e719577fe8
BUG=skia:5490 GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2418763004 Review-Url: https://codereview.chromium.org/2418763004
493 lines
19 KiB
C++
493 lines
19 KiB
C++
/*
|
|
* Copyright 2016 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "Fuzz.h"
|
|
#include "SkCanvas.h"
|
|
#include "SkCodec.h"
|
|
#include "SkCommandLineFlags.h"
|
|
#include "SkData.h"
|
|
#include "SkImage.h"
|
|
#include "SkImageEncoder.h"
|
|
#include "SkMallocPixelRef.h"
|
|
#include "SkPicture.h"
|
|
#include "SkPicture.h"
|
|
#include "SkPicture.h"
|
|
#include "SkSLCompiler.h"
|
|
#include "SkStream.h"
|
|
|
|
#include <cmath>
|
|
#include <signal.h>
|
|
#include <stdlib.h>
|
|
|
|
DEFINE_string2(bytes, b, "", "A path to a file. This can be the fuzz bytes or a binary to parse.");
|
|
DEFINE_string2(name, n, "", "If --type is 'api', fuzz the API with this name.");
|
|
|
|
DEFINE_string2(type, t, "api", "How to interpret --bytes, either 'image_scale', 'image_mode', 'skp', 'icc', or 'api'.");
|
|
DEFINE_string2(dump, d, "", "If not empty, dump 'image*' or 'skp' types as a PNG with this name.");
|
|
|
|
static int printUsage(const char* name) {
|
|
SkDebugf("Usage: %s -t <type> -b <path/to/file> [-n api-to-fuzz]\n", name);
|
|
return 1;
|
|
}
|
|
static uint8_t calculate_option(SkData*);
|
|
|
|
static int fuzz_api(sk_sp<SkData>);
|
|
static int fuzz_img(sk_sp<SkData>, uint8_t, uint8_t);
|
|
static int fuzz_skp(sk_sp<SkData>);
|
|
static int fuzz_icc(sk_sp<SkData>);
|
|
static int fuzz_color_deserialize(sk_sp<SkData>);
|
|
static int fuzz_sksl2glsl(sk_sp<SkData>);
|
|
|
|
int main(int argc, char** argv) {
|
|
SkCommandLineFlags::Parse(argc, argv);
|
|
|
|
const char* path = FLAGS_bytes.isEmpty() ? argv[0] : FLAGS_bytes[0];
|
|
sk_sp<SkData> bytes(SkData::MakeFromFileName(path));
|
|
if (!bytes) {
|
|
SkDebugf("Could not read %s\n", path);
|
|
return 2;
|
|
}
|
|
|
|
uint8_t option = calculate_option(bytes.get());
|
|
|
|
if (!FLAGS_type.isEmpty()) {
|
|
if (0 == strcmp("api", FLAGS_type[0])) {
|
|
return fuzz_api(bytes);
|
|
}
|
|
if (0 == strcmp("color_deserialize", FLAGS_type[0])) {
|
|
return fuzz_color_deserialize(bytes);
|
|
}
|
|
if (0 == strcmp("icc", FLAGS_type[0])) {
|
|
return fuzz_icc(bytes);
|
|
}
|
|
if (0 == strcmp("image_scale", FLAGS_type[0])) {
|
|
return fuzz_img(bytes, option, 0);
|
|
}
|
|
if (0 == strcmp("image_mode", FLAGS_type[0])) {
|
|
return fuzz_img(bytes, 0, option);
|
|
}
|
|
if (0 == strcmp("skp", FLAGS_type[0])) {
|
|
return fuzz_skp(bytes);
|
|
}
|
|
if (0 == strcmp("sksl2glsl", FLAGS_type[0])) {
|
|
return fuzz_sksl2glsl(bytes);
|
|
}
|
|
}
|
|
return printUsage(argv[0]);
|
|
}
|
|
|
|
// This adds up the first 1024 bytes and returns it as an 8 bit integer. This allows afl-fuzz to
|
|
// deterministically excercise different paths, or *options* (such as different scaling sizes or
|
|
// different image modes) without needing to introduce a parameter. This way we don't need a
|
|
// image_scale1, image_scale2, image_scale4, etc fuzzer, we can just have a image_scale fuzzer.
|
|
// Clients are expected to transform this number into a different range, e.g. with modulo (%).
|
|
static uint8_t calculate_option(SkData* bytes) {
|
|
uint8_t total = 0;
|
|
const uint8_t* data = bytes->bytes();
|
|
for (size_t i = 0; i < 1024 && i < bytes->size(); i++) {
|
|
total += data[i];
|
|
}
|
|
return total;
|
|
}
|
|
|
|
int fuzz_api(sk_sp<SkData> bytes) {
|
|
const char* name = FLAGS_name.isEmpty() ? "" : FLAGS_name[0];
|
|
|
|
for (auto r = SkTRegistry<Fuzzable>::Head(); r; r = r->next()) {
|
|
auto fuzzable = r->factory();
|
|
if (0 == strcmp(name, fuzzable.name)) {
|
|
SkDebugf("Fuzzing %s...\n", fuzzable.name);
|
|
Fuzz fuzz(bytes);
|
|
fuzzable.fn(&fuzz);
|
|
SkDebugf("[terminated] Success!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
SkDebugf("When using --type api, please choose an API to fuzz with --name/-n:\n");
|
|
for (auto r = SkTRegistry<Fuzzable>::Head(); r; r = r->next()) {
|
|
auto fuzzable = r->factory();
|
|
SkDebugf("\t%s\n", fuzzable.name);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void dump_png(SkBitmap bitmap) {
|
|
if (!FLAGS_dump.isEmpty()) {
|
|
SkImageEncoder::EncodeFile(FLAGS_dump[0], bitmap, SkImageEncoder::kPNG_Type, 100);
|
|
SkDebugf("Dumped to %s\n", FLAGS_dump[0]);
|
|
}
|
|
}
|
|
|
|
int fuzz_img(sk_sp<SkData> bytes, uint8_t scale, uint8_t mode) {
|
|
// We can scale 1x, 2x, 4x, 8x, 16x
|
|
scale = scale % 5;
|
|
float fscale = (float)pow(2.0f, scale);
|
|
SkDebugf("Scaling factor: %f\n", fscale);
|
|
|
|
// We have 4 different modes of decoding, just like DM.
|
|
mode = mode % 4;
|
|
SkDebugf("Mode: %d\n", mode);
|
|
|
|
// This is mostly copied from DMSrcSink's CodecSrc::draw method.
|
|
SkDebugf("Decoding\n");
|
|
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(bytes));
|
|
if (nullptr == codec.get()) {
|
|
SkDebugf("[terminated] Couldn't create codec.\n");
|
|
return 3;
|
|
}
|
|
|
|
SkImageInfo decodeInfo = codec->getInfo();
|
|
|
|
SkISize size = codec->getScaledDimensions(fscale);
|
|
decodeInfo = decodeInfo.makeWH(size.width(), size.height());
|
|
|
|
// Construct a color table for the decode if necessary
|
|
SkAutoTUnref<SkColorTable> colorTable(nullptr);
|
|
SkPMColor* colorPtr = nullptr;
|
|
int* colorCountPtr = nullptr;
|
|
int maxColors = 256;
|
|
if (kIndex_8_SkColorType == decodeInfo.colorType()) {
|
|
SkPMColor colors[256];
|
|
colorTable.reset(new SkColorTable(colors, maxColors));
|
|
colorPtr = const_cast<SkPMColor*>(colorTable->readColors());
|
|
colorCountPtr = &maxColors;
|
|
}
|
|
|
|
SkBitmap bitmap;
|
|
SkMallocPixelRef::ZeroedPRFactory zeroFactory;
|
|
SkCodec::Options options;
|
|
options.fZeroInitialized = SkCodec::kYes_ZeroInitialized;
|
|
|
|
if (!bitmap.tryAllocPixels(decodeInfo, &zeroFactory, colorTable.get())) {
|
|
SkDebugf("[terminated] Could not allocate memory. Image might be too large (%d x %d)",
|
|
decodeInfo.width(), decodeInfo.height());
|
|
return 4;
|
|
}
|
|
|
|
switch (mode) {
|
|
case 0: {//kCodecZeroInit_Mode, kCodec_Mode
|
|
switch (codec->getPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(), &options,
|
|
colorPtr, colorCountPtr)) {
|
|
case SkCodec::kSuccess:
|
|
SkDebugf("[terminated] Success!\n");
|
|
break;
|
|
case SkCodec::kIncompleteInput:
|
|
SkDebugf("[terminated] Partial Success\n");
|
|
break;
|
|
case SkCodec::kInvalidConversion:
|
|
SkDebugf("Incompatible colortype conversion\n");
|
|
// Crash to allow afl-fuzz to know this was a bug.
|
|
raise(SIGSEGV);
|
|
default:
|
|
SkDebugf("[terminated] Couldn't getPixels.\n");
|
|
return 6;
|
|
}
|
|
break;
|
|
}
|
|
case 1: {//kScanline_Mode
|
|
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr,
|
|
colorCountPtr)) {
|
|
SkDebugf("[terminated] Could not start scanline decoder\n");
|
|
return 7;
|
|
}
|
|
|
|
void* dst = bitmap.getAddr(0, 0);
|
|
size_t rowBytes = bitmap.rowBytes();
|
|
uint32_t height = decodeInfo.height();
|
|
switch (codec->getScanlineOrder()) {
|
|
case SkCodec::kTopDown_SkScanlineOrder:
|
|
case SkCodec::kBottomUp_SkScanlineOrder:
|
|
// We do not need to check the return value. On an incomplete
|
|
// image, memory will be filled with a default value.
|
|
codec->getScanlines(dst, height, rowBytes);
|
|
break;
|
|
case SkCodec::kOutOfOrder_SkScanlineOrder: {
|
|
for (int y = 0; y < decodeInfo.height(); y++) {
|
|
int dstY = codec->outputScanline(y);
|
|
void* dstPtr = bitmap.getAddr(0, dstY);
|
|
// We complete the loop, even if this call begins to fail
|
|
// due to an incomplete image. This ensures any uninitialized
|
|
// memory will be filled with the proper value.
|
|
codec->getScanlines(dstPtr, 1, bitmap.rowBytes());
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
SkDebugf("[terminated] Success!\n");
|
|
break;
|
|
}
|
|
case 2: { //kStripe_Mode
|
|
const int height = decodeInfo.height();
|
|
// This value is chosen arbitrarily. We exercise more cases by choosing a value that
|
|
// does not align with image blocks.
|
|
const int stripeHeight = 37;
|
|
const int numStripes = (height + stripeHeight - 1) / stripeHeight;
|
|
|
|
// Decode odd stripes
|
|
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr,
|
|
colorCountPtr)
|
|
|| SkCodec::kTopDown_SkScanlineOrder != codec->getScanlineOrder()) {
|
|
// This mode was designed to test the new skip scanlines API in libjpeg-turbo.
|
|
// Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting
|
|
// to run this test for image types that do not have this scanline ordering.
|
|
SkDebugf("[terminated] Could not start top-down scanline decoder\n");
|
|
return 8;
|
|
}
|
|
|
|
for (int i = 0; i < numStripes; i += 2) {
|
|
// Skip a stripe
|
|
const int linesToSkip = SkTMin(stripeHeight, height - i * stripeHeight);
|
|
codec->skipScanlines(linesToSkip);
|
|
|
|
// Read a stripe
|
|
const int startY = (i + 1) * stripeHeight;
|
|
const int linesToRead = SkTMin(stripeHeight, height - startY);
|
|
if (linesToRead > 0) {
|
|
codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes());
|
|
}
|
|
}
|
|
|
|
// Decode even stripes
|
|
const SkCodec::Result startResult = codec->startScanlineDecode(decodeInfo, nullptr,
|
|
colorPtr, colorCountPtr);
|
|
if (SkCodec::kSuccess != startResult) {
|
|
SkDebugf("[terminated] Failed to restart scanline decoder with same parameters.\n");
|
|
return 9;
|
|
}
|
|
for (int i = 0; i < numStripes; i += 2) {
|
|
// Read a stripe
|
|
const int startY = i * stripeHeight;
|
|
const int linesToRead = SkTMin(stripeHeight, height - startY);
|
|
codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes());
|
|
|
|
// Skip a stripe
|
|
const int linesToSkip = SkTMin(stripeHeight, height - (i + 1) * stripeHeight);
|
|
if (linesToSkip > 0) {
|
|
codec->skipScanlines(linesToSkip);
|
|
}
|
|
}
|
|
SkDebugf("[terminated] Success!\n");
|
|
break;
|
|
}
|
|
case 3: { //kSubset_Mode
|
|
// Arbitrarily choose a divisor.
|
|
int divisor = 2;
|
|
// Total width/height of the image.
|
|
const int W = codec->getInfo().width();
|
|
const int H = codec->getInfo().height();
|
|
if (divisor > W || divisor > H) {
|
|
SkDebugf("[terminated] Cannot codec subset: divisor %d is too big "
|
|
"with dimensions (%d x %d)\n", divisor, W, H);
|
|
return 10;
|
|
}
|
|
// subset dimensions
|
|
// SkWebpCodec, the only one that supports subsets, requires even top/left boundaries.
|
|
const int w = SkAlign2(W / divisor);
|
|
const int h = SkAlign2(H / divisor);
|
|
SkIRect subset;
|
|
SkCodec::Options opts;
|
|
opts.fSubset = ⊂
|
|
SkBitmap subsetBm;
|
|
// We will reuse pixel memory from bitmap.
|
|
void* pixels = bitmap.getPixels();
|
|
// Keep track of left and top (for drawing subsetBm into canvas). We could use
|
|
// fscale * x and fscale * y, but we want integers such that the next subset will start
|
|
// where the last one ended. So we'll add decodeInfo.width() and height().
|
|
int left = 0;
|
|
for (int x = 0; x < W; x += w) {
|
|
int top = 0;
|
|
for (int y = 0; y < H; y+= h) {
|
|
// Do not make the subset go off the edge of the image.
|
|
const int preScaleW = SkTMin(w, W - x);
|
|
const int preScaleH = SkTMin(h, H - y);
|
|
subset.setXYWH(x, y, preScaleW, preScaleH);
|
|
// And fscale
|
|
// FIXME: Should we have a version of getScaledDimensions that takes a subset
|
|
// into account?
|
|
decodeInfo = decodeInfo.makeWH(
|
|
SkTMax(1, SkScalarRoundToInt(preScaleW * fscale)),
|
|
SkTMax(1, SkScalarRoundToInt(preScaleH * fscale)));
|
|
size_t rowBytes = decodeInfo.minRowBytes();
|
|
if (!subsetBm.installPixels(decodeInfo, pixels, rowBytes, colorTable.get(),
|
|
nullptr, nullptr)) {
|
|
SkDebugf("[terminated] Could not install pixels.\n");
|
|
return 11;
|
|
}
|
|
const SkCodec::Result result = codec->getPixels(decodeInfo, pixels, rowBytes,
|
|
&opts, colorPtr, colorCountPtr);
|
|
switch (result) {
|
|
case SkCodec::kSuccess:
|
|
case SkCodec::kIncompleteInput:
|
|
SkDebugf("okay\n");
|
|
break;
|
|
case SkCodec::kInvalidConversion:
|
|
if (0 == (x|y)) {
|
|
// First subset is okay to return unimplemented.
|
|
SkDebugf("[terminated] Incompatible colortype conversion\n");
|
|
return 12;
|
|
}
|
|
// If the first subset succeeded, a later one should not fail.
|
|
// fall through to failure
|
|
case SkCodec::kUnimplemented:
|
|
if (0 == (x|y)) {
|
|
// First subset is okay to return unimplemented.
|
|
SkDebugf("[terminated] subset codec not supported\n");
|
|
return 13;
|
|
}
|
|
// If the first subset succeeded, why would a later one fail?
|
|
// fall through to failure
|
|
default:
|
|
SkDebugf("[terminated] subset codec failed to decode (%d, %d, %d, %d) "
|
|
"with dimensions (%d x %d)\t error %d\n",
|
|
x, y, decodeInfo.width(), decodeInfo.height(),
|
|
W, H, result);
|
|
return 14;
|
|
}
|
|
// translate by the scaled height.
|
|
top += decodeInfo.height();
|
|
}
|
|
// translate by the scaled width.
|
|
left += decodeInfo.width();
|
|
}
|
|
SkDebugf("[terminated] Success!\n");
|
|
break;
|
|
}
|
|
default:
|
|
SkDebugf("[terminated] Mode not implemented yet\n");
|
|
}
|
|
|
|
dump_png(bitmap);
|
|
return 0;
|
|
}
|
|
|
|
int fuzz_skp(sk_sp<SkData> bytes) {
|
|
SkMemoryStream stream(bytes);
|
|
SkDebugf("Decoding\n");
|
|
sk_sp<SkPicture> pic(SkPicture::MakeFromStream(&stream));
|
|
if (!pic) {
|
|
SkDebugf("[terminated] Couldn't decode as a picture.\n");
|
|
return 3;
|
|
}
|
|
SkDebugf("Rendering\n");
|
|
SkBitmap bitmap;
|
|
if (!FLAGS_dump.isEmpty()) {
|
|
SkIRect size = pic->cullRect().roundOut();
|
|
bitmap.allocN32Pixels(size.width(), size.height());
|
|
}
|
|
SkCanvas canvas(bitmap);
|
|
canvas.drawPicture(pic);
|
|
SkDebugf("[terminated] Success! Decoded and rendered an SkPicture!\n");
|
|
dump_png(bitmap);
|
|
return 0;
|
|
}
|
|
|
|
int fuzz_icc(sk_sp<SkData> bytes) {
|
|
sk_sp<SkColorSpace> space(SkColorSpace::NewICC(bytes->data(), bytes->size()));
|
|
if (!space) {
|
|
SkDebugf("[terminated] Couldn't decode ICC.\n");
|
|
return 1;
|
|
}
|
|
SkDebugf("[terminated] Success! Decoded ICC.\n");
|
|
return 0;
|
|
}
|
|
|
|
int fuzz_color_deserialize(sk_sp<SkData> bytes) {
|
|
sk_sp<SkColorSpace> space(SkColorSpace::Deserialize(bytes->data(), bytes->size()));
|
|
if (!space) {
|
|
SkDebugf("[terminated] Couldn't deserialize Colorspace.\n");
|
|
return 1;
|
|
}
|
|
SkDebugf("[terminated] Success! deserialized Colorspace.\n");
|
|
return 0;
|
|
}
|
|
|
|
static SkSL::GLCaps default_caps() {
|
|
return {
|
|
400,
|
|
SkSL::GLCaps::kGL_Standard,
|
|
false, // isCoreProfile
|
|
false, // usesPrecisionModifiers;
|
|
false, // mustDeclareFragmentShaderOutput
|
|
true, // canUseMinAndAbsTogether
|
|
false // mustForceNegatedAtanParamToFloat
|
|
};
|
|
}
|
|
|
|
int fuzz_sksl2glsl(sk_sp<SkData> bytes) {
|
|
SkSL::Compiler compiler;
|
|
std::string output;
|
|
bool result = compiler.toGLSL(SkSL::Program::kFragment_Kind,
|
|
(const char*)bytes->data(), default_caps(), &output);
|
|
|
|
if (!result) {
|
|
SkDebugf("[terminated] Couldn't compile input.\n");
|
|
return 1;
|
|
}
|
|
SkDebugf("[terminated] Success! Compiled input.\n");
|
|
return 0;
|
|
}
|
|
|
|
Fuzz::Fuzz(sk_sp<SkData> bytes) : fBytes(bytes), fNextByte(0) {}
|
|
|
|
void Fuzz::signalBug () { SkDebugf("Signal bug\n"); raise(SIGSEGV); }
|
|
void Fuzz::signalBoring() { SkDebugf("Signal boring\n"); exit(0); }
|
|
|
|
size_t Fuzz::size() { return fBytes->size(); }
|
|
|
|
size_t Fuzz::remaining() {
|
|
return fBytes->size() - fNextByte;
|
|
}
|
|
|
|
template <typename T>
|
|
T Fuzz::nextT() {
|
|
if (fNextByte + sizeof(T) > fBytes->size()) {
|
|
this->signalBoring();
|
|
}
|
|
|
|
T val;
|
|
memcpy(&val, fBytes->bytes() + fNextByte, sizeof(T));
|
|
fNextByte += sizeof(T);
|
|
return val;
|
|
}
|
|
|
|
uint8_t Fuzz::nextB() { return this->nextT<uint8_t >(); }
|
|
bool Fuzz::nextBool() { return nextB()&1; }
|
|
uint32_t Fuzz::nextU() { return this->nextT<uint32_t>(); }
|
|
float Fuzz::nextF() { return this->nextT<float >(); }
|
|
|
|
float Fuzz::nextF1() {
|
|
// This is the same code as is in SkRandom's nextF()
|
|
unsigned int floatint = 0x3f800000 | (this->nextU() >> 9);
|
|
float f = SkBits2Float(floatint) - 1.0f;
|
|
return f;
|
|
}
|
|
|
|
uint32_t Fuzz::nextRangeU(uint32_t min, uint32_t max) {
|
|
if (min > max) {
|
|
SkDebugf("Check mins and maxes (%d, %d)\n", min, max);
|
|
this->signalBoring();
|
|
}
|
|
uint32_t range = max - min + 1;
|
|
if (0 == range) {
|
|
return this->nextU();
|
|
} else {
|
|
return min + this->nextU() % range;
|
|
}
|
|
}
|
|
float Fuzz::nextRangeF(float min, float max) {
|
|
if (min > max) {
|
|
SkDebugf("Check mins and maxes (%f, %f)\n", min, max);
|
|
this->signalBoring();
|
|
}
|
|
float f = std::abs(this->nextF());
|
|
if (!std::isnormal(f) && f != 0.0) {
|
|
this->signalBoring();
|
|
}
|
|
return min + fmod(f, (max - min + 1));
|
|
}
|