skia2/fuzz/Fuzz.h
Hal Canary 24ac42b373 Fuzz PDF, N32, and Null Canvases
run `fuzz --type pdf_canvas` or `fuzz --type null_canvas` or
`fuzz --type n32_canvas`

Change-Id: Id70179d5578ed1e67006aef7823bf75fc1d7a4a6
Reviewed-on: https://skia-review.googlesource.com/8418
Reviewed-by: Kevin Lubick <kjlubick@google.com>
Commit-Queue: Hal Canary <halcanary@google.com>
2017-02-27 19:03:12 +00:00

135 lines
3.6 KiB
C++

/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef Fuzz_DEFINED
#define Fuzz_DEFINED
#include "SkData.h"
#include "../tools/Registry.h"
#include "SkTypes.h"
#include <cmath>
class Fuzz : SkNoncopyable {
public:
explicit Fuzz(sk_sp<SkData>);
// Returns the total number of "random" bytes available.
size_t size();
// Returns if there are no bytes remaining for fuzzing.
bool exhausted();
// next() loads fuzzed bytes into the variable passed in by pointer.
// We use this approach instead of T next() because different compilers
// evaluate function parameters in different orders. If fuzz->next()
// returned 5 and then 7, foo(fuzz->next(), fuzz->next()) would be
// foo(5, 7) when compiled on GCC and foo(7, 5) when compiled on Clang.
// By requiring params to be passed in, we avoid the temptation to call
// next() in a way that does not consume fuzzed bytes in a single
// uplatform-independent order.
template <typename T>
void next(T* t);
// This is a convenient way to initialize more than one argument at a time.
template <typename Arg, typename... Args>
void next(Arg* first, Args... rest);
// nextRange returns values only in [min, max].
template <typename T, typename Min, typename Max>
void nextRange(T*, Min, Max);
// nextN loads n * sizeof(T) bytes into ptr
template <typename T>
void nextN(T* ptr, int n);
void signalBug(); // Tell afl-fuzz these inputs found a bug.
private:
template <typename T>
T nextT();
sk_sp<SkData> fBytes;
size_t fNextByte;
};
// UBSAN reminds us that bool can only legally hold 0 or 1.
template <>
inline void Fuzz::next(bool* b) {
uint8_t n;
this->next(&n);
*b = (n & 1) == 1;
}
template <typename T>
inline void Fuzz::next(T* n) {
if ((fNextByte + sizeof(T)) > fBytes->size()) {
sk_bzero(n, sizeof(T));
memcpy(n, fBytes->bytes() + fNextByte, fBytes->size() - fNextByte);
fNextByte = fBytes->size();
return;
}
memcpy(n, fBytes->bytes() + fNextByte, sizeof(T));
fNextByte += sizeof(T);
}
template <typename Arg, typename... Args>
inline void Fuzz::next(Arg* first, Args... rest) {
this->next(first);
this->next(rest...);
}
template <>
inline void Fuzz::nextRange(float* f, float min, float max) {
this->next(f);
if (!std::isnormal(*f) && *f != 0.0f) {
// Don't deal with infinity or other strange floats.
*f = max;
}
*f = min + std::fmod(std::abs(*f), (max - min + 1));
}
template <typename T, typename Min, typename Max>
inline void Fuzz::nextRange(T* n, Min min, Max max) {
this->next<T>(n);
if (min == max) {
*n = min;
return;
}
if (min > max) {
// Avoid misuse of nextRange
this->signalBug();
}
if (*n < 0) { // Handle negatives
if (*n != std::numeric_limits<T>::lowest()) {
*n *= -1;
}
else {
*n = std::numeric_limits<T>::max();
}
}
*n = min + (*n % ((size_t)max - min + 1));
}
template <typename T>
inline void Fuzz::nextN(T* ptr, int n) {
for (int i = 0; i < n; i++) {
this->next(ptr+i);
}
}
struct Fuzzable {
const char* name;
void (*fn)(Fuzz*);
};
#define DEF_FUZZ(name, f) \
static void fuzz_##name(Fuzz*); \
sk_tools::Registry<Fuzzable> register_##name({#name, fuzz_##name}); \
static void fuzz_##name(Fuzz* f)
#endif//Fuzz_DEFINED