788b91678f
Use std::min and std::max everywhere. SkTPin still exists. We can't use std::clamp yet, and even when we can, it has undefined behavior with NaN. SkTPin is written to ensure that we return a value in the [lo, hi] range. Change-Id: I506852a36e024ae405358d5078a872e2c77fa71e Docs-Preview: https://skia.org/?cl=269357 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/269357 Commit-Queue: Brian Osman <brianosman@google.com> Reviewed-by: Mike Reed <reed@google.com> Reviewed-by: Brian Salomon <bsalomon@google.com>
736 lines
24 KiB
C++
736 lines
24 KiB
C++
/*
|
|
* Copyright 2015 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#ifndef SkNx_neon_DEFINED
|
|
#define SkNx_neon_DEFINED
|
|
|
|
#include <arm_neon.h>
|
|
|
|
namespace { // NOLINT(google-build-namespaces)
|
|
|
|
// ARMv8 has vrndm(q)_f32 to floor floats. Here we emulate it:
|
|
// - roundtrip through integers via truncation
|
|
// - subtract 1 if that's too big (possible for negative values).
|
|
// This restricts the domain of our inputs to a maximum somehwere around 2^31. Seems plenty big.
|
|
AI static float32x4_t emulate_vrndmq_f32(float32x4_t v) {
|
|
auto roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
|
|
auto too_big = vcgtq_f32(roundtrip, v);
|
|
return vsubq_f32(roundtrip, (float32x4_t)vandq_u32(too_big, (uint32x4_t)vdupq_n_f32(1)));
|
|
}
|
|
AI static float32x2_t emulate_vrndm_f32(float32x2_t v) {
|
|
auto roundtrip = vcvt_f32_s32(vcvt_s32_f32(v));
|
|
auto too_big = vcgt_f32(roundtrip, v);
|
|
return vsub_f32(roundtrip, (float32x2_t)vand_u32(too_big, (uint32x2_t)vdup_n_f32(1)));
|
|
}
|
|
|
|
template <>
|
|
class SkNx<2, float> {
|
|
public:
|
|
AI SkNx(float32x2_t vec) : fVec(vec) {}
|
|
|
|
AI SkNx() {}
|
|
AI SkNx(float val) : fVec(vdup_n_f32(val)) {}
|
|
AI SkNx(float a, float b) { fVec = (float32x2_t) { a, b }; }
|
|
|
|
AI static SkNx Load(const void* ptr) { return vld1_f32((const float*)ptr); }
|
|
AI void store(void* ptr) const { vst1_f32((float*)ptr, fVec); }
|
|
|
|
AI static void Load2(const void* ptr, SkNx* x, SkNx* y) {
|
|
float32x2x2_t xy = vld2_f32((const float*) ptr);
|
|
*x = xy.val[0];
|
|
*y = xy.val[1];
|
|
}
|
|
|
|
AI static void Store2(void* dst, const SkNx& a, const SkNx& b) {
|
|
float32x2x2_t ab = {{
|
|
a.fVec,
|
|
b.fVec,
|
|
}};
|
|
vst2_f32((float*) dst, ab);
|
|
}
|
|
|
|
AI static void Store3(void* dst, const SkNx& a, const SkNx& b, const SkNx& c) {
|
|
float32x2x3_t abc = {{
|
|
a.fVec,
|
|
b.fVec,
|
|
c.fVec,
|
|
}};
|
|
vst3_f32((float*) dst, abc);
|
|
}
|
|
|
|
AI static void Store4(void* dst, const SkNx& a, const SkNx& b, const SkNx& c, const SkNx& d) {
|
|
float32x2x4_t abcd = {{
|
|
a.fVec,
|
|
b.fVec,
|
|
c.fVec,
|
|
d.fVec,
|
|
}};
|
|
vst4_f32((float*) dst, abcd);
|
|
}
|
|
|
|
AI SkNx invert() const {
|
|
float32x2_t est0 = vrecpe_f32(fVec),
|
|
est1 = vmul_f32(vrecps_f32(est0, fVec), est0);
|
|
return est1;
|
|
}
|
|
|
|
AI SkNx operator - () const { return vneg_f32(fVec); }
|
|
|
|
AI SkNx operator + (const SkNx& o) const { return vadd_f32(fVec, o.fVec); }
|
|
AI SkNx operator - (const SkNx& o) const { return vsub_f32(fVec, o.fVec); }
|
|
AI SkNx operator * (const SkNx& o) const { return vmul_f32(fVec, o.fVec); }
|
|
AI SkNx operator / (const SkNx& o) const {
|
|
#if defined(SK_CPU_ARM64)
|
|
return vdiv_f32(fVec, o.fVec);
|
|
#else
|
|
float32x2_t est0 = vrecpe_f32(o.fVec),
|
|
est1 = vmul_f32(vrecps_f32(est0, o.fVec), est0),
|
|
est2 = vmul_f32(vrecps_f32(est1, o.fVec), est1);
|
|
return vmul_f32(fVec, est2);
|
|
#endif
|
|
}
|
|
|
|
AI SkNx operator==(const SkNx& o) const { return vreinterpret_f32_u32(vceq_f32(fVec, o.fVec)); }
|
|
AI SkNx operator <(const SkNx& o) const { return vreinterpret_f32_u32(vclt_f32(fVec, o.fVec)); }
|
|
AI SkNx operator >(const SkNx& o) const { return vreinterpret_f32_u32(vcgt_f32(fVec, o.fVec)); }
|
|
AI SkNx operator<=(const SkNx& o) const { return vreinterpret_f32_u32(vcle_f32(fVec, o.fVec)); }
|
|
AI SkNx operator>=(const SkNx& o) const { return vreinterpret_f32_u32(vcge_f32(fVec, o.fVec)); }
|
|
AI SkNx operator!=(const SkNx& o) const {
|
|
return vreinterpret_f32_u32(vmvn_u32(vceq_f32(fVec, o.fVec)));
|
|
}
|
|
|
|
AI static SkNx Min(const SkNx& l, const SkNx& r) { return vmin_f32(l.fVec, r.fVec); }
|
|
AI static SkNx Max(const SkNx& l, const SkNx& r) { return vmax_f32(l.fVec, r.fVec); }
|
|
|
|
AI SkNx abs() const { return vabs_f32(fVec); }
|
|
AI SkNx floor() const {
|
|
#if defined(SK_CPU_ARM64)
|
|
return vrndm_f32(fVec);
|
|
#else
|
|
return emulate_vrndm_f32(fVec);
|
|
#endif
|
|
}
|
|
|
|
AI SkNx rsqrt() const {
|
|
float32x2_t est0 = vrsqrte_f32(fVec);
|
|
return vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0);
|
|
}
|
|
|
|
AI SkNx sqrt() const {
|
|
#if defined(SK_CPU_ARM64)
|
|
return vsqrt_f32(fVec);
|
|
#else
|
|
float32x2_t est0 = vrsqrte_f32(fVec),
|
|
est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0),
|
|
est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1);
|
|
return vmul_f32(fVec, est2);
|
|
#endif
|
|
}
|
|
|
|
AI float operator[](int k) const {
|
|
SkASSERT(0 <= k && k < 2);
|
|
union { float32x2_t v; float fs[2]; } pun = {fVec};
|
|
return pun.fs[k&1];
|
|
}
|
|
|
|
AI bool allTrue() const {
|
|
#if defined(SK_CPU_ARM64)
|
|
return 0 != vminv_u32(vreinterpret_u32_f32(fVec));
|
|
#else
|
|
auto v = vreinterpret_u32_f32(fVec);
|
|
return vget_lane_u32(v,0) && vget_lane_u32(v,1);
|
|
#endif
|
|
}
|
|
AI bool anyTrue() const {
|
|
#if defined(SK_CPU_ARM64)
|
|
return 0 != vmaxv_u32(vreinterpret_u32_f32(fVec));
|
|
#else
|
|
auto v = vreinterpret_u32_f32(fVec);
|
|
return vget_lane_u32(v,0) || vget_lane_u32(v,1);
|
|
#endif
|
|
}
|
|
|
|
AI SkNx thenElse(const SkNx& t, const SkNx& e) const {
|
|
return vbsl_f32(vreinterpret_u32_f32(fVec), t.fVec, e.fVec);
|
|
}
|
|
|
|
float32x2_t fVec;
|
|
};
|
|
|
|
template <>
|
|
class SkNx<4, float> {
|
|
public:
|
|
AI SkNx(float32x4_t vec) : fVec(vec) {}
|
|
|
|
AI SkNx() {}
|
|
AI SkNx(float val) : fVec(vdupq_n_f32(val)) {}
|
|
AI SkNx(float a, float b, float c, float d) { fVec = (float32x4_t) { a, b, c, d }; }
|
|
|
|
AI static SkNx Load(const void* ptr) { return vld1q_f32((const float*)ptr); }
|
|
AI void store(void* ptr) const { vst1q_f32((float*)ptr, fVec); }
|
|
|
|
AI static void Load2(const void* ptr, SkNx* x, SkNx* y) {
|
|
float32x4x2_t xy = vld2q_f32((const float*) ptr);
|
|
*x = xy.val[0];
|
|
*y = xy.val[1];
|
|
}
|
|
|
|
AI static void Load4(const void* ptr, SkNx* r, SkNx* g, SkNx* b, SkNx* a) {
|
|
float32x4x4_t rgba = vld4q_f32((const float*) ptr);
|
|
*r = rgba.val[0];
|
|
*g = rgba.val[1];
|
|
*b = rgba.val[2];
|
|
*a = rgba.val[3];
|
|
}
|
|
AI static void Store4(void* dst, const SkNx& r, const SkNx& g, const SkNx& b, const SkNx& a) {
|
|
float32x4x4_t rgba = {{
|
|
r.fVec,
|
|
g.fVec,
|
|
b.fVec,
|
|
a.fVec,
|
|
}};
|
|
vst4q_f32((float*) dst, rgba);
|
|
}
|
|
|
|
AI SkNx invert() const {
|
|
float32x4_t est0 = vrecpeq_f32(fVec),
|
|
est1 = vmulq_f32(vrecpsq_f32(est0, fVec), est0);
|
|
return est1;
|
|
}
|
|
|
|
AI SkNx operator - () const { return vnegq_f32(fVec); }
|
|
|
|
AI SkNx operator + (const SkNx& o) const { return vaddq_f32(fVec, o.fVec); }
|
|
AI SkNx operator - (const SkNx& o) const { return vsubq_f32(fVec, o.fVec); }
|
|
AI SkNx operator * (const SkNx& o) const { return vmulq_f32(fVec, o.fVec); }
|
|
AI SkNx operator / (const SkNx& o) const {
|
|
#if defined(SK_CPU_ARM64)
|
|
return vdivq_f32(fVec, o.fVec);
|
|
#else
|
|
float32x4_t est0 = vrecpeq_f32(o.fVec),
|
|
est1 = vmulq_f32(vrecpsq_f32(est0, o.fVec), est0),
|
|
est2 = vmulq_f32(vrecpsq_f32(est1, o.fVec), est1);
|
|
return vmulq_f32(fVec, est2);
|
|
#endif
|
|
}
|
|
|
|
AI SkNx operator==(const SkNx& o) const {return vreinterpretq_f32_u32(vceqq_f32(fVec, o.fVec));}
|
|
AI SkNx operator <(const SkNx& o) const {return vreinterpretq_f32_u32(vcltq_f32(fVec, o.fVec));}
|
|
AI SkNx operator >(const SkNx& o) const {return vreinterpretq_f32_u32(vcgtq_f32(fVec, o.fVec));}
|
|
AI SkNx operator<=(const SkNx& o) const {return vreinterpretq_f32_u32(vcleq_f32(fVec, o.fVec));}
|
|
AI SkNx operator>=(const SkNx& o) const {return vreinterpretq_f32_u32(vcgeq_f32(fVec, o.fVec));}
|
|
AI SkNx operator!=(const SkNx& o) const {
|
|
return vreinterpretq_f32_u32(vmvnq_u32(vceqq_f32(fVec, o.fVec)));
|
|
}
|
|
|
|
AI static SkNx Min(const SkNx& l, const SkNx& r) { return vminq_f32(l.fVec, r.fVec); }
|
|
AI static SkNx Max(const SkNx& l, const SkNx& r) { return vmaxq_f32(l.fVec, r.fVec); }
|
|
|
|
AI SkNx abs() const { return vabsq_f32(fVec); }
|
|
AI SkNx floor() const {
|
|
#if defined(SK_CPU_ARM64)
|
|
return vrndmq_f32(fVec);
|
|
#else
|
|
return emulate_vrndmq_f32(fVec);
|
|
#endif
|
|
}
|
|
|
|
|
|
AI SkNx rsqrt() const {
|
|
float32x4_t est0 = vrsqrteq_f32(fVec);
|
|
return vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0);
|
|
}
|
|
|
|
AI SkNx sqrt() const {
|
|
#if defined(SK_CPU_ARM64)
|
|
return vsqrtq_f32(fVec);
|
|
#else
|
|
float32x4_t est0 = vrsqrteq_f32(fVec),
|
|
est1 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0),
|
|
est2 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est1, est1)), est1);
|
|
return vmulq_f32(fVec, est2);
|
|
#endif
|
|
}
|
|
|
|
AI float operator[](int k) const {
|
|
SkASSERT(0 <= k && k < 4);
|
|
union { float32x4_t v; float fs[4]; } pun = {fVec};
|
|
return pun.fs[k&3];
|
|
}
|
|
|
|
AI float min() const {
|
|
#if defined(SK_CPU_ARM64)
|
|
return vminvq_f32(fVec);
|
|
#else
|
|
SkNx min = Min(*this, vrev64q_f32(fVec));
|
|
return std::min(min[0], min[2]);
|
|
#endif
|
|
}
|
|
|
|
AI float max() const {
|
|
#if defined(SK_CPU_ARM64)
|
|
return vmaxvq_f32(fVec);
|
|
#else
|
|
SkNx max = Max(*this, vrev64q_f32(fVec));
|
|
return std::max(max[0], max[2]);
|
|
#endif
|
|
}
|
|
|
|
AI bool allTrue() const {
|
|
#if defined(SK_CPU_ARM64)
|
|
return 0 != vminvq_u32(vreinterpretq_u32_f32(fVec));
|
|
#else
|
|
auto v = vreinterpretq_u32_f32(fVec);
|
|
return vgetq_lane_u32(v,0) && vgetq_lane_u32(v,1)
|
|
&& vgetq_lane_u32(v,2) && vgetq_lane_u32(v,3);
|
|
#endif
|
|
}
|
|
AI bool anyTrue() const {
|
|
#if defined(SK_CPU_ARM64)
|
|
return 0 != vmaxvq_u32(vreinterpretq_u32_f32(fVec));
|
|
#else
|
|
auto v = vreinterpretq_u32_f32(fVec);
|
|
return vgetq_lane_u32(v,0) || vgetq_lane_u32(v,1)
|
|
|| vgetq_lane_u32(v,2) || vgetq_lane_u32(v,3);
|
|
#endif
|
|
}
|
|
|
|
AI SkNx thenElse(const SkNx& t, const SkNx& e) const {
|
|
return vbslq_f32(vreinterpretq_u32_f32(fVec), t.fVec, e.fVec);
|
|
}
|
|
|
|
float32x4_t fVec;
|
|
};
|
|
|
|
#if defined(SK_CPU_ARM64)
|
|
AI static Sk4f SkNx_fma(const Sk4f& f, const Sk4f& m, const Sk4f& a) {
|
|
return vfmaq_f32(a.fVec, f.fVec, m.fVec);
|
|
}
|
|
#endif
|
|
|
|
// It's possible that for our current use cases, representing this as
|
|
// half a uint16x8_t might be better than representing it as a uint16x4_t.
|
|
// It'd make conversion to Sk4b one step simpler.
|
|
template <>
|
|
class SkNx<4, uint16_t> {
|
|
public:
|
|
AI SkNx(const uint16x4_t& vec) : fVec(vec) {}
|
|
|
|
AI SkNx() {}
|
|
AI SkNx(uint16_t val) : fVec(vdup_n_u16(val)) {}
|
|
AI SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d) {
|
|
fVec = (uint16x4_t) { a,b,c,d };
|
|
}
|
|
|
|
AI static SkNx Load(const void* ptr) { return vld1_u16((const uint16_t*)ptr); }
|
|
AI void store(void* ptr) const { vst1_u16((uint16_t*)ptr, fVec); }
|
|
|
|
AI static void Load4(const void* ptr, SkNx* r, SkNx* g, SkNx* b, SkNx* a) {
|
|
uint16x4x4_t rgba = vld4_u16((const uint16_t*)ptr);
|
|
*r = rgba.val[0];
|
|
*g = rgba.val[1];
|
|
*b = rgba.val[2];
|
|
*a = rgba.val[3];
|
|
}
|
|
AI static void Load3(const void* ptr, SkNx* r, SkNx* g, SkNx* b) {
|
|
uint16x4x3_t rgba = vld3_u16((const uint16_t*)ptr);
|
|
*r = rgba.val[0];
|
|
*g = rgba.val[1];
|
|
*b = rgba.val[2];
|
|
}
|
|
AI static void Store4(void* dst, const SkNx& r, const SkNx& g, const SkNx& b, const SkNx& a) {
|
|
uint16x4x4_t rgba = {{
|
|
r.fVec,
|
|
g.fVec,
|
|
b.fVec,
|
|
a.fVec,
|
|
}};
|
|
vst4_u16((uint16_t*) dst, rgba);
|
|
}
|
|
|
|
AI SkNx operator + (const SkNx& o) const { return vadd_u16(fVec, o.fVec); }
|
|
AI SkNx operator - (const SkNx& o) const { return vsub_u16(fVec, o.fVec); }
|
|
AI SkNx operator * (const SkNx& o) const { return vmul_u16(fVec, o.fVec); }
|
|
AI SkNx operator & (const SkNx& o) const { return vand_u16(fVec, o.fVec); }
|
|
AI SkNx operator | (const SkNx& o) const { return vorr_u16(fVec, o.fVec); }
|
|
|
|
AI SkNx operator << (int bits) const { return fVec << SkNx(bits).fVec; }
|
|
AI SkNx operator >> (int bits) const { return fVec >> SkNx(bits).fVec; }
|
|
|
|
AI static SkNx Min(const SkNx& a, const SkNx& b) { return vmin_u16(a.fVec, b.fVec); }
|
|
|
|
AI uint16_t operator[](int k) const {
|
|
SkASSERT(0 <= k && k < 4);
|
|
union { uint16x4_t v; uint16_t us[4]; } pun = {fVec};
|
|
return pun.us[k&3];
|
|
}
|
|
|
|
AI SkNx thenElse(const SkNx& t, const SkNx& e) const {
|
|
return vbsl_u16(fVec, t.fVec, e.fVec);
|
|
}
|
|
|
|
uint16x4_t fVec;
|
|
};
|
|
|
|
template <>
|
|
class SkNx<8, uint16_t> {
|
|
public:
|
|
AI SkNx(const uint16x8_t& vec) : fVec(vec) {}
|
|
|
|
AI SkNx() {}
|
|
AI SkNx(uint16_t val) : fVec(vdupq_n_u16(val)) {}
|
|
AI static SkNx Load(const void* ptr) { return vld1q_u16((const uint16_t*)ptr); }
|
|
|
|
AI SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d,
|
|
uint16_t e, uint16_t f, uint16_t g, uint16_t h) {
|
|
fVec = (uint16x8_t) { a,b,c,d, e,f,g,h };
|
|
}
|
|
|
|
AI void store(void* ptr) const { vst1q_u16((uint16_t*)ptr, fVec); }
|
|
|
|
AI SkNx operator + (const SkNx& o) const { return vaddq_u16(fVec, o.fVec); }
|
|
AI SkNx operator - (const SkNx& o) const { return vsubq_u16(fVec, o.fVec); }
|
|
AI SkNx operator * (const SkNx& o) const { return vmulq_u16(fVec, o.fVec); }
|
|
AI SkNx operator & (const SkNx& o) const { return vandq_u16(fVec, o.fVec); }
|
|
AI SkNx operator | (const SkNx& o) const { return vorrq_u16(fVec, o.fVec); }
|
|
|
|
AI SkNx operator << (int bits) const { return fVec << SkNx(bits).fVec; }
|
|
AI SkNx operator >> (int bits) const { return fVec >> SkNx(bits).fVec; }
|
|
|
|
AI static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u16(a.fVec, b.fVec); }
|
|
|
|
AI uint16_t operator[](int k) const {
|
|
SkASSERT(0 <= k && k < 8);
|
|
union { uint16x8_t v; uint16_t us[8]; } pun = {fVec};
|
|
return pun.us[k&7];
|
|
}
|
|
|
|
AI SkNx mulHi(const SkNx& m) const {
|
|
uint32x4_t hi = vmull_u16(vget_high_u16(fVec), vget_high_u16(m.fVec));
|
|
uint32x4_t lo = vmull_u16( vget_low_u16(fVec), vget_low_u16(m.fVec));
|
|
|
|
return { vcombine_u16(vshrn_n_u32(lo,16), vshrn_n_u32(hi,16)) };
|
|
}
|
|
|
|
AI SkNx thenElse(const SkNx& t, const SkNx& e) const {
|
|
return vbslq_u16(fVec, t.fVec, e.fVec);
|
|
}
|
|
|
|
uint16x8_t fVec;
|
|
};
|
|
|
|
template <>
|
|
class SkNx<4, uint8_t> {
|
|
public:
|
|
typedef uint32_t __attribute__((aligned(1))) unaligned_uint32_t;
|
|
|
|
AI SkNx(const uint8x8_t& vec) : fVec(vec) {}
|
|
|
|
AI SkNx() {}
|
|
AI SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d) {
|
|
fVec = (uint8x8_t){a,b,c,d, 0,0,0,0};
|
|
}
|
|
AI static SkNx Load(const void* ptr) {
|
|
return (uint8x8_t)vld1_dup_u32((const unaligned_uint32_t*)ptr);
|
|
}
|
|
AI void store(void* ptr) const {
|
|
return vst1_lane_u32((unaligned_uint32_t*)ptr, (uint32x2_t)fVec, 0);
|
|
}
|
|
AI uint8_t operator[](int k) const {
|
|
SkASSERT(0 <= k && k < 4);
|
|
union { uint8x8_t v; uint8_t us[8]; } pun = {fVec};
|
|
return pun.us[k&3];
|
|
}
|
|
|
|
// TODO as needed
|
|
|
|
uint8x8_t fVec;
|
|
};
|
|
|
|
template <>
|
|
class SkNx<8, uint8_t> {
|
|
public:
|
|
AI SkNx(const uint8x8_t& vec) : fVec(vec) {}
|
|
|
|
AI SkNx() {}
|
|
AI SkNx(uint8_t val) : fVec(vdup_n_u8(val)) {}
|
|
AI SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d,
|
|
uint8_t e, uint8_t f, uint8_t g, uint8_t h) {
|
|
fVec = (uint8x8_t) { a,b,c,d, e,f,g,h };
|
|
}
|
|
|
|
AI static SkNx Load(const void* ptr) { return vld1_u8((const uint8_t*)ptr); }
|
|
AI void store(void* ptr) const { vst1_u8((uint8_t*)ptr, fVec); }
|
|
|
|
AI uint8_t operator[](int k) const {
|
|
SkASSERT(0 <= k && k < 8);
|
|
union { uint8x8_t v; uint8_t us[8]; } pun = {fVec};
|
|
return pun.us[k&7];
|
|
}
|
|
|
|
uint8x8_t fVec;
|
|
};
|
|
|
|
template <>
|
|
class SkNx<16, uint8_t> {
|
|
public:
|
|
AI SkNx(const uint8x16_t& vec) : fVec(vec) {}
|
|
|
|
AI SkNx() {}
|
|
AI SkNx(uint8_t val) : fVec(vdupq_n_u8(val)) {}
|
|
AI SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d,
|
|
uint8_t e, uint8_t f, uint8_t g, uint8_t h,
|
|
uint8_t i, uint8_t j, uint8_t k, uint8_t l,
|
|
uint8_t m, uint8_t n, uint8_t o, uint8_t p) {
|
|
fVec = (uint8x16_t) { a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p };
|
|
}
|
|
|
|
AI static SkNx Load(const void* ptr) { return vld1q_u8((const uint8_t*)ptr); }
|
|
AI void store(void* ptr) const { vst1q_u8((uint8_t*)ptr, fVec); }
|
|
|
|
AI SkNx saturatedAdd(const SkNx& o) const { return vqaddq_u8(fVec, o.fVec); }
|
|
|
|
AI SkNx operator + (const SkNx& o) const { return vaddq_u8(fVec, o.fVec); }
|
|
AI SkNx operator - (const SkNx& o) const { return vsubq_u8(fVec, o.fVec); }
|
|
AI SkNx operator & (const SkNx& o) const { return vandq_u8(fVec, o.fVec); }
|
|
|
|
AI static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u8(a.fVec, b.fVec); }
|
|
AI SkNx operator < (const SkNx& o) const { return vcltq_u8(fVec, o.fVec); }
|
|
|
|
AI uint8_t operator[](int k) const {
|
|
SkASSERT(0 <= k && k < 16);
|
|
union { uint8x16_t v; uint8_t us[16]; } pun = {fVec};
|
|
return pun.us[k&15];
|
|
}
|
|
|
|
AI SkNx thenElse(const SkNx& t, const SkNx& e) const {
|
|
return vbslq_u8(fVec, t.fVec, e.fVec);
|
|
}
|
|
|
|
uint8x16_t fVec;
|
|
};
|
|
|
|
template <>
|
|
class SkNx<4, int32_t> {
|
|
public:
|
|
AI SkNx(const int32x4_t& vec) : fVec(vec) {}
|
|
|
|
AI SkNx() {}
|
|
AI SkNx(int32_t v) {
|
|
fVec = vdupq_n_s32(v);
|
|
}
|
|
AI SkNx(int32_t a, int32_t b, int32_t c, int32_t d) {
|
|
fVec = (int32x4_t){a,b,c,d};
|
|
}
|
|
AI static SkNx Load(const void* ptr) {
|
|
return vld1q_s32((const int32_t*)ptr);
|
|
}
|
|
AI void store(void* ptr) const {
|
|
return vst1q_s32((int32_t*)ptr, fVec);
|
|
}
|
|
AI int32_t operator[](int k) const {
|
|
SkASSERT(0 <= k && k < 4);
|
|
union { int32x4_t v; int32_t is[4]; } pun = {fVec};
|
|
return pun.is[k&3];
|
|
}
|
|
|
|
AI SkNx operator + (const SkNx& o) const { return vaddq_s32(fVec, o.fVec); }
|
|
AI SkNx operator - (const SkNx& o) const { return vsubq_s32(fVec, o.fVec); }
|
|
AI SkNx operator * (const SkNx& o) const { return vmulq_s32(fVec, o.fVec); }
|
|
|
|
AI SkNx operator & (const SkNx& o) const { return vandq_s32(fVec, o.fVec); }
|
|
AI SkNx operator | (const SkNx& o) const { return vorrq_s32(fVec, o.fVec); }
|
|
AI SkNx operator ^ (const SkNx& o) const { return veorq_s32(fVec, o.fVec); }
|
|
|
|
AI SkNx operator << (int bits) const { return fVec << SkNx(bits).fVec; }
|
|
AI SkNx operator >> (int bits) const { return fVec >> SkNx(bits).fVec; }
|
|
|
|
AI SkNx operator == (const SkNx& o) const {
|
|
return vreinterpretq_s32_u32(vceqq_s32(fVec, o.fVec));
|
|
}
|
|
AI SkNx operator < (const SkNx& o) const {
|
|
return vreinterpretq_s32_u32(vcltq_s32(fVec, o.fVec));
|
|
}
|
|
AI SkNx operator > (const SkNx& o) const {
|
|
return vreinterpretq_s32_u32(vcgtq_s32(fVec, o.fVec));
|
|
}
|
|
|
|
AI static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_s32(a.fVec, b.fVec); }
|
|
AI static SkNx Max(const SkNx& a, const SkNx& b) { return vmaxq_s32(a.fVec, b.fVec); }
|
|
// TODO as needed
|
|
|
|
AI SkNx thenElse(const SkNx& t, const SkNx& e) const {
|
|
return vbslq_s32(vreinterpretq_u32_s32(fVec), t.fVec, e.fVec);
|
|
}
|
|
|
|
AI SkNx abs() const { return vabsq_s32(fVec); }
|
|
|
|
int32x4_t fVec;
|
|
};
|
|
|
|
template <>
|
|
class SkNx<4, uint32_t> {
|
|
public:
|
|
AI SkNx(const uint32x4_t& vec) : fVec(vec) {}
|
|
|
|
AI SkNx() {}
|
|
AI SkNx(uint32_t v) {
|
|
fVec = vdupq_n_u32(v);
|
|
}
|
|
AI SkNx(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
|
|
fVec = (uint32x4_t){a,b,c,d};
|
|
}
|
|
AI static SkNx Load(const void* ptr) {
|
|
return vld1q_u32((const uint32_t*)ptr);
|
|
}
|
|
AI void store(void* ptr) const {
|
|
return vst1q_u32((uint32_t*)ptr, fVec);
|
|
}
|
|
AI uint32_t operator[](int k) const {
|
|
SkASSERT(0 <= k && k < 4);
|
|
union { uint32x4_t v; uint32_t us[4]; } pun = {fVec};
|
|
return pun.us[k&3];
|
|
}
|
|
|
|
AI SkNx operator + (const SkNx& o) const { return vaddq_u32(fVec, o.fVec); }
|
|
AI SkNx operator - (const SkNx& o) const { return vsubq_u32(fVec, o.fVec); }
|
|
AI SkNx operator * (const SkNx& o) const { return vmulq_u32(fVec, o.fVec); }
|
|
|
|
AI SkNx operator & (const SkNx& o) const { return vandq_u32(fVec, o.fVec); }
|
|
AI SkNx operator | (const SkNx& o) const { return vorrq_u32(fVec, o.fVec); }
|
|
AI SkNx operator ^ (const SkNx& o) const { return veorq_u32(fVec, o.fVec); }
|
|
|
|
AI SkNx operator << (int bits) const { return fVec << SkNx(bits).fVec; }
|
|
AI SkNx operator >> (int bits) const { return fVec >> SkNx(bits).fVec; }
|
|
|
|
AI SkNx operator == (const SkNx& o) const { return vceqq_u32(fVec, o.fVec); }
|
|
AI SkNx operator < (const SkNx& o) const { return vcltq_u32(fVec, o.fVec); }
|
|
AI SkNx operator > (const SkNx& o) const { return vcgtq_u32(fVec, o.fVec); }
|
|
|
|
AI static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u32(a.fVec, b.fVec); }
|
|
// TODO as needed
|
|
|
|
AI SkNx mulHi(const SkNx& m) const {
|
|
uint64x2_t hi = vmull_u32(vget_high_u32(fVec), vget_high_u32(m.fVec));
|
|
uint64x2_t lo = vmull_u32( vget_low_u32(fVec), vget_low_u32(m.fVec));
|
|
|
|
return { vcombine_u32(vshrn_n_u64(lo,32), vshrn_n_u64(hi,32)) };
|
|
}
|
|
|
|
AI SkNx thenElse(const SkNx& t, const SkNx& e) const {
|
|
return vbslq_u32(fVec, t.fVec, e.fVec);
|
|
}
|
|
|
|
uint32x4_t fVec;
|
|
};
|
|
|
|
template<> AI /*static*/ Sk4i SkNx_cast<int32_t, float>(const Sk4f& src) {
|
|
return vcvtq_s32_f32(src.fVec);
|
|
|
|
}
|
|
template<> AI /*static*/ Sk4f SkNx_cast<float, int32_t>(const Sk4i& src) {
|
|
return vcvtq_f32_s32(src.fVec);
|
|
}
|
|
template<> AI /*static*/ Sk4f SkNx_cast<float, uint32_t>(const Sk4u& src) {
|
|
return SkNx_cast<float>(Sk4i::Load(&src));
|
|
}
|
|
|
|
template<> AI /*static*/ Sk4h SkNx_cast<uint16_t, float>(const Sk4f& src) {
|
|
return vqmovn_u32(vcvtq_u32_f32(src.fVec));
|
|
}
|
|
|
|
template<> AI /*static*/ Sk4f SkNx_cast<float, uint16_t>(const Sk4h& src) {
|
|
return vcvtq_f32_u32(vmovl_u16(src.fVec));
|
|
}
|
|
|
|
template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, float>(const Sk4f& src) {
|
|
uint32x4_t _32 = vcvtq_u32_f32(src.fVec);
|
|
uint16x4_t _16 = vqmovn_u32(_32);
|
|
return vqmovn_u16(vcombine_u16(_16, _16));
|
|
}
|
|
|
|
template<> AI /*static*/ Sk4u SkNx_cast<uint32_t, uint8_t>(const Sk4b& src) {
|
|
uint16x8_t _16 = vmovl_u8(src.fVec);
|
|
return vmovl_u16(vget_low_u16(_16));
|
|
}
|
|
|
|
template<> AI /*static*/ Sk4i SkNx_cast<int32_t, uint8_t>(const Sk4b& src) {
|
|
return vreinterpretq_s32_u32(SkNx_cast<uint32_t>(src).fVec);
|
|
}
|
|
|
|
template<> AI /*static*/ Sk4f SkNx_cast<float, uint8_t>(const Sk4b& src) {
|
|
return vcvtq_f32_s32(SkNx_cast<int32_t>(src).fVec);
|
|
}
|
|
|
|
template<> AI /*static*/ Sk16b SkNx_cast<uint8_t, float>(const Sk16f& src) {
|
|
Sk8f ab, cd;
|
|
SkNx_split(src, &ab, &cd);
|
|
|
|
Sk4f a,b,c,d;
|
|
SkNx_split(ab, &a, &b);
|
|
SkNx_split(cd, &c, &d);
|
|
return vuzpq_u8(vuzpq_u8((uint8x16_t)vcvtq_u32_f32(a.fVec),
|
|
(uint8x16_t)vcvtq_u32_f32(b.fVec)).val[0],
|
|
vuzpq_u8((uint8x16_t)vcvtq_u32_f32(c.fVec),
|
|
(uint8x16_t)vcvtq_u32_f32(d.fVec)).val[0]).val[0];
|
|
}
|
|
|
|
template<> AI /*static*/ Sk8b SkNx_cast<uint8_t, int32_t>(const Sk8i& src) {
|
|
Sk4i a, b;
|
|
SkNx_split(src, &a, &b);
|
|
uint16x4_t a16 = vqmovun_s32(a.fVec);
|
|
uint16x4_t b16 = vqmovun_s32(b.fVec);
|
|
|
|
return vqmovn_u16(vcombine_u16(a16, b16));
|
|
}
|
|
|
|
template<> AI /*static*/ Sk4h SkNx_cast<uint16_t, uint8_t>(const Sk4b& src) {
|
|
return vget_low_u16(vmovl_u8(src.fVec));
|
|
}
|
|
|
|
template<> AI /*static*/ Sk8h SkNx_cast<uint16_t, uint8_t>(const Sk8b& src) {
|
|
return vmovl_u8(src.fVec);
|
|
}
|
|
|
|
template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, uint16_t>(const Sk4h& src) {
|
|
return vmovn_u16(vcombine_u16(src.fVec, src.fVec));
|
|
}
|
|
|
|
template<> AI /*static*/ Sk8b SkNx_cast<uint8_t, uint16_t>(const Sk8h& src) {
|
|
return vqmovn_u16(src.fVec);
|
|
}
|
|
|
|
template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, int32_t>(const Sk4i& src) {
|
|
uint16x4_t _16 = vqmovun_s32(src.fVec);
|
|
return vqmovn_u16(vcombine_u16(_16, _16));
|
|
}
|
|
|
|
template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, uint32_t>(const Sk4u& src) {
|
|
uint16x4_t _16 = vqmovn_u32(src.fVec);
|
|
return vqmovn_u16(vcombine_u16(_16, _16));
|
|
}
|
|
|
|
template<> AI /*static*/ Sk4i SkNx_cast<int32_t, uint16_t>(const Sk4h& src) {
|
|
return vreinterpretq_s32_u32(vmovl_u16(src.fVec));
|
|
}
|
|
|
|
template<> AI /*static*/ Sk4h SkNx_cast<uint16_t, int32_t>(const Sk4i& src) {
|
|
return vmovn_u32(vreinterpretq_u32_s32(src.fVec));
|
|
}
|
|
|
|
template<> AI /*static*/ Sk4i SkNx_cast<int32_t, uint32_t>(const Sk4u& src) {
|
|
return vreinterpretq_s32_u32(src.fVec);
|
|
}
|
|
|
|
AI static Sk4i Sk4f_round(const Sk4f& x) {
|
|
return vcvtq_s32_f32((x + 0.5f).fVec);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
#endif//SkNx_neon_DEFINED
|