skia2/gm/compressed_textures.cpp
Robert Phillips b0855273ab Add SkImage::CompressionType::kBC1_RGBA8_UNORM support
This is mainly so we can test the compression code on macOS.

Bug: skia:9680
Change-Id: Ie0a2eacfe9100ee4ce4cc94c878d3032d6985832
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/264480
Reviewed-by: Greg Daniel <egdaniel@google.com>
Reviewed-by: Brian Salomon <bsalomon@google.com>
Reviewed-by: Jim Van Verth <jvanverth@google.com>
Commit-Queue: Robert Phillips <robertphillips@google.com>
2020-01-16 21:45:33 +00:00

241 lines
8.3 KiB
C++

/*
* Copyright 2020 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkTypes.h" // IWYU pragma: keep
#if !defined(SK_BUILD_FOR_GOOGLE3)
#include "gm/gm.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkData.h"
#include "include/core/SkImage.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkPath.h"
#include "include/core/SkRect.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkSize.h"
#include "include/core/SkString.h"
#include "src/core/SkMipMap.h"
#include "src/gpu/GrDataUtils.h"
#include "third_party/etc1/etc1.h"
class GrContext;
class GrRenderTargetContext;
static SkPoint gen_pt(float angle, const SkVector& scale) {
SkScalar s = SkScalarSin(angle);
SkScalar c = SkScalarCos(angle);
return { scale.fX * c, scale.fY * s };
}
// The resulting path will be centered at (0,0) and its size will match 'dimensions'
static SkPath make_gear(SkISize dimensions, int numTeeth) {
SkVector outerRad{ dimensions.fWidth / 2.0f, dimensions.fHeight / 2.0f };
SkVector innerRad{ dimensions.fWidth / 2.5f, dimensions.fHeight / 2.5f };
const float kAnglePerTooth = SK_ScalarPI / numTeeth;
float angle = 0.0f;
SkPath tmp;
tmp.setFillType(SkPathFillType::kWinding);
tmp.moveTo(gen_pt(angle, outerRad));
for (int i = 0; i < numTeeth; ++i, angle += 2*kAnglePerTooth) {
tmp.lineTo(gen_pt(angle+kAnglePerTooth, outerRad));
tmp.lineTo(gen_pt(angle+kAnglePerTooth, innerRad));
tmp.lineTo(gen_pt(angle+2*kAnglePerTooth, innerRad));
tmp.lineTo(gen_pt(angle+2*kAnglePerTooth, outerRad));
}
tmp.close();
float fInnerRad = 0.1f * SkTMin(dimensions.fWidth, dimensions.fHeight);
if (fInnerRad > 0.5f) {
tmp.addCircle(0.0f, 0.0f, fInnerRad, SkPathDirection::kCCW);
}
return tmp;
}
// Render one level of a mipmap
SkBitmap render_level(SkISize dimensions, SkColor color, SkColorType colorType, bool opaque) {
SkPath path = make_gear(dimensions, 9);
SkImageInfo ii = SkImageInfo::Make(dimensions.width(), dimensions.height(),
colorType, opaque ? kOpaque_SkAlphaType
: kPremul_SkAlphaType);
SkBitmap bm;
bm.allocPixels(ii);
bm.eraseColor(opaque ? SK_ColorBLACK : SK_ColorTRANSPARENT);
SkCanvas c(bm);
SkPaint paint;
paint.setColor(color | 0xFF000000);
paint.setAntiAlias(false);
c.translate(dimensions.width() / 2.0f, dimensions.height() / 2.0f);
c.drawPath(path, paint);
return bm;
}
// Create the compressed data blob needed to represent a mipmapped 2-color texture of the specified
// compression format. In this case 2-color means either opaque black or transparent black plus
// one other color.
// Note that ETC1/ETC2_RGB8_UNORM only supports 565 opaque textures.
static sk_sp<SkData> make_compressed_data(SkISize dimensions,
SkColorType colorType,
bool opaque,
SkImage::CompressionType compression) {
size_t totalSize = GrCompressedDataSize(compression, dimensions, nullptr, GrMipMapped::kYes);
sk_sp<SkData> tmp = SkData::MakeUninitialized(totalSize);
char* pixels = (char*) tmp->writable_data();
int numMipLevels = SkMipMap::ComputeLevelCount(dimensions.width(), dimensions.height()) + 1;
size_t offset = 0;
// Use a different color for each mipmap level so we can visually evaluate the draws
static const SkColor kColors[] = {
SK_ColorRED,
SK_ColorGREEN,
SK_ColorBLUE,
SK_ColorCYAN,
SK_ColorMAGENTA,
SK_ColorYELLOW,
SK_ColorWHITE,
};
for (int i = 0; i < numMipLevels; ++i) {
size_t levelSize = GrCompressedDataSize(compression, dimensions, nullptr, GrMipMapped::kNo);
SkBitmap bm = render_level(dimensions, kColors[i%7], colorType, opaque);
if (compression == SkImage::CompressionType::kETC2_RGB8_UNORM) {
SkASSERT(bm.colorType() == kRGB_565_SkColorType);
SkASSERT(opaque);
if (etc1_encode_image((unsigned char*)bm.getAddr16(0, 0),
bm.width(), bm.height(), 2, bm.rowBytes(),
(unsigned char*) &pixels[offset])) {
return nullptr;
}
} else {
GrTwoColorBC1Compress(bm.pixmap(), kColors[i%7], &pixels[offset]);
}
offset += levelSize;
dimensions = {SkTMax(1, dimensions.width()/2), SkTMax(1, dimensions.height()/2)};
}
return tmp;
}
// Basic test of Ganesh's ETC1 and BC1 support
// The layout is:
// ETC2 BC1
// --------------------------------------
// RGB8 | kETC2_RGB8_UNORM | kBC1_RGB8_UNORM |
// |--------------------------------------|
// RGBA8 | | kBC1_RGBA8_UNORM |
// --------------------------------------
//
class CompressedTexturesGM : public skiagm::GpuGM {
public:
CompressedTexturesGM() {
this->setBGColor(0xFFCCCCCC);
}
protected:
SkString onShortName() override {
return SkString("compressed_textures");
}
SkISize onISize() override {
return SkISize::Make(2*kCellWidth + 3*kPad, 2*kTexHeight + 3*kPad);
}
void onOnceBeforeDraw() override {
fOpaqueETC2Data = make_compressed_data({ kTexWidth, kTexHeight },
kRGB_565_SkColorType, true,
SkImage::CompressionType::kETC2_RGB8_UNORM);
fOpaqueBC1Data = make_compressed_data({ kTexWidth, kTexHeight },
kRGBA_8888_SkColorType, true,
SkImage::CompressionType::kBC1_RGB8_UNORM);
fTransparentBC1Data = make_compressed_data({ kTexWidth, kTexHeight },
kRGBA_8888_SkColorType, false,
SkImage::CompressionType::kBC1_RGBA8_UNORM);
}
void onDraw(GrContext* context, GrRenderTargetContext*, SkCanvas* canvas) override {
this->drawCell(context, canvas, fOpaqueETC2Data,
SkImage::CompressionType::kETC2_RGB8_UNORM, { kPad, kPad });
this->drawCell(context, canvas, fOpaqueBC1Data,
SkImage::CompressionType::kBC1_RGB8_UNORM, { 2*kPad + kCellWidth, kPad });
this->drawCell(context, canvas, fTransparentBC1Data,
SkImage::CompressionType::kBC1_RGBA8_UNORM,
{ 2*kPad + kCellWidth, 2*kPad + kTexHeight });
}
private:
void drawCell(GrContext* context, SkCanvas* canvas, sk_sp<SkData> data,
SkImage::CompressionType compression, SkIVector offset) {
sk_sp<SkImage> image = SkImage::MakeFromCompressed(context, data,
kTexWidth, kTexHeight,
compression, GrMipMapped::kYes);
SkISize dimensions{ kTexWidth, kTexHeight };
int numMipLevels = SkMipMap::ComputeLevelCount(dimensions.width(), dimensions.height()) + 1;
SkPaint paint;
paint.setFilterQuality(kHigh_SkFilterQuality); // to force mipmapping
for (int i = 0; i < numMipLevels; ++i) {
SkRect r = SkRect::MakeXYWH(offset.fX, offset.fY,
dimensions.width(), dimensions.height());
canvas->drawImageRect(image, r, &paint);
if (i == 0) {
offset.fX += dimensions.width();
} else {
offset.fY += dimensions.height();
}
dimensions = {SkTMax(1, dimensions.width()/2), SkTMax(1, dimensions.height()/2)};
}
}
static const int kPad = 8;
static const int kTexWidth = 64;
static const int kCellWidth = 1.5f * kTexWidth;
static const int kTexHeight = 64;
sk_sp<SkData> fOpaqueETC2Data;
sk_sp<SkData> fOpaqueBC1Data;
sk_sp<SkData> fTransparentBC1Data;
typedef GM INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
DEF_GM(return new CompressedTexturesGM;)
#endif