7eb492e839
library build target to the .gyp file (not required by any executable yet). Fix some build errors with SampleApp on Linux and Win32. Add a gyp_skia python script which invokes gyp with the correct arguments, and is recursively callable by the Makefile when skia.gyp is changed. Review URL: http://codereview.appspot.com/4280069/ git-svn-id: http://skia.googlecode.com/svn/trunk@1007 2bbb7eff-a529-9590-31e7-b0007b416f81
260 lines
8.0 KiB
C
260 lines
8.0 KiB
C
/*
|
|
** License Applicability. Except to the extent portions of this file are
|
|
** made subject to an alternative license as permitted in the SGI Free
|
|
** Software License B, Version 1.1 (the "License"), the contents of this
|
|
** file are subject only to the provisions of the License. You may not use
|
|
** this file except in compliance with the License. You may obtain a copy
|
|
** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
|
|
** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
|
|
**
|
|
** http://oss.sgi.com/projects/FreeB
|
|
**
|
|
** Note that, as provided in the License, the Software is distributed on an
|
|
** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
|
|
** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
|
|
** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
|
|
** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
|
|
**
|
|
** Original Code. The Original Code is: OpenGL Sample Implementation,
|
|
** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
|
|
** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
|
|
** Copyright in any portions created by third parties is as indicated
|
|
** elsewhere herein. All Rights Reserved.
|
|
**
|
|
** Additional Notice Provisions: The application programming interfaces
|
|
** established by SGI in conjunction with the Original Code are The
|
|
** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
|
|
** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
|
|
** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
|
|
** Window System(R) (Version 1.3), released October 19, 1998. This software
|
|
** was created using the OpenGL(R) version 1.2.1 Sample Implementation
|
|
** published by SGI, but has not been independently verified as being
|
|
** compliant with the OpenGL(R) version 1.2.1 Specification.
|
|
**
|
|
*/
|
|
/*
|
|
** Author: Eric Veach, July 1994.
|
|
**
|
|
** $Date$ $Revision$
|
|
** $Header: //depot/main/gfx/lib/glu/libtess/normal.c#5 $
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include <gluos.h>
|
|
#include "mesh.h"
|
|
#include "normal.h"
|
|
#include "tess.h"
|
|
|
|
#define TRUE 1
|
|
#define FALSE 0
|
|
|
|
#define Dot(u,v) (u[0]*v[0] + u[1]*v[1] + u[2]*v[2])
|
|
|
|
#if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)
|
|
static void Normalize( GLdouble v[3] )
|
|
{
|
|
GLdouble len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
|
|
assert( len > 0 );
|
|
len = sqrt( len );
|
|
v[0] /= len;
|
|
v[1] /= len;
|
|
v[2] /= len;
|
|
}
|
|
#endif
|
|
|
|
#define ABS(x) ((x) < 0 ? -(x) : (x))
|
|
|
|
static int LongAxis( GLdouble v[3] )
|
|
{
|
|
int i = 0;
|
|
|
|
if( ABS(v[1]) > ABS(v[0]) ) { i = 1; }
|
|
if( ABS(v[2]) > ABS(v[i]) ) { i = 2; }
|
|
return i;
|
|
}
|
|
|
|
static void ComputeNormal( GLUtesselator *tess, GLdouble norm[3] )
|
|
{
|
|
GLUvertex *v, *v1, *v2;
|
|
GLdouble c, tLen2, maxLen2;
|
|
GLdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3];
|
|
GLUvertex *maxVert[3], *minVert[3];
|
|
GLUvertex *vHead = &tess->mesh->vHead;
|
|
int i;
|
|
|
|
maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD;
|
|
minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD;
|
|
|
|
for( v = vHead->next; v != vHead; v = v->next ) {
|
|
for( i = 0; i < 3; ++i ) {
|
|
c = v->coords[i];
|
|
if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; }
|
|
if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; }
|
|
}
|
|
}
|
|
|
|
/* Find two vertices separated by at least 1/sqrt(3) of the maximum
|
|
* distance between any two vertices
|
|
*/
|
|
i = 0;
|
|
if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; }
|
|
if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; }
|
|
if( minVal[i] >= maxVal[i] ) {
|
|
/* All vertices are the same -- normal doesn't matter */
|
|
norm[0] = 0; norm[1] = 0; norm[2] = 1;
|
|
return;
|
|
}
|
|
|
|
/* Look for a third vertex which forms the triangle with maximum area
|
|
* (Length of normal == twice the triangle area)
|
|
*/
|
|
maxLen2 = 0;
|
|
v1 = minVert[i];
|
|
v2 = maxVert[i];
|
|
d1[0] = v1->coords[0] - v2->coords[0];
|
|
d1[1] = v1->coords[1] - v2->coords[1];
|
|
d1[2] = v1->coords[2] - v2->coords[2];
|
|
for( v = vHead->next; v != vHead; v = v->next ) {
|
|
d2[0] = v->coords[0] - v2->coords[0];
|
|
d2[1] = v->coords[1] - v2->coords[1];
|
|
d2[2] = v->coords[2] - v2->coords[2];
|
|
tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1];
|
|
tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2];
|
|
tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0];
|
|
tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2];
|
|
if( tLen2 > maxLen2 ) {
|
|
maxLen2 = tLen2;
|
|
norm[0] = tNorm[0];
|
|
norm[1] = tNorm[1];
|
|
norm[2] = tNorm[2];
|
|
}
|
|
}
|
|
|
|
if( maxLen2 <= 0 ) {
|
|
/* All points lie on a single line -- any decent normal will do */
|
|
norm[0] = norm[1] = norm[2] = 0;
|
|
norm[LongAxis(d1)] = 1;
|
|
}
|
|
}
|
|
|
|
|
|
static void CheckOrientation( GLUtesselator *tess )
|
|
{
|
|
GLdouble area;
|
|
GLUface *f, *fHead = &tess->mesh->fHead;
|
|
GLUvertex *v, *vHead = &tess->mesh->vHead;
|
|
GLUhalfEdge *e;
|
|
|
|
/* When we compute the normal automatically, we choose the orientation
|
|
* so that the the sum of the signed areas of all contours is non-negative.
|
|
*/
|
|
area = 0;
|
|
for( f = fHead->next; f != fHead; f = f->next ) {
|
|
e = f->anEdge;
|
|
if( e->winding <= 0 ) continue;
|
|
do {
|
|
area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t);
|
|
e = e->Lnext;
|
|
} while( e != f->anEdge );
|
|
}
|
|
if( area < 0 ) {
|
|
/* Reverse the orientation by flipping all the t-coordinates */
|
|
for( v = vHead->next; v != vHead; v = v->next ) {
|
|
v->t = - v->t;
|
|
}
|
|
tess->tUnit[0] = - tess->tUnit[0];
|
|
tess->tUnit[1] = - tess->tUnit[1];
|
|
tess->tUnit[2] = - tess->tUnit[2];
|
|
}
|
|
}
|
|
|
|
#ifdef FOR_TRITE_TEST_PROGRAM
|
|
#include <stdlib.h>
|
|
extern int RandomSweep;
|
|
#define S_UNIT_X (RandomSweep ? (2*drand48()-1) : 1.0)
|
|
#define S_UNIT_Y (RandomSweep ? (2*drand48()-1) : 0.0)
|
|
#else
|
|
#if defined(SLANTED_SWEEP)
|
|
/* The "feature merging" is not intended to be complete. There are
|
|
* special cases where edges are nearly parallel to the sweep line
|
|
* which are not implemented. The algorithm should still behave
|
|
* robustly (ie. produce a reasonable tesselation) in the presence
|
|
* of such edges, however it may miss features which could have been
|
|
* merged. We could minimize this effect by choosing the sweep line
|
|
* direction to be something unusual (ie. not parallel to one of the
|
|
* coordinate axes).
|
|
*/
|
|
#define S_UNIT_X 0.50941539564955385 /* Pre-normalized */
|
|
#define S_UNIT_Y 0.86052074622010633
|
|
#else
|
|
#define S_UNIT_X 1.0
|
|
#define S_UNIT_Y 0.0
|
|
#endif
|
|
#endif
|
|
|
|
/* Determine the polygon normal and project vertices onto the plane
|
|
* of the polygon.
|
|
*/
|
|
void __gl_projectPolygon( GLUtesselator *tess )
|
|
{
|
|
GLUvertex *v, *vHead = &tess->mesh->vHead;
|
|
GLdouble norm[3];
|
|
GLdouble *sUnit, *tUnit;
|
|
int i, computedNormal = FALSE;
|
|
|
|
norm[0] = tess->normal[0];
|
|
norm[1] = tess->normal[1];
|
|
norm[2] = tess->normal[2];
|
|
if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
|
|
ComputeNormal( tess, norm );
|
|
computedNormal = TRUE;
|
|
}
|
|
sUnit = tess->sUnit;
|
|
tUnit = tess->tUnit;
|
|
i = LongAxis( norm );
|
|
|
|
#if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)
|
|
/* Choose the initial sUnit vector to be approximately perpendicular
|
|
* to the normal.
|
|
*/
|
|
Normalize( norm );
|
|
|
|
sUnit[i] = 0;
|
|
sUnit[(i+1)%3] = S_UNIT_X;
|
|
sUnit[(i+2)%3] = S_UNIT_Y;
|
|
|
|
/* Now make it exactly perpendicular */
|
|
w = Dot( sUnit, norm );
|
|
sUnit[0] -= w * norm[0];
|
|
sUnit[1] -= w * norm[1];
|
|
sUnit[2] -= w * norm[2];
|
|
Normalize( sUnit );
|
|
|
|
/* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */
|
|
tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1];
|
|
tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2];
|
|
tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0];
|
|
Normalize( tUnit );
|
|
#else
|
|
/* Project perpendicular to a coordinate axis -- better numerically */
|
|
sUnit[i] = 0;
|
|
sUnit[(i+1)%3] = S_UNIT_X;
|
|
sUnit[(i+2)%3] = S_UNIT_Y;
|
|
|
|
tUnit[i] = 0;
|
|
tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y;
|
|
tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X;
|
|
#endif
|
|
|
|
/* Project the vertices onto the sweep plane */
|
|
for( v = vHead->next; v != vHead; v = v->next ) {
|
|
v->s = Dot( v->coords, sUnit );
|
|
v->t = Dot( v->coords, tUnit );
|
|
}
|
|
if( computedNormal ) {
|
|
CheckOrientation( tess );
|
|
}
|
|
}
|