d0a19eb914
git-svn-id: http://skia.googlecode.com/svn/trunk@7766 2bbb7eff-a529-9590-31e7-b0007b416f81
255 lines
7.5 KiB
C++
255 lines
7.5 KiB
C++
/*
|
|
* Copyright 2012 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
#include "CubicUtilities.h"
|
|
#include "Extrema.h"
|
|
#include "QuadraticUtilities.h"
|
|
#include "TriangleUtilities.h"
|
|
|
|
// from http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html
|
|
double nearestT(const Quadratic& quad, const _Point& pt) {
|
|
_Point pos = quad[0] - pt;
|
|
// search points P of bezier curve with PM.(dP / dt) = 0
|
|
// a calculus leads to a 3d degree equation :
|
|
_Point A = quad[1] - quad[0];
|
|
_Point B = quad[2] - quad[1];
|
|
B -= A;
|
|
double a = B.dot(B);
|
|
double b = 3 * A.dot(B);
|
|
double c = 2 * A.dot(A) + pos.dot(B);
|
|
double d = pos.dot(A);
|
|
double ts[3];
|
|
int roots = cubicRootsValidT(a, b, c, d, ts);
|
|
double d0 = pt.distanceSquared(quad[0]);
|
|
double d2 = pt.distanceSquared(quad[2]);
|
|
double distMin = SkTMin(d0, d2);
|
|
int bestIndex = -1;
|
|
for (int index = 0; index < roots; ++index) {
|
|
_Point onQuad;
|
|
xy_at_t(quad, ts[index], onQuad.x, onQuad.y);
|
|
double dist = pt.distanceSquared(onQuad);
|
|
if (distMin > dist) {
|
|
distMin = dist;
|
|
bestIndex = index;
|
|
}
|
|
}
|
|
if (bestIndex >= 0) {
|
|
return ts[bestIndex];
|
|
}
|
|
return d0 < d2 ? 0 : 1;
|
|
}
|
|
|
|
bool point_in_hull(const Quadratic& quad, const _Point& pt) {
|
|
return pointInTriangle((const Triangle&) quad, pt);
|
|
}
|
|
|
|
_Point top(const Quadratic& quad, double startT, double endT) {
|
|
Quadratic sub;
|
|
sub_divide(quad, startT, endT, sub);
|
|
_Point topPt = sub[0];
|
|
if (topPt.y > sub[2].y || (topPt.y == sub[2].y && topPt.x > sub[2].x)) {
|
|
topPt = sub[2];
|
|
}
|
|
if (!between(sub[0].y, sub[1].y, sub[2].y)) {
|
|
double extremeT;
|
|
if (findExtrema(sub[0].y, sub[1].y, sub[2].y, &extremeT)) {
|
|
extremeT = startT + (endT - startT) * extremeT;
|
|
_Point test;
|
|
xy_at_t(quad, extremeT, test.x, test.y);
|
|
if (topPt.y > test.y || (topPt.y == test.y && topPt.x > test.x)) {
|
|
topPt = test;
|
|
}
|
|
}
|
|
}
|
|
return topPt;
|
|
}
|
|
|
|
/*
|
|
Numeric Solutions (5.6) suggests to solve the quadratic by computing
|
|
Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C))
|
|
and using the roots
|
|
t1 = Q / A
|
|
t2 = C / Q
|
|
*/
|
|
int add_valid_ts(double s[], int realRoots, double* t) {
|
|
int foundRoots = 0;
|
|
for (int index = 0; index < realRoots; ++index) {
|
|
double tValue = s[index];
|
|
if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) {
|
|
if (approximately_less_than_zero(tValue)) {
|
|
tValue = 0;
|
|
} else if (approximately_greater_than_one(tValue)) {
|
|
tValue = 1;
|
|
}
|
|
for (int idx2 = 0; idx2 < foundRoots; ++idx2) {
|
|
if (approximately_equal(t[idx2], tValue)) {
|
|
goto nextRoot;
|
|
}
|
|
}
|
|
t[foundRoots++] = tValue;
|
|
}
|
|
nextRoot:
|
|
;
|
|
}
|
|
return foundRoots;
|
|
}
|
|
|
|
// note: caller expects multiple results to be sorted smaller first
|
|
// note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting
|
|
// analysis of the quadratic equation, suggesting why the following looks at
|
|
// the sign of B -- and further suggesting that the greatest loss of precision
|
|
// is in b squared less two a c
|
|
int quadraticRootsValidT(double A, double B, double C, double t[2]) {
|
|
#if 0
|
|
B *= 2;
|
|
double square = B * B - 4 * A * C;
|
|
if (approximately_negative(square)) {
|
|
if (!approximately_positive(square)) {
|
|
return 0;
|
|
}
|
|
square = 0;
|
|
}
|
|
double squareRt = sqrt(square);
|
|
double Q = (B + (B < 0 ? -squareRt : squareRt)) / -2;
|
|
int foundRoots = 0;
|
|
double ratio = Q / A;
|
|
if (approximately_zero_or_more(ratio) && approximately_one_or_less(ratio)) {
|
|
if (approximately_less_than_zero(ratio)) {
|
|
ratio = 0;
|
|
} else if (approximately_greater_than_one(ratio)) {
|
|
ratio = 1;
|
|
}
|
|
t[0] = ratio;
|
|
++foundRoots;
|
|
}
|
|
ratio = C / Q;
|
|
if (approximately_zero_or_more(ratio) && approximately_one_or_less(ratio)) {
|
|
if (approximately_less_than_zero(ratio)) {
|
|
ratio = 0;
|
|
} else if (approximately_greater_than_one(ratio)) {
|
|
ratio = 1;
|
|
}
|
|
if (foundRoots == 0 || !approximately_negative(ratio - t[0])) {
|
|
t[foundRoots++] = ratio;
|
|
} else if (!approximately_negative(t[0] - ratio)) {
|
|
t[foundRoots++] = t[0];
|
|
t[0] = ratio;
|
|
}
|
|
}
|
|
#else
|
|
double s[2];
|
|
int realRoots = quadraticRootsReal(A, B, C, s);
|
|
int foundRoots = add_valid_ts(s, realRoots, t);
|
|
#endif
|
|
return foundRoots;
|
|
}
|
|
|
|
// unlike quadratic roots, this does not discard real roots <= 0 or >= 1
|
|
int quadraticRootsReal(const double A, const double B, const double C, double s[2]) {
|
|
const double p = B / (2 * A);
|
|
const double q = C / A;
|
|
if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) {
|
|
if (approximately_zero(B)) {
|
|
s[0] = 0;
|
|
return C == 0;
|
|
}
|
|
s[0] = -C / B;
|
|
return 1;
|
|
}
|
|
/* normal form: x^2 + px + q = 0 */
|
|
const double p2 = p * p;
|
|
#if 0
|
|
double D = AlmostEqualUlps(p2, q) ? 0 : p2 - q;
|
|
if (D <= 0) {
|
|
if (D < 0) {
|
|
return 0;
|
|
}
|
|
s[0] = -p;
|
|
SkDebugf("[%d] %1.9g\n", 1, s[0]);
|
|
return 1;
|
|
}
|
|
double sqrt_D = sqrt(D);
|
|
s[0] = sqrt_D - p;
|
|
s[1] = -sqrt_D - p;
|
|
SkDebugf("[%d] %1.9g %1.9g\n", 2, s[0], s[1]);
|
|
return 2;
|
|
#else
|
|
if (!AlmostEqualUlps(p2, q) && p2 < q) {
|
|
return 0;
|
|
}
|
|
double sqrt_D = 0;
|
|
if (p2 > q) {
|
|
sqrt_D = sqrt(p2 - q);
|
|
}
|
|
s[0] = sqrt_D - p;
|
|
s[1] = -sqrt_D - p;
|
|
#if 0
|
|
if (AlmostEqualUlps(s[0], s[1])) {
|
|
SkDebugf("[%d] %1.9g\n", 1, s[0]);
|
|
} else {
|
|
SkDebugf("[%d] %1.9g %1.9g\n", 2, s[0], s[1]);
|
|
}
|
|
#endif
|
|
return 1 + !AlmostEqualUlps(s[0], s[1]);
|
|
#endif
|
|
}
|
|
|
|
void toCubic(const Quadratic& quad, Cubic& cubic) {
|
|
cubic[0] = quad[0];
|
|
cubic[2] = quad[1];
|
|
cubic[3] = quad[2];
|
|
cubic[1].x = (cubic[0].x + cubic[2].x * 2) / 3;
|
|
cubic[1].y = (cubic[0].y + cubic[2].y * 2) / 3;
|
|
cubic[2].x = (cubic[3].x + cubic[2].x * 2) / 3;
|
|
cubic[2].y = (cubic[3].y + cubic[2].y * 2) / 3;
|
|
}
|
|
|
|
static double derivativeAtT(const double* quad, double t) {
|
|
double a = t - 1;
|
|
double b = 1 - 2 * t;
|
|
double c = t;
|
|
return a * quad[0] + b * quad[2] + c * quad[4];
|
|
}
|
|
|
|
double dx_at_t(const Quadratic& quad, double t) {
|
|
return derivativeAtT(&quad[0].x, t);
|
|
}
|
|
|
|
double dy_at_t(const Quadratic& quad, double t) {
|
|
return derivativeAtT(&quad[0].y, t);
|
|
}
|
|
|
|
void dxdy_at_t(const Quadratic& quad, double t, _Point& dxy) {
|
|
double a = t - 1;
|
|
double b = 1 - 2 * t;
|
|
double c = t;
|
|
dxy.x = a * quad[0].x + b * quad[1].x + c * quad[2].x;
|
|
dxy.y = a * quad[0].y + b * quad[1].y + c * quad[2].y;
|
|
}
|
|
|
|
void xy_at_t(const Quadratic& quad, double t, double& x, double& y) {
|
|
double one_t = 1 - t;
|
|
double a = one_t * one_t;
|
|
double b = 2 * one_t * t;
|
|
double c = t * t;
|
|
if (&x) {
|
|
x = a * quad[0].x + b * quad[1].x + c * quad[2].x;
|
|
}
|
|
if (&y) {
|
|
y = a * quad[0].y + b * quad[1].y + c * quad[2].y;
|
|
}
|
|
}
|
|
|
|
_Point xy_at_t(const Quadratic& quad, double t) {
|
|
double one_t = 1 - t;
|
|
double a = one_t * one_t;
|
|
double b = 2 * one_t * t;
|
|
double c = t * t;
|
|
_Point result = { a * quad[0].x + b * quad[1].x + c * quad[2].x,
|
|
a * quad[0].y + b * quad[1].y + c * quad[2].y };
|
|
return result;
|
|
}
|