333848272c
The type SkColorSpace_Base doesn't need to exist. Its one type() query can be answered instead by toXYZD50(). Now all that's left in the file is SkGammas, so rename it to SkGammas.h. Change-Id: Id60ddbfb342accfd5674ae89b37a24a6583ef7b8 Reviewed-on: https://skia-review.googlesource.com/99702 Reviewed-by: Mike Klein <mtklein@chromium.org> Commit-Queue: Mike Klein <mtklein@chromium.org>
684 lines
27 KiB
C++
684 lines
27 KiB
C++
/*
|
|
* Copyright 2016 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "Resources.h"
|
|
|
|
#include "SkBitmap.h"
|
|
#include "SkCanvas.h"
|
|
#include "SkCodec.h"
|
|
#include "SkColorSpacePriv.h"
|
|
#include "SkColorSpace_A2B.h"
|
|
#include "SkColorSpace_XYZ.h"
|
|
#include "SkCommandLineFlags.h"
|
|
#include "SkICCPriv.h"
|
|
#include "SkImageEncoder.h"
|
|
#include "SkMatrix44.h"
|
|
#include "SkOSFile.h"
|
|
#include "SkRasterPipeline.h"
|
|
#include "../src/jumper/SkJumper.h"
|
|
|
|
#include "sk_tool_utils.h"
|
|
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
DEFINE_string(input, "input.png", "A path to the input image (or icc profile with --icc).");
|
|
DEFINE_string(output, ".", "A path to the output image directory.");
|
|
DEFINE_bool(icc, false, "Indicates that the input is an icc profile.");
|
|
DEFINE_bool(sRGB_gamut, false, "Draws the sRGB gamut on the gamut visualization.");
|
|
DEFINE_bool(adobeRGB, false, "Draws the Adobe RGB gamut on the gamut visualization.");
|
|
DEFINE_bool(sRGB_gamma, false, "Draws the sRGB gamma on all gamma output images.");
|
|
DEFINE_string(uncorrected, "", "A path to reencode the uncorrected input image.");
|
|
|
|
|
|
//-------------------------------------------------------------------------------------------------
|
|
//------------------------------------ Gamma visualizations ---------------------------------------
|
|
|
|
static const char* kRGBChannelNames[3] = {
|
|
"Red ",
|
|
"Green",
|
|
"Blue "
|
|
};
|
|
static const SkColor kRGBChannelColors[3] = {
|
|
SkColorSetARGB(128, 255, 0, 0),
|
|
SkColorSetARGB(128, 0, 255, 0),
|
|
SkColorSetARGB(128, 0, 0, 255)
|
|
};
|
|
|
|
static const char* kGrayChannelNames[1] = { "Gray"};
|
|
static const SkColor kGrayChannelColors[1] = { SkColorSetRGB(128, 128, 128) };
|
|
|
|
static const char* kCMYKChannelNames[4] = {
|
|
"Cyan ",
|
|
"Magenta",
|
|
"Yellow ",
|
|
"Black "
|
|
};
|
|
static const SkColor kCMYKChannelColors[4] = {
|
|
SkColorSetARGB(128, 0, 255, 255),
|
|
SkColorSetARGB(128, 255, 0, 255),
|
|
SkColorSetARGB(128, 255, 255, 0),
|
|
SkColorSetARGB(128, 16, 16, 16)
|
|
};
|
|
|
|
static const char*const*const kChannelNames[4] = {
|
|
kGrayChannelNames,
|
|
kRGBChannelNames,
|
|
kRGBChannelNames,
|
|
kCMYKChannelNames
|
|
};
|
|
static const SkColor*const kChannelColors[4] = {
|
|
kGrayChannelColors,
|
|
kRGBChannelColors,
|
|
kRGBChannelColors,
|
|
kCMYKChannelColors
|
|
};
|
|
|
|
static void dump_transfer_fn(SkGammaNamed gammaNamed) {
|
|
switch (gammaNamed) {
|
|
case kSRGB_SkGammaNamed:
|
|
SkDebugf("Transfer Function: sRGB\n");
|
|
return;
|
|
case k2Dot2Curve_SkGammaNamed:
|
|
SkDebugf("Exponential Transfer Function: Exponent 2.2\n");
|
|
return;
|
|
case kLinear_SkGammaNamed:
|
|
SkDebugf("Transfer Function: Linear\n");
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
static constexpr int kGammaImageWidth = 500;
|
|
static constexpr int kGammaImageHeight = 500;
|
|
|
|
static void dump_transfer_fn(const SkGammas& gammas) {
|
|
SkASSERT(gammas.channels() <= 4);
|
|
const char*const*const channels = kChannelNames[gammas.channels() - 1];
|
|
for (int i = 0; i < gammas.channels(); i++) {
|
|
if (gammas.isNamed(i)) {
|
|
switch (gammas.data(i).fNamed) {
|
|
case kSRGB_SkGammaNamed:
|
|
SkDebugf("%s Transfer Function: sRGB\n", channels[i]);
|
|
return;
|
|
case k2Dot2Curve_SkGammaNamed:
|
|
SkDebugf("%s Transfer Function: Exponent 2.2\n", channels[i]);
|
|
return;
|
|
case kLinear_SkGammaNamed:
|
|
SkDebugf("%s Transfer Function: Linear\n", channels[i]);
|
|
return;
|
|
default:
|
|
SkASSERT(false);
|
|
continue;
|
|
}
|
|
} else if (gammas.isValue(i)) {
|
|
SkDebugf("%s Transfer Function: Exponent %.3f\n", channels[i], gammas.data(i).fValue);
|
|
} else if (gammas.isParametric(i)) {
|
|
const SkColorSpaceTransferFn& fn = gammas.data(i).params(&gammas);
|
|
SkDebugf("%s Transfer Function: Parametric A = %.3f, B = %.3f, C = %.3f, D = %.3f, "
|
|
"E = %.3f, F = %.3f, G = %.3f\n", channels[i], fn.fA, fn.fB, fn.fC, fn.fD,
|
|
fn.fE, fn.fF, fn.fG);
|
|
} else {
|
|
SkASSERT(gammas.isTable(i));
|
|
SkDebugf("%s Transfer Function: Table (%d entries)\n", channels[i],
|
|
gammas.data(i).fTable.fSize);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline float parametric(const SkColorSpaceTransferFn& fn, float x) {
|
|
return x >= fn.fD ? powf(fn.fA*x + fn.fB, fn.fG) + fn.fE
|
|
: fn.fC*x + fn.fF;
|
|
}
|
|
|
|
static void draw_transfer_fn(SkCanvas* canvas, SkGammaNamed gammaNamed, const SkGammas* gammas,
|
|
SkColor color) {
|
|
SkColorSpaceTransferFn fn[4];
|
|
struct TableInfo {
|
|
const float* fTable;
|
|
int fSize;
|
|
};
|
|
TableInfo table[4];
|
|
bool isTable[4] = {false, false, false, false};
|
|
const int channels = gammas ? gammas->channels() : 1;
|
|
SkASSERT(channels <= 4);
|
|
if (kNonStandard_SkGammaNamed != gammaNamed) {
|
|
dump_transfer_fn(gammaNamed);
|
|
for (int i = 0; i < channels; ++i) {
|
|
named_to_parametric(&fn[i], gammaNamed);
|
|
}
|
|
} else {
|
|
SkASSERT(gammas);
|
|
dump_transfer_fn(*gammas);
|
|
for (int i = 0; i < channels; ++i) {
|
|
if (gammas->isTable(i)) {
|
|
table[i].fTable = gammas->table(i);
|
|
table[i].fSize = gammas->data(i).fTable.fSize;
|
|
isTable[i] = true;
|
|
} else {
|
|
switch (gammas->type(i)) {
|
|
case SkGammas::Type::kNamed_Type:
|
|
named_to_parametric(&fn[i], gammas->data(i).fNamed);
|
|
break;
|
|
case SkGammas::Type::kValue_Type:
|
|
value_to_parametric(&fn[i], gammas->data(i).fValue);
|
|
break;
|
|
case SkGammas::Type::kParam_Type:
|
|
fn[i] = gammas->params(i);
|
|
break;
|
|
default:
|
|
SkASSERT(false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
SkPaint paint;
|
|
paint.setStyle(SkPaint::kStroke_Style);
|
|
paint.setColor(color);
|
|
paint.setStrokeWidth(2.0f);
|
|
// note: gamma has positive values going up in this image so this origin is
|
|
// the bottom left and we must subtract y instead of adding.
|
|
const float gap = 16.0f;
|
|
const float gammaWidth = kGammaImageWidth - 2 * gap;
|
|
const float gammaHeight = kGammaImageHeight - 2 * gap;
|
|
// gamma origin point
|
|
const float ox = gap;
|
|
const float oy = gap + gammaHeight;
|
|
for (int i = 0; i < channels; ++i) {
|
|
if (kNonStandard_SkGammaNamed == gammaNamed) {
|
|
paint.setColor(kChannelColors[channels - 1][i]);
|
|
} else {
|
|
paint.setColor(color);
|
|
}
|
|
if (isTable[i]) {
|
|
auto tx = [&table,i](int index) {
|
|
return index / (table[i].fSize - 1.0f);
|
|
};
|
|
for (int ti = 1; ti < table[i].fSize; ++ti) {
|
|
canvas->drawLine(ox + gammaWidth * tx(ti - 1),
|
|
oy - gammaHeight * table[i].fTable[ti - 1],
|
|
ox + gammaWidth * tx(ti),
|
|
oy - gammaHeight * table[i].fTable[ti],
|
|
paint);
|
|
}
|
|
} else {
|
|
const float step = 0.01f;
|
|
float yPrev = parametric(fn[i], 0.0f);
|
|
for (float x = step; x <= 1.0f; x += step) {
|
|
const float y = parametric(fn[i], x);
|
|
canvas->drawLine(ox + gammaWidth * (x - step), oy - gammaHeight * yPrev,
|
|
ox + gammaWidth * x, oy - gammaHeight * y,
|
|
paint);
|
|
yPrev = y;
|
|
}
|
|
}
|
|
}
|
|
paint.setColor(0xFF000000);
|
|
paint.setStrokeWidth(3.0f);
|
|
canvas->drawRect({ ox, oy - gammaHeight, ox + gammaWidth, oy }, paint);
|
|
}
|
|
|
|
//-------------------------------------------------------------------------------------------------
|
|
//------------------------------------ CLUT visualizations ----------------------------------------
|
|
static void dump_clut(const SkColorLookUpTable& clut) {
|
|
SkDebugf("CLUT: ");
|
|
for (int i = 0; i < clut.inputChannels(); ++i) {
|
|
SkDebugf("[%d]", clut.gridPoints(i));
|
|
}
|
|
SkDebugf(" -> [%d]\n", clut.outputChannels());
|
|
}
|
|
|
|
constexpr int kClutGap = 8;
|
|
constexpr float kClutCanvasSize = 2000;
|
|
|
|
static inline int usedGridPoints(const SkColorLookUpTable& clut, int dimension) {
|
|
const int gp = clut.gridPoints(dimension);
|
|
return gp <= 16 ? gp : 16;
|
|
}
|
|
|
|
// how many rows of cross-section cuts to display
|
|
static inline int cut_rows(const SkColorLookUpTable& clut, int dimOrder[4]) {
|
|
// and vertical ones for the 4th dimension (if applicable)
|
|
return clut.inputChannels() >= 4 ? usedGridPoints(clut, dimOrder[3]) : 1;
|
|
}
|
|
|
|
// how many columns of cross-section cuts to display
|
|
static inline int cut_cols(const SkColorLookUpTable& clut, int dimOrder[4]) {
|
|
// do horizontal cuts for the 3rd dimension (if applicable)
|
|
return clut.inputChannels() >= 3 ? usedGridPoints(clut, dimOrder[2]) : 1;
|
|
}
|
|
|
|
// gets the width/height to use for cross-sections of a CLUT
|
|
static int cut_size(const SkColorLookUpTable& clut, int dimOrder[4]) {
|
|
const int rows = cut_rows(clut, dimOrder);
|
|
const int cols = cut_cols(clut, dimOrder);
|
|
// make sure the cross-section CLUT cuts are square still by using the
|
|
// smallest of the width/height, then adjust the gaps between accordingly
|
|
const int cutWidth = (kClutCanvasSize - kClutGap * (1 + cols)) / cols;
|
|
const int cutHeight = (kClutCanvasSize - kClutGap * (1 + rows)) / rows;
|
|
return cutWidth < cutHeight ? cutWidth : cutHeight;
|
|
}
|
|
|
|
static void clut_interp(const SkColorLookUpTable& clut, float out[3], const float in[4]) {
|
|
// This is kind of a toy implementation.
|
|
// You generally wouldn't want to do this 1 pixel at a time.
|
|
|
|
SkJumper_ColorLookupTableCtx ctx;
|
|
ctx.table = clut.table();
|
|
for (int i = 0; i < clut.inputChannels(); i++) {
|
|
ctx.limits[i] = clut.gridPoints(i);
|
|
}
|
|
|
|
SkSTArenaAlloc<256> alloc;
|
|
SkRasterPipeline p(&alloc);
|
|
p.append_constant_color(&alloc, in);
|
|
p.append(clut.inputChannels() == 3 ? SkRasterPipeline::clut_3D
|
|
: SkRasterPipeline::clut_4D, &ctx);
|
|
p.append(SkRasterPipeline::clamp_0);
|
|
p.append(SkRasterPipeline::clamp_1);
|
|
p.append(SkRasterPipeline::store_f32, &out);
|
|
p.run(0,0, 1,1);
|
|
}
|
|
|
|
static void draw_clut(SkCanvas* canvas, const SkColorLookUpTable& clut, int dimOrder[4]) {
|
|
dump_clut(clut);
|
|
|
|
const int cutSize = cut_size(clut, dimOrder);
|
|
const int rows = cut_rows(clut, dimOrder);
|
|
const int cols = cut_cols(clut, dimOrder);
|
|
const int cutHorizGap = (kClutCanvasSize - cutSize * cols) / (1 + cols);
|
|
const int cutVertGap = (kClutCanvasSize - cutSize * rows) / (1 + rows);
|
|
|
|
SkPaint paint;
|
|
for (int row = 0; row < rows; ++row) {
|
|
for (int col = 0; col < cols; ++col) {
|
|
// make sure to move at least one pixel, but otherwise move per-gridpoint
|
|
const float xStep = 1.0f / (SkTMin(cutSize, clut.gridPoints(dimOrder[0])) - 1);
|
|
const float yStep = 1.0f / (SkTMin(cutSize, clut.gridPoints(dimOrder[1])) - 1);
|
|
const float ox = clut.inputChannels() >= 3 ? (1 + col) * cutHorizGap + col * cutSize
|
|
: kClutGap;
|
|
const float oy = clut.inputChannels() >= 4 ? (1 + row) * cutVertGap + row * cutSize
|
|
: kClutGap;
|
|
// for each cross-section cut, draw a bunch of squares whose colour is the top-left's
|
|
// colour in the CLUT (usually this will just draw the gridpoints)
|
|
for (float x = 0.0f; x < 1.0f; x += xStep) {
|
|
for (float y = 0.0f; y < 1.0f; y += yStep) {
|
|
const float z = col / (cols - 1.0f);
|
|
const float w = row / (rows - 1.0f);
|
|
const float input[4] = {x, y, z, w};
|
|
float output[3];
|
|
clut_interp(clut, output, input);
|
|
paint.setColor(SkColorSetRGB(255*output[0], 255*output[1], 255*output[2]));
|
|
canvas->drawRect(SkRect::MakeLTRB(ox + cutSize * x, oy + cutSize * y,
|
|
ox + cutSize * (x + xStep),
|
|
oy + cutSize * (y + yStep)), paint);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//-------------------------------------------------------------------------------------------------
|
|
//------------------------------------ Gamut visualizations ---------------------------------------
|
|
static void dump_matrix(const SkMatrix44& m) {
|
|
for (int r = 0; r < 4; ++r) {
|
|
SkDebugf("|");
|
|
for (int c = 0; c < 4; ++c) {
|
|
SkDebugf(" %f ", m.get(r, c));
|
|
}
|
|
SkDebugf("|\n");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Loads the triangular gamut as a set of three points.
|
|
*/
|
|
static void load_gamut(SkPoint rgb[], const SkMatrix44& xyz) {
|
|
// rx = rX / (rX + rY + rZ)
|
|
// ry = rX / (rX + rY + rZ)
|
|
// gx, gy, bx, and gy are calulcated similarly.
|
|
float rSum = xyz.get(0, 0) + xyz.get(1, 0) + xyz.get(2, 0);
|
|
float gSum = xyz.get(0, 1) + xyz.get(1, 1) + xyz.get(2, 1);
|
|
float bSum = xyz.get(0, 2) + xyz.get(1, 2) + xyz.get(2, 2);
|
|
rgb[0].fX = xyz.get(0, 0) / rSum;
|
|
rgb[0].fY = xyz.get(1, 0) / rSum;
|
|
rgb[1].fX = xyz.get(0, 1) / gSum;
|
|
rgb[1].fY = xyz.get(1, 1) / gSum;
|
|
rgb[2].fX = xyz.get(0, 2) / bSum;
|
|
rgb[2].fY = xyz.get(1, 2) / bSum;
|
|
}
|
|
|
|
/**
|
|
* Calculates the area of the triangular gamut.
|
|
*/
|
|
static float calculate_area(SkPoint abc[]) {
|
|
SkPoint a = abc[0];
|
|
SkPoint b = abc[1];
|
|
SkPoint c = abc[2];
|
|
return 0.5f * SkTAbs(a.fX*b.fY + b.fX*c.fY - a.fX*c.fY - c.fX*b.fY - b.fX*a.fY);
|
|
}
|
|
|
|
static void draw_gamut(SkCanvas* canvas, const SkMatrix44& xyz, const char* name, SkColor color,
|
|
bool label) {
|
|
// Report the XYZ values.
|
|
SkDebugf("%s\n", name);
|
|
SkDebugf(" R G B\n");
|
|
SkDebugf("X %.3f %.3f %.3f\n", xyz.get(0, 0), xyz.get(0, 1), xyz.get(0, 2));
|
|
SkDebugf("Y %.3f %.3f %.3f\n", xyz.get(1, 0), xyz.get(1, 1), xyz.get(1, 2));
|
|
SkDebugf("Z %.3f %.3f %.3f\n", xyz.get(2, 0), xyz.get(2, 1), xyz.get(2, 2));
|
|
|
|
// Calculate the points in the gamut from the XYZ values.
|
|
SkPoint rgb[4];
|
|
load_gamut(rgb, xyz);
|
|
|
|
// Report the area of the gamut.
|
|
SkDebugf("Area of Gamut: %.3f\n\n", calculate_area(rgb));
|
|
|
|
// Magic constants that help us place the gamut triangles in the appropriate position
|
|
// on the canvas.
|
|
const float xScale = 2071.25f; // Num pixels from 0 to 1 in x
|
|
const float xOffset = 241.0f; // Num pixels until start of x-axis
|
|
const float yScale = 2067.78f; // Num pixels from 0 to 1 in y
|
|
const float yOffset = -144.78f; // Num pixels until start of y-axis
|
|
// (negative because y extends beyond image bounds)
|
|
|
|
// Now transform the points so they can be drawn on our canvas.
|
|
// Note that y increases as we move down the canvas.
|
|
rgb[0].fX = xOffset + xScale * rgb[0].fX;
|
|
rgb[0].fY = yOffset + yScale * (1.0f - rgb[0].fY);
|
|
rgb[1].fX = xOffset + xScale * rgb[1].fX;
|
|
rgb[1].fY = yOffset + yScale * (1.0f - rgb[1].fY);
|
|
rgb[2].fX = xOffset + xScale * rgb[2].fX;
|
|
rgb[2].fY = yOffset + yScale * (1.0f - rgb[2].fY);
|
|
|
|
// Repeat the first point to connect the polygon.
|
|
rgb[3] = rgb[0];
|
|
SkPaint paint;
|
|
paint.setColor(color);
|
|
paint.setStrokeWidth(6.0f);
|
|
paint.setTextSize(75.0f);
|
|
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 4, rgb, paint);
|
|
if (label) {
|
|
canvas->drawString("R", rgb[0].fX + 5.0f, rgb[0].fY + 75.0f, paint);
|
|
canvas->drawString("G", rgb[1].fX + 5.0f, rgb[1].fY - 5.0f, paint);
|
|
canvas->drawString("B", rgb[2].fX - 75.0f, rgb[2].fY - 5.0f, paint);
|
|
}
|
|
}
|
|
|
|
|
|
//-------------------------------------------------------------------------------------------------
|
|
//----------------------------------------- Main code ---------------------------------------------
|
|
static SkBitmap transparentBitmap(int width, int height) {
|
|
SkBitmap bitmap;
|
|
bitmap.allocN32Pixels(width, height);
|
|
bitmap.eraseColor(SkColorSetARGB(0, 0, 0, 0));
|
|
return bitmap;
|
|
}
|
|
|
|
class OutputCanvas {
|
|
public:
|
|
OutputCanvas(SkBitmap&& bitmap)
|
|
:fBitmap(bitmap)
|
|
,fCanvas(fBitmap)
|
|
{}
|
|
|
|
bool save(std::vector<std::string>* output, const std::string& filename) {
|
|
// Finally, encode the result to the output file.
|
|
sk_sp<SkData> out = sk_tool_utils::EncodeImageToData(fBitmap, SkEncodedImageFormat::kPNG,
|
|
100);
|
|
if (!out) {
|
|
SkDebugf("Failed to encode %s output.\n", filename.c_str());
|
|
return false;
|
|
}
|
|
SkFILEWStream stream(filename.c_str());
|
|
if (!stream.write(out->data(), out->size())) {
|
|
SkDebugf("Failed to write %s output.\n", filename.c_str());
|
|
return false;
|
|
}
|
|
// record name of canvas
|
|
output->push_back(filename);
|
|
return true;
|
|
}
|
|
|
|
SkCanvas* canvas() { return &fCanvas; }
|
|
|
|
private:
|
|
SkBitmap fBitmap;
|
|
SkCanvas fCanvas;
|
|
};
|
|
|
|
int main(int argc, char** argv) {
|
|
SkCommandLineFlags::SetUsage(
|
|
"Usage: colorspaceinfo --input <path to input image (or icc profile with --icc)> "
|
|
"--output <directory to output images> "
|
|
"--icc <indicates that the input is an icc profile>"
|
|
"--sRGB_gamut <draw canonical sRGB gamut> "
|
|
"--adobeRGB <draw canonical Adobe RGB gamut> "
|
|
"--sRGB_gamma <draw sRGB gamma> "
|
|
"--uncorrected <path to reencoded, uncorrected input image>\n"
|
|
"Description: Writes visualizations of the color space to the output image(s) ."
|
|
"Also, if a path is provided, writes uncorrected bytes to an unmarked "
|
|
"png, for comparison with the input image.\n");
|
|
SkCommandLineFlags::Parse(argc, argv);
|
|
const char* input = FLAGS_input[0];
|
|
const char* output = FLAGS_output[0];
|
|
if (!input || !output) {
|
|
SkCommandLineFlags::PrintUsage();
|
|
return -1;
|
|
}
|
|
|
|
sk_sp<SkData> data(SkData::MakeFromFileName(input));
|
|
if (!data) {
|
|
SkDebugf("Cannot find input image.\n");
|
|
return -1;
|
|
}
|
|
|
|
std::unique_ptr<SkCodec> codec = nullptr;
|
|
sk_sp<SkColorSpace> colorSpace = nullptr;
|
|
if (FLAGS_icc) {
|
|
colorSpace = SkColorSpace::MakeICC(data->bytes(), data->size());
|
|
} else {
|
|
codec = SkCodec::MakeFromData(data);
|
|
colorSpace = sk_ref_sp(codec->getInfo().colorSpace());
|
|
SkDebugf("SkCodec would naturally decode as colorType=%s\n",
|
|
sk_tool_utils::colortype_name(codec->getInfo().colorType()));
|
|
}
|
|
|
|
if (!colorSpace) {
|
|
SkDebugf("Cannot create codec or icc profile from input file.\n");
|
|
return -1;
|
|
}
|
|
|
|
{
|
|
SkColorSpaceTransferFn colorSpaceTransferFn;
|
|
SkMatrix44 toXYZD50(SkMatrix44::kIdentity_Constructor);
|
|
if (colorSpace->isNumericalTransferFn(&colorSpaceTransferFn) &&
|
|
colorSpace->toXYZD50(&toXYZD50)) {
|
|
SkString description = SkICCGetColorProfileTag(colorSpaceTransferFn, toXYZD50);
|
|
SkDebugf("Color Profile Description: \"%s\"\n", description.c_str());
|
|
}
|
|
}
|
|
|
|
// TODO: command line tweaking of this order
|
|
int dimOrder[4] = {0, 1, 2, 3};
|
|
|
|
std::vector<std::string> outputFilenames;
|
|
|
|
auto createOutputFilename = [output](const char* category, int index) -> std::string {
|
|
std::stringstream ss;
|
|
ss << output << '/' << category << '_' << index << ".png";
|
|
return ss.str();
|
|
};
|
|
|
|
if (colorSpace->toXYZD50()) {
|
|
SkDebugf("XYZ/TRC color space\n");
|
|
|
|
// Load a graph of the CIE XYZ color gamut.
|
|
SkBitmap gamutCanvasBitmap;
|
|
if (!GetResourceAsBitmap("images/gamut.png", &gamutCanvasBitmap)) {
|
|
SkDebugf("Program failure (could not load gamut.png).\n");
|
|
return -1;
|
|
}
|
|
OutputCanvas gamutCanvas(std::move(gamutCanvasBitmap));
|
|
// Draw the sRGB gamut if requested.
|
|
if (FLAGS_sRGB_gamut) {
|
|
sk_sp<SkColorSpace> sRGBSpace = SkColorSpace::MakeSRGB();
|
|
const SkMatrix44* mat = sRGBSpace->toXYZD50();
|
|
SkASSERT(mat);
|
|
draw_gamut(gamutCanvas.canvas(), *mat, "sRGB", 0xFFFF9394, false);
|
|
}
|
|
|
|
// Draw the Adobe RGB gamut if requested.
|
|
if (FLAGS_adobeRGB) {
|
|
sk_sp<SkColorSpace> adobeRGBSpace = SkColorSpace::MakeRGB(
|
|
SkColorSpace::kSRGB_RenderTargetGamma, SkColorSpace::kAdobeRGB_Gamut);
|
|
const SkMatrix44* mat = adobeRGBSpace->toXYZD50();
|
|
SkASSERT(mat);
|
|
draw_gamut(gamutCanvas.canvas(), *mat, "Adobe RGB", 0xFF31a9e1, false);
|
|
}
|
|
const SkMatrix44* mat = colorSpace->toXYZD50();
|
|
SkASSERT(mat);
|
|
auto xyz = static_cast<SkColorSpace_XYZ*>(colorSpace.get());
|
|
draw_gamut(gamutCanvas.canvas(), *mat, input, 0xFF000000, true);
|
|
if (!gamutCanvas.save(&outputFilenames, createOutputFilename("gamut", 0))) {
|
|
return -1;
|
|
}
|
|
|
|
OutputCanvas gammaCanvas(transparentBitmap(kGammaImageWidth, kGammaImageHeight));
|
|
if (FLAGS_sRGB_gamma) {
|
|
draw_transfer_fn(gammaCanvas.canvas(), kSRGB_SkGammaNamed, nullptr, 0xFFFF9394);
|
|
}
|
|
draw_transfer_fn(gammaCanvas.canvas(), colorSpace->gammaNamed(), xyz->gammas(), 0xFF000000);
|
|
if (!gammaCanvas.save(&outputFilenames, createOutputFilename("gamma", 0))) {
|
|
return -1;
|
|
}
|
|
} else {
|
|
SkDebugf("A2B color space");
|
|
SkColorSpace_A2B* a2b = static_cast<SkColorSpace_A2B*>(colorSpace.get());
|
|
SkDebugf("Conversion type: ");
|
|
switch (a2b->iccType()) {
|
|
case SkColorSpace::kRGB_Type:
|
|
SkDebugf("RGB");
|
|
break;
|
|
case SkColorSpace::kCMYK_Type:
|
|
SkDebugf("CMYK");
|
|
break;
|
|
case SkColorSpace::kGray_Type:
|
|
SkDebugf("Gray");
|
|
break;
|
|
default:
|
|
SkASSERT(false);
|
|
break;
|
|
|
|
}
|
|
SkDebugf(" -> ");
|
|
switch (a2b->pcs()) {
|
|
case SkColorSpace_A2B::PCS::kXYZ:
|
|
SkDebugf("XYZ\n");
|
|
break;
|
|
case SkColorSpace_A2B::PCS::kLAB:
|
|
SkDebugf("LAB\n");
|
|
break;
|
|
}
|
|
int clutCount = 0;
|
|
int gammaCount = 0;
|
|
for (int i = 0; i < a2b->count(); ++i) {
|
|
const SkColorSpace_A2B::Element& e = a2b->element(i);
|
|
switch (e.type()) {
|
|
case SkColorSpace_A2B::Element::Type::kGammaNamed: {
|
|
OutputCanvas gammaCanvas(transparentBitmap(kGammaImageWidth,
|
|
kGammaImageHeight));
|
|
if (FLAGS_sRGB_gamma) {
|
|
draw_transfer_fn(gammaCanvas.canvas(), kSRGB_SkGammaNamed, nullptr,
|
|
0xFFFF9394);
|
|
}
|
|
draw_transfer_fn(gammaCanvas.canvas(), e.gammaNamed(), nullptr,
|
|
0xFF000000);
|
|
if (!gammaCanvas.save(&outputFilenames,
|
|
createOutputFilename("gamma", gammaCount++))) {
|
|
return -1;
|
|
}
|
|
}
|
|
break;
|
|
case SkColorSpace_A2B::Element::Type::kGammas: {
|
|
OutputCanvas gammaCanvas(transparentBitmap(kGammaImageWidth,
|
|
kGammaImageHeight));
|
|
if (FLAGS_sRGB_gamma) {
|
|
draw_transfer_fn(gammaCanvas.canvas(), kSRGB_SkGammaNamed, nullptr,
|
|
0xFFFF9394);
|
|
}
|
|
draw_transfer_fn(gammaCanvas.canvas(), kNonStandard_SkGammaNamed,
|
|
&e.gammas(), 0xFF000000);
|
|
if (!gammaCanvas.save(&outputFilenames,
|
|
createOutputFilename("gamma", gammaCount++))) {
|
|
return -1;
|
|
}
|
|
}
|
|
break;
|
|
case SkColorSpace_A2B::Element::Type::kCLUT: {
|
|
const SkColorLookUpTable& clut = e.colorLUT();
|
|
const int cutSize = cut_size(clut, dimOrder);
|
|
const int clutWidth = clut.inputChannels() >= 3 ? kClutCanvasSize
|
|
: 2 * kClutGap + cutSize;
|
|
const int clutHeight = clut.inputChannels() >= 4 ? kClutCanvasSize
|
|
: 2 * kClutGap + cutSize;
|
|
OutputCanvas clutCanvas(transparentBitmap(clutWidth, clutHeight));
|
|
draw_clut(clutCanvas.canvas(), e.colorLUT(), dimOrder);
|
|
if (!clutCanvas.save(&outputFilenames,
|
|
createOutputFilename("clut", clutCount++))) {
|
|
return -1;
|
|
}
|
|
}
|
|
break;
|
|
case SkColorSpace_A2B::Element::Type::kMatrix:
|
|
dump_matrix(e.matrix());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// marker to tell the web-tool the names of all images output
|
|
SkDebugf("=========\n");
|
|
for (const std::string& filename : outputFilenames) {
|
|
SkDebugf("%s\n", filename.c_str());
|
|
}
|
|
if (!FLAGS_icc) {
|
|
SkDebugf("%s\n", input);
|
|
}
|
|
// Also, if requested, decode and reencode the uncorrected input image.
|
|
if (!FLAGS_uncorrected.isEmpty() && !FLAGS_icc) {
|
|
SkBitmap bitmap;
|
|
int width = codec->getInfo().width();
|
|
int height = codec->getInfo().height();
|
|
bitmap.allocN32Pixels(width, height, kOpaque_SkAlphaType == codec->getInfo().alphaType());
|
|
SkImageInfo decodeInfo = SkImageInfo::MakeN32(width, height, kUnpremul_SkAlphaType);
|
|
if (SkCodec::kSuccess != codec->getPixels(decodeInfo, bitmap.getPixels(),
|
|
bitmap.rowBytes())) {
|
|
SkDebugf("Could not decode input image.\n");
|
|
return -1;
|
|
}
|
|
sk_sp<SkData> out = sk_tool_utils::EncodeImageToData(bitmap, SkEncodedImageFormat::kPNG,
|
|
100);
|
|
if (!out) {
|
|
SkDebugf("Failed to encode uncorrected image.\n");
|
|
return -1;
|
|
}
|
|
SkFILEWStream bitmapStream(FLAGS_uncorrected[0]);
|
|
if (!bitmapStream.write(out->data(), out->size())) {
|
|
SkDebugf("Failed to write uncorrected image output.\n");
|
|
return -1;
|
|
}
|
|
SkDebugf("%s\n", FLAGS_uncorrected[0]);
|
|
}
|
|
|
|
return 0;
|
|
}
|