int i = 0; i < SkYUVAIndex::kIndexCount; ++i) {
if (yuvaIndices[i].fIndex == texIndex) {
++channelCount;
}
}
// Need to create an RG texture for two-channel planes
GrBackendTexture tex;
if (2 == channelCount) {
SkASSERT(kRGBA_8888_SkColorType == bm.colorType());
SkAutoTMalloc<char> pixels(2 * bm.width()*bm.height());
char* currPixel = pixels;
for (int y = 0; y < bm.height(); ++y) {
for (int x = 0; x < bm.width(); ++x) {
SkColor color = bm.getColor(x, y);
currPixel[0] = SkColorGetR(color);
currPixel[1] = SkColorGetG(color);
currPixel += 2;
}
}
GrBackendFormat format = caps->getBackendFormatFromGrColorType(GrColorType::kRG_88,
GrSRGBEncoded::kNo);
tex = gpu->createTestingOnlyBackendTexture(
bm.width(),
bm.height(),
format,
GrMipMapped::kNo, GrRenderable::kNo,
pixels, 2*bm.width());
}
if (!tex.isValid()) {
tex = gpu->createTestingOnlyBackendTexture(
bm.width(),
bm.height(),
bm.colorType(),
GrMipMapped::kNo, GrRenderable::kNo,
bm.getPixels(), bm.rowBytes());
}
return tex;
}
static sk_sp<SkColorFilter> yuv_to_rgb_colorfilter() {
static const float kJPEGConversionMatrix[20] = {
1.0f, 0.0f, 1.402f, 0.0f, -180.0f/255,
1.0f, -0.344136f, -0.714136f, 0.0f, 136.0f/255,
1.0f, 1.772f, 0.0f, 0.0f, -227.6f/255,
0.0f, 0.0f, 0.0f, 1.0f, 0.0f
};
return SkColorFilters::Matrix(kJPEGConversionMatrix);
}
namespace skiagm {
// This GM creates an opaque and transparent bitmap, extracts the planes and then recombines
// them into various YUV formats. It then renders the results in the grid:
//
// JPEG 601 709 Identity
// Transparent Opaque Transparent Opaque Transparent Opaque Transparent Opaque
// AYUV
// Y410
// NV12
// NV21
// I420
// YV12
class WackyYUVFormatsGM : public GM {
public:
WackyYUVFormatsGM(bool useTargetColorSpace, bool useDomain)
: fUseTargetColorSpace(useTargetColorSpace)
, fUseDomain(useDomain) {
this->setBGColor(0xFFCCCCCC);
}
protected:
SkString onShortName() override {
SkString name("wacky_yuv_formats");
if (fUseTargetColorSpace) {
name += "_cs";
}
if (fUseDomain) {
name += "_domain";
}
return name;
}
SkISize onISize() override {
int numCols = 2 * (kLastEnum_SkYUVColorSpace + 1); // opacity x color-space
int numRows = 1 + (kLast_YUVFormat + 1); // origin + # yuv formats
int wh = SkScalarCeilToInt(kTileWidthHeight * (fUseDomain ? 1.5f : 1.f));
return SkISize::Make(kLabelWidth + numCols * (wh + kPad),
kLabelHeight + numRows * (wh + kPad));
}
void onOnceBeforeDraw() override {
SkPoint origin = { kTileWidthHeight/2.0f, kTileWidthHeight/2.0f };
float outerRadius = kTileWidthHeight/2.0f - 20.0f;
float innerRadius = 20.0f;
{
// transparent
SkTDArray<SkRect> circles;
SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 5, &circles);
fOriginalBMs[0] = make_bitmap(kRGBA_8888_SkColorType, path, circles, false, fUseDomain);
}
{
// opaque
SkTDArray<SkRect> circles;
SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 7, &circles);
fOriginalBMs[1] = make_bitmap(kRGBA_8888_SkColorType, path, circles, true, fUseDomain);
}
if (fUseTargetColorSpace) {
fTargetColorSpace = SkColorSpace::MakeSRGB()->makeColorSpin();
}
}
void createImages(GrContext* context) {
int counter = 0;
for (bool opaque : { false, true }) {
for (int cs = kJPEG_SkYUVColorSpace; cs <= kLastEnum_SkYUVColorSpace; ++cs) {
PlaneData planes;
extract_planes(fOriginalBMs[opaque], (SkYUVColorSpace) cs, &planes);
for (int format = kAYUV_YUVFormat; format <= kLast_YUVFormat; ++format) {
SkBitmap resultBMs[4];
SkYUVAIndex yuvaIndices[4];
create_YUV(planes, (YUVFormat) format, resultBMs, yuvaIndices, opaque);
int numTextures;
if (!SkYUVAIndex::AreValidIndices(yuvaIndices, &numTextures)) {
continue;
}
if (context) {
if (context->abandoned()) {
return;
}
GrGpu* gpu = context->priv().getGpu();
if (!gpu) {
return;
}
GrBackendTexture yuvaTextures[4];
SkPixmap yuvaPixmaps[4];
for (int i = 0; i < numTextures; ++i) {
yuvaTextures[i] = create_yuva_texture(gpu, resultBMs[i],
yuvaIndices, i);
if (yuvaTextures[i].isValid()) {
fBackendTextures.push_back(yuvaTextures[i]);
}
yuvaPixmaps[i] = resultBMs[i].pixmap();
}
int counterMod = counter % 3;
if (format == kY410_YUVFormat && counterMod == 2) {
// This format doesn't work as pixmaps
counterMod = 1;
} else if (fUseDomain && counterMod == 0) {
// Copies flatten to RGB when they copy the YUVA data, which doesn't
// know about the intended domain and the domain padding bleeds in
counterMod = 1;
}
switch (counterMod) {
case 0:
fImages[opaque][cs][format] = SkImage::MakeFromYUVATexturesCopy(
context,
(SkYUVColorSpace)cs,
yuvaTextures,
yuvaIndices,
{ fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() },
kTopLeft_GrSurfaceOrigin);
break;
case 1:
fImages[opaque][cs][format] = SkImage::MakeFromYUVATextures(
context,
(SkYUVColorSpace)cs,
yuvaTextures,
yuvaIndices,
{ fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() },
kTopLeft_GrSurfaceOrigin);
break;
case 2:
default:
fImages[opaque][cs][format] = SkImage::MakeFromYUVAPixmaps(
context,
(SkYUVColorSpace)cs,
yuvaPixmaps,
yuvaIndices,
{ fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() },
kTopLeft_GrSurfaceOrigin, true);
break;
}
++counter;
} else {
fImages[opaque][cs][format] = make_yuv_gen_image(
fOriginalBMs[opaque].info(),
(SkYUVColorSpace) cs,
yuvaIndices,
resultBMs);
}
}
}
}
}
void onDraw(SkCanvas* canvas) override {
this->createImages(canvas->getGrContext());
SkRect srcRect = SkRect::MakeWH(fOriginalBMs[0].width(), fOriginalBMs[0].height());
SkRect dstRect = SkRect::MakeXYWH(kLabelWidth, 0.f, srcRect.width(), srcRect.height());
SkCanvas::SrcRectConstraint constraint = SkCanvas::kFast_SrcRectConstraint;
if (fUseDomain) {
srcRect.inset(kDomainPadding, kDomainPadding);
// Draw a larger rectangle to ensure bilerp filtering would normally read outside the
// srcRect and hit the red pixels, if strict constraint weren't used.
dstRect.fRight = kLabelWidth + 1.5f * srcRect.width();
dstRect.fBottom = 1.5f * srcRect.height();
constraint = SkCanvas::kStrict_SrcRectConstraint;
}
for (int cs = kJPEG_SkYUVColorSpace; cs <= kLastEnum_SkYUVColorSpace; ++cs) {
SkPaint paint;
paint.setFilterQuality(kLow_SkFilterQuality);
if (kIdentity_SkYUVColorSpace == cs) {
// The identity color space needs post processing to appear correctly
paint.setColorFilter(yuv_to_rgb_colorfilter());
}
for (int opaque : { 0, 1 }) {
dstRect.offsetTo(dstRect.fLeft, kLabelHeight);
draw_col_label(canvas, dstRect.fLeft + dstRect.height() / 2, cs, opaque);
canvas->drawBitmapRect(fOriginalBMs[opaque], srcRect, dstRect, nullptr, constraint);
dstRect.offset(0.f, dstRect.height() + kPad);
for (int format = kAYUV_YUVFormat; format <= kLast_YUVFormat; ++format) {
draw_row_label(canvas, dstRect.fTop, format);
if (fUseTargetColorSpace && fImages[opaque][cs][format]) {
// Making a CS-specific version of a kIdentity_SkYUVColorSpace YUV image
// doesn't make a whole lot of sense. The colorSpace conversion will
// operate on the YUV components rather than the RGB components.
sk_sp<SkImage> csImage =
fImages[opaque][cs][format]->makeColorSpace(fTargetColorSpace);
canvas->drawImageRect(csImage, srcRect, dstRect, &paint, constraint);
} else {
canvas->drawImageRect(fImages[opaque][cs][format], srcRect, dstRect, &paint,
constraint);
}
dstRect.offset(0.f, dstRect.height() + kPad);
}
dstRect.offset(dstRect.width() + kPad, 0.f);
}
}
if (auto context = canvas->getGrContext()) {
if (!context->abandoned()) {
context->flush();
GrGpu* gpu = context->priv().getGpu();
SkASSERT(gpu);
gpu->testingOnly_flushGpuAndSync();
for (const auto& tex : fBackendTextures) {
context->priv().deleteBackendTexture(tex);
}
fBackendTextures.reset();
}
}
SkASSERT(!fBackendTextures.count());
}
private:
SkBitmap fOriginalBMs[2];
sk_sp<SkImage> fImages[2][kLastEnum_SkYUVColorSpace + 1][kLast_YUVFormat + 1];
SkTArray<GrBackendTexture> fBackendTextures;
bool fUseTargetColorSpace;
bool fUseDomain;
sk_sp<SkColorSpace> fTargetColorSpace;
typedef GM INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
DEF_GM(return new WackyYUVFormatsGM(/* cs */ false, /* domain */ false);)
DEF_GM(return new WackyYUVFormatsGM(/* cs */ true, /* domain */ false);)
DEF_GM(return new WackyYUVFormatsGM(/* cs */ false, /* domain */ true);)
class YUVMakeColorSpaceGM : public GpuGM {
public:
YUVMakeColorSpaceGM() {
this->setBGColor(0xFFCCCCCC);
}
protected:
SkString onShortName() override {
return SkString("yuv_make_color_space");
}
SkISize onISize() override {
int numCols = 4; // (transparent, opaque) x (untagged, tagged)
int numRows = 5; // original, YUV, subset, readPixels, makeNonTextureImage
return SkISize::Make(numCols * (kTileWidthHeight + kPad) + kPad,
numRows * (kTileWidthHeight + kPad) + kPad);
}
void onOnceBeforeDraw() override {
SkPoint origin = { kTileWidthHeight/2.0f, kTileWidthHeight/2.0f };
float outerRadius = kTileWidthHeight/2.0f - 20.0f;
float innerRadius = 20.0f;
{
// transparent
SkTDArray<SkRect> circles;
SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 5, &circles);
fOriginalBMs[0] = make_bitmap(kN32_SkColorType, path, circles, false, false);
}
{
// opaque
SkTDArray<SkRect> circles;
SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 7, &circles);
fOriginalBMs[1] = make_bitmap(kN32_SkColorType, path, circles, true, false);
}
fTargetColorSpace = SkColorSpace::MakeSRGB()->makeColorSpin();
}
void createImages(GrContext* context) {
for (bool opaque : { false, true }) {
PlaneData planes;
extract_planes(fOriginalBMs[opaque], kJPEG_SkYUVColorSpace, &planes);
SkBitmap resultBMs[4];
SkYUVAIndex yuvaIndices[4];
create_YUV(planes, kAYUV_YUVFormat, resultBMs, yuvaIndices, opaque);
int numTextures;
if (!SkYUVAIndex::AreValidIndices(yuvaIndices, &numTextures)) {
continue;
}
GrGpu* gpu = context->priv().getGpu();
if (!gpu) {
return;
}
GrBackendTexture yuvaTextures[4];
for (int i = 0; i < numTextures; ++i) {
yuvaTextures[i] = create_yuva_texture(gpu, resultBMs[i], yuvaIndices, i);
if (yuvaTextures[i].isValid()) {
fBackendTextures.push_back(yuvaTextures[i]);
}
}
fImages[opaque][0] = SkImage::MakeFromYUVATextures(
context,
kJPEG_SkYUVColorSpace,
yuvaTextures,
yuvaIndices,
{ fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() },
kTopLeft_GrSurfaceOrigin);
fImages[opaque][1] = SkImage::MakeFromYUVATextures(
context,
kJPEG_SkYUVColorSpace,
yuvaTextures,
yuvaIndices,
{ fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() },
kTopLeft_GrSurfaceOrigin,
SkColorSpace::MakeSRGB());
}
}
void onDraw(GrContext* context, GrRenderTargetContext*, SkCanvas* canvas) override {
this->createImages(context);
int x = kPad;
for (int tagged : { 0, 1 }) {
for (int opaque : { 0, 1 }) {
int y = kPad;
auto raster = SkImage::MakeFromBitmap(fOriginalBMs[opaque])
->makeColorSpace(fTargetColorSpace);
canvas->drawImage(raster, x, y);
y += kTileWidthHeight + kPad;
auto yuv = fImages[opaque][tagged]->makeColorSpace(fTargetColorSpace);
SkASSERT(SkColorSpace::Equals(yuv->colorSpace(), fTargetColorSpace.get()));
canvas->drawImage(yuv, x, y);
y += kTileWidthHeight + kPad;
auto subset = yuv->makeSubset(SkIRect::MakeWH(kTileWidthHeight / 2,
kTileWidthHeight / 2));
canvas->drawImage(subset, x, y);
y += kTileWidthHeight + kPad;
auto nonTexture = yuv->makeNonTextureImage();
canvas->drawImage(nonTexture, x, y);
y += kTileWidthHeight + kPad;
SkBitmap readBack;
readBack.allocPixels(yuv->imageInfo());
yuv->readPixels(readBack.pixmap(), 0, 0);
canvas->drawBitmap(readBack, x, y);
x += kTileWidthHeight + kPad;
}
}
context->flush();
GrGpu* gpu = context->priv().getGpu();
SkASSERT(gpu);
gpu->testingOnly_flushGpuAndSync();
for (const auto& tex : fBackendTextures) {
context->priv().deleteBackendTexture(tex);
}
fBackendTextures.reset();
}
private:
SkBitmap fOriginalBMs[2];
sk_sp<SkImage> fImages[2][2];
SkTArray<GrBackendTexture> fBackendTextures;
sk_sp<SkColorSpace> fTargetColorSpace;
typedef GM INHERITED;
};
DEF_GM(return new YUVMakeColorSpaceGM();)
}