skia2/experimental/Intersection/ShapeOps.cpp
caryclark@google.com 3586ece1dd shape ops work in progress
git-svn-id: http://skia.googlecode.com/svn/trunk@6952 2bbb7eff-a529-9590-31e7-b0007b416f81
2012-12-27 18:46:58 +00:00

268 lines
9.1 KiB
C++

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Simplify.h"
namespace Op {
#define INCLUDED_BY_SHAPE_OPS 1
#include "Simplify.cpp"
// FIXME: this and find chase should be merge together, along with
// other code that walks winding in angles
// OPTIMIZATION: Probably, the walked winding should be rolled into the angle structure
// so it isn't duplicated by walkers like this one
static Segment* findChaseOp(SkTDArray<Span*>& chase, int& nextStart, int& nextEnd) {
while (chase.count()) {
Span* span;
chase.pop(&span);
const Span& backPtr = span->fOther->span(span->fOtherIndex);
Segment* segment = backPtr.fOther;
nextStart = backPtr.fOtherIndex;
SkTDArray<Angle> angles;
int done = 0;
if (segment->activeAngle(nextStart, done, angles)) {
Angle* last = angles.end() - 1;
nextStart = last->start();
nextEnd = last->end();
#if TRY_ROTATE
*chase.insert(0) = span;
#else
*chase.append() = span;
#endif
return last->segment();
}
if (done == angles.count()) {
continue;
}
SkTDArray<Angle*> sorted;
bool sortable = Segment::SortAngles(angles, sorted);
int angleCount = sorted.count();
#if DEBUG_SORT
sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0);
#endif
if (!sortable) {
continue;
}
// find first angle, initialize winding to computed fWindSum
int firstIndex = -1;
const Angle* angle;
do {
angle = sorted[++firstIndex];
segment = angle->segment();
} while (segment->windSum(angle) == SK_MinS32);
#if DEBUG_SORT
segment->debugShowSort(__FUNCTION__, sorted, firstIndex);
#endif
int sumMiWinding = segment->updateWindingReverse(angle);
int sumSuWinding = segment->updateOppWindingReverse(angle);
if (segment->operand()) {
SkTSwap<int>(sumMiWinding, sumSuWinding);
}
int nextIndex = firstIndex + 1;
int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
Segment* first = NULL;
do {
SkASSERT(nextIndex != firstIndex);
if (nextIndex == angleCount) {
nextIndex = 0;
}
angle = sorted[nextIndex];
segment = angle->segment();
int start = angle->start();
int end = angle->end();
int maxWinding, sumWinding, oppMaxWinding, oppSumWinding;
segment->setUpWindings(start, end, sumMiWinding, sumSuWinding,
maxWinding, sumWinding, oppMaxWinding, oppSumWinding);
if (!segment->done(angle)) {
if (!first) {
first = segment;
nextStart = start;
nextEnd = end;
}
(void) segment->markAngle(maxWinding, sumWinding, oppMaxWinding,
oppSumWinding, true, angle);
}
} while (++nextIndex != lastIndex);
if (first) {
#if TRY_ROTATE
*chase.insert(0) = span;
#else
*chase.append() = span;
#endif
return first;
}
}
return NULL;
}
/*
static bool windingIsActive(int winding, int oppWinding, int spanWinding, int oppSpanWinding,
bool windingIsOp, ShapeOp op) {
bool active = windingIsActive(winding, spanWinding);
if (!active) {
return false;
}
if (oppSpanWinding && windingIsActive(oppWinding, oppSpanWinding)) {
switch (op) {
case kIntersect_Op:
case kUnion_Op:
return true;
case kDifference_Op: {
int absSpan = abs(spanWinding);
int absOpp = abs(oppSpanWinding);
return windingIsOp ? absSpan < absOpp : absSpan > absOpp;
}
case kXor_Op:
return spanWinding != oppSpanWinding;
default:
SkASSERT(0);
}
}
bool opActive = oppWinding != 0;
return gOpLookup[op][opActive][windingIsOp];
}
*/
static bool bridgeOp(SkTDArray<Contour*>& contourList, const ShapeOp op,
const int xorMask, const int xorOpMask, PathWrapper& simple) {
bool firstContour = true;
bool unsortable = false;
bool topUnsortable = false;
bool firstRetry = false;
bool closable = true;
SkPoint topLeft = {SK_ScalarMin, SK_ScalarMin};
do {
int index, endIndex;
bool done;
Segment* current = findSortableTop(contourList, firstContour, index, endIndex, topLeft,
topUnsortable, done, true);
if (!current) {
if (topUnsortable || !done) {
topUnsortable = false;
SkASSERT(!firstRetry);
firstRetry = true;
topLeft.fX = topLeft.fY = SK_ScalarMin;
continue;
}
break;
}
SkTDArray<Span*> chaseArray;
do {
if (current->activeOp(index, endIndex, xorMask, xorOpMask, op)) {
bool active = true;
do {
#if DEBUG_ACTIVE_SPANS
if (!unsortable && current->done()) {
debugShowActiveSpans(contourList);
}
#endif
SkASSERT(unsortable || !current->done());
int nextStart = index;
int nextEnd = endIndex;
Segment* next = current->findNextOp(chaseArray, nextStart, nextEnd,
unsortable, op, xorMask, xorOpMask);
if (!next) {
SkASSERT(!unsortable);
if (!unsortable && simple.hasMove()
&& current->verb() != SkPath::kLine_Verb
&& !simple.isClosed()) {
current->addCurveTo(index, endIndex, simple, true);
SkASSERT(simple.isClosed());
}
active = false;
break;
}
current->addCurveTo(index, endIndex, simple, true);
current = next;
index = nextStart;
endIndex = nextEnd;
} while (!simple.isClosed() && ((!unsortable) || !current->done()));
if (active && !simple.isClosed()) {
SkASSERT(unsortable);
int min = SkMin32(index, endIndex);
if (!current->done(min)) {
current->addCurveTo(index, endIndex, simple, true);
current->markDoneBinary(min);
}
closable = false;
}
simple.close();
} else {
Span* last = current->markAndChaseDoneBinary(index, endIndex);
if (last) {
*chaseArray.append() = last;
}
}
current = findChaseOp(chaseArray, index, endIndex);
#if DEBUG_ACTIVE_SPANS
debugShowActiveSpans(contourList);
#endif
if (!current) {
break;
}
} while (true);
} while (true);
return closable;
}
} // end of Op namespace
void operate(const SkPath& one, const SkPath& two, ShapeOp op, SkPath& result) {
result.reset();
result.setFillType(SkPath::kEvenOdd_FillType);
// turn path into list of segments
SkTArray<Op::Contour> contours;
// FIXME: add self-intersecting cubics' T values to segment
Op::EdgeBuilder builder(one, contours);
const int xorMask = builder.xorMask();
builder.addOperand(two);
builder.finish();
const int xorOpMask = builder.xorMask();
SkTDArray<Op::Contour*> contourList;
makeContourList(contours, contourList, xorMask == kEvenOdd_Mask,
xorOpMask == kEvenOdd_Mask);
Op::Contour** currentPtr = contourList.begin();
if (!currentPtr) {
return;
}
Op::Contour** listEnd = contourList.end();
// find all intersections between segments
do {
Op::Contour** nextPtr = currentPtr;
Op::Contour* current = *currentPtr++;
Op::Contour* next;
do {
next = *nextPtr++;
} while (addIntersectTs(current, next) && nextPtr != listEnd);
} while (currentPtr != listEnd);
// eat through coincident edges
int total = 0;
int index;
for (index = 0; index < contourList.count(); ++index) {
total += contourList[index]->segments().count();
}
#if DEBUG_SHOW_WINDING
Op::Contour::debugShowWindingValues(contourList);
#endif
coincidenceCheck(contourList, total);
#if DEBUG_SHOW_WINDING
Op::Contour::debugShowWindingValues(contourList);
#endif
fixOtherTIndex(contourList);
sortSegments(contourList);
#if DEBUG_ACTIVE_SPANS
debugShowActiveSpans(contourList);
#endif
// construct closed contours
Op::PathWrapper wrapper(result);
bridgeOp(contourList, op, xorMask, xorOpMask, wrapper);
}