114a3c0b2b
Adds explicit min/max index value fields to GrMesh. This eliminates the previous assumption that the index values were within the range [0..vertexCount-1]. In the pattern case we still maintain this assumption. Updates GrMesh to hide its fields and handle its new complexity using a "helper" interface instead. Adds a unit test for GrMesh. Bug: skia: Change-Id: Ia23de72d510f8827cee56072b727fb70a6e46b8d Reviewed-on: https://skia-review.googlesource.com/17964 Reviewed-by: Brian Salomon <bsalomon@google.com> Commit-Queue: Chris Dalton <csmartdalton@google.com>
326 lines
12 KiB
C++
326 lines
12 KiB
C++
/*
|
|
* Copyright 2017 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "SkTypes.h"
|
|
#include "Test.h"
|
|
|
|
#if SK_SUPPORT_GPU
|
|
|
|
#include "GrContext.h"
|
|
#include "GrGeometryProcessor.h"
|
|
#include "GrOpFlushState.h"
|
|
#include "GrRenderTargetContext.h"
|
|
#include "GrRenderTargetContextPriv.h"
|
|
#include "GrResourceProvider.h"
|
|
#include "GrResourceKey.h"
|
|
#include "SkMakeUnique.h"
|
|
#include "glsl/GrGLSLVertexShaderBuilder.h"
|
|
#include "glsl/GrGLSLFragmentShaderBuilder.h"
|
|
#include "glsl/GrGLSLGeometryProcessor.h"
|
|
#include "glsl/GrGLSLVarying.h"
|
|
#include <array>
|
|
|
|
|
|
GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey);
|
|
|
|
static constexpr int kBoxSize = 2;
|
|
static constexpr int kBoxCountY = 8;
|
|
static constexpr int kBoxCountX = 8;
|
|
static constexpr int kBoxCount = kBoxCountY * kBoxCountX;
|
|
|
|
static constexpr int kImageWidth = kBoxCountY * kBoxSize;
|
|
static constexpr int kImageHeight = kBoxCountX * kBoxSize;
|
|
|
|
static constexpr int kIndexPatternRepeatCount = 3;
|
|
constexpr uint16_t kIndexPattern[6] = {0, 1, 2, 1, 2, 3};
|
|
|
|
|
|
class DrawMeshHelper {
|
|
public:
|
|
DrawMeshHelper(GrOpFlushState* state) : fState(state) {}
|
|
|
|
sk_sp<const GrBuffer> getIndexBuffer();
|
|
|
|
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const SkTArray<T>& data) {
|
|
return this->makeVertexBuffer(data.begin(), data.count());
|
|
}
|
|
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const T* data, int count);
|
|
|
|
void drawMesh(const GrMesh& mesh);
|
|
|
|
private:
|
|
GrOpFlushState* fState;
|
|
};
|
|
|
|
struct Box {
|
|
float fX, fY;
|
|
GrColor fColor;
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/**
|
|
* This is a GPU-backend specific test. It tries to test all possible usecases of GrMesh. The test
|
|
* works by drawing checkerboards of colored boxes, reading back the pixels, and comparing with
|
|
* expected results. The boxes are drawn on integer boundaries and the (opaque) colors are chosen
|
|
* from the set (r,g,b) = (0,255)^3, so the GPU renderings ought to produce exact matches.
|
|
*/
|
|
|
|
static void run_test(const char* testName, skiatest::Reporter*, const sk_sp<GrRenderTargetContext>&,
|
|
const SkBitmap& gold, std::function<void(DrawMeshHelper*)> testFn);
|
|
|
|
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(GrMeshTest, reporter, ctxInfo) {
|
|
GrContext* const context = ctxInfo.grContext();
|
|
|
|
sk_sp<GrRenderTargetContext> rtc(
|
|
context->makeDeferredRenderTargetContext(SkBackingFit::kExact, kImageWidth, kImageHeight,
|
|
kRGBA_8888_GrPixelConfig, nullptr));
|
|
if (!rtc) {
|
|
ERRORF(reporter, "could not create render target context.");
|
|
return;
|
|
}
|
|
|
|
SkTArray<Box> boxes;
|
|
SkTArray<std::array<Box, 4>> vertexData;
|
|
SkBitmap gold;
|
|
|
|
// ---- setup ----------
|
|
|
|
SkPaint paint;
|
|
paint.setBlendMode(SkBlendMode::kSrc);
|
|
gold.allocN32Pixels(kImageWidth, kImageHeight);
|
|
|
|
SkCanvas goldCanvas(gold);
|
|
|
|
for (int y = 0; y < kBoxCountY; ++y) {
|
|
for (int x = 0; x < kBoxCountX; ++x) {
|
|
int c = y + x;
|
|
int rgb[3] = {-(c & 1) & 0xff, -((c >> 1) & 1) & 0xff, -((c >> 2) & 1) & 0xff};
|
|
|
|
const Box box = boxes.push_back() = {
|
|
float(x * kBoxSize),
|
|
float(y * kBoxSize),
|
|
GrColorPackRGBA(rgb[0], rgb[1], rgb[2], 255)
|
|
};
|
|
|
|
std::array<Box, 4>& boxVertices = vertexData.push_back();
|
|
for (int i = 0; i < 4; ++i) {
|
|
boxVertices[i] = {
|
|
box.fX + (i/2) * kBoxSize,
|
|
box.fY + (i%2) * kBoxSize,
|
|
box.fColor
|
|
};
|
|
}
|
|
|
|
paint.setARGB(255, rgb[0], rgb[1], rgb[2]);
|
|
goldCanvas.drawRect(SkRect::MakeXYWH(box.fX, box.fY, kBoxSize, kBoxSize), paint);
|
|
}
|
|
}
|
|
|
|
goldCanvas.flush();
|
|
|
|
// ---- tests ----------
|
|
|
|
#define VALIDATE(buff) \
|
|
if (!buff) { \
|
|
ERRORF(reporter, #buff " is null."); \
|
|
return; \
|
|
}
|
|
|
|
run_test("setNonIndexedNonInstanced", reporter, rtc, gold, [&](DrawMeshHelper* helper) {
|
|
SkTArray<Box> expandedVertexData;
|
|
for (int i = 0; i < kBoxCount; ++i) {
|
|
for (int j = 0; j < 6; ++j) {
|
|
expandedVertexData.push_back(vertexData[i][kIndexPattern[j]]);
|
|
}
|
|
}
|
|
|
|
// Draw boxes one line at a time to exercise base vertex.
|
|
auto vbuff = helper->makeVertexBuffer(expandedVertexData);
|
|
VALIDATE(vbuff);
|
|
for (int y = 0; y < kBoxCountY; ++y) {
|
|
GrMesh mesh(kTriangles_GrPrimitiveType);
|
|
mesh.setNonIndexed(kBoxCountX * 6);
|
|
mesh.setVertexData(vbuff.get(), y * kBoxCountX * 6);
|
|
helper->drawMesh(mesh);
|
|
}
|
|
});
|
|
|
|
run_test("setIndexed", reporter, rtc, gold, [&](DrawMeshHelper* helper) {
|
|
auto ibuff = helper->getIndexBuffer();
|
|
VALIDATE(ibuff);
|
|
auto vbuff = helper->makeVertexBuffer(vertexData);
|
|
VALIDATE(vbuff);
|
|
int baseRepetition = 0;
|
|
int i = 0;
|
|
|
|
// Start at various repetitions within the patterned index buffer to exercise base index.
|
|
while (i < kBoxCount) {
|
|
GR_STATIC_ASSERT(kIndexPatternRepeatCount >= 3);
|
|
int repetitionCount = SkTMin(3 - baseRepetition, kBoxCount - i);
|
|
|
|
GrMesh mesh(kTriangles_GrPrimitiveType);
|
|
mesh.setIndexed(ibuff.get(), repetitionCount * 6, baseRepetition * 6,
|
|
baseRepetition * 4, (baseRepetition + repetitionCount) * 4 - 1);
|
|
mesh.setVertexData(vbuff.get(), (i - baseRepetition) * 4);
|
|
helper->drawMesh(mesh);
|
|
|
|
baseRepetition = (baseRepetition + 1) % 3;
|
|
i += repetitionCount;
|
|
}
|
|
});
|
|
|
|
run_test("setIndexedPatterned", reporter, rtc, gold, [&](DrawMeshHelper* helper) {
|
|
auto ibuff = helper->getIndexBuffer();
|
|
VALIDATE(ibuff);
|
|
auto vbuff = helper->makeVertexBuffer(vertexData);
|
|
VALIDATE(vbuff);
|
|
|
|
// Draw boxes one line at a time to exercise base vertex. setIndexedPatterned does not
|
|
// support a base index.
|
|
for (int y = 0; y < kBoxCountY; ++y) {
|
|
GrMesh mesh(kTriangles_GrPrimitiveType);
|
|
mesh.setIndexedPatterned(ibuff.get(), 6, 4, kBoxCountX, kIndexPatternRepeatCount);
|
|
mesh.setVertexData(vbuff.get(), y * kBoxCountX * 4);
|
|
helper->drawMesh(mesh);
|
|
}
|
|
});
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
class GrMeshTestOp : public GrDrawOp {
|
|
public:
|
|
DEFINE_OP_CLASS_ID
|
|
|
|
GrMeshTestOp(std::function<void(DrawMeshHelper*)> testFn)
|
|
: INHERITED(ClassID())
|
|
, fTestFn(testFn) {
|
|
this->setBounds(SkRect::MakeIWH(kImageWidth, kImageHeight),
|
|
HasAABloat::kNo, IsZeroArea::kNo);
|
|
}
|
|
|
|
private:
|
|
const char* name() const override { return "GrMeshTestOp"; }
|
|
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
|
|
bool xpRequiresDstTexture(const GrCaps&, const GrAppliedClip*) override { return false; }
|
|
bool onCombineIfPossible(GrOp* other, const GrCaps& caps) override { return false; }
|
|
void onPrepare(GrOpFlushState*) override {}
|
|
void onExecute(GrOpFlushState* state) override {
|
|
DrawMeshHelper helper(state);
|
|
fTestFn(&helper);
|
|
}
|
|
|
|
std::function<void(DrawMeshHelper*)> fTestFn;
|
|
|
|
typedef GrDrawOp INHERITED;
|
|
};
|
|
|
|
class GrMeshTestProcessor : public GrGeometryProcessor {
|
|
public:
|
|
GrMeshTestProcessor()
|
|
: fVertex(this->addVertexAttrib("vertex", kVec2f_GrVertexAttribType))
|
|
, fColor(this->addVertexAttrib("color", kVec4ub_GrVertexAttribType)) {
|
|
this->initClassID<GrMeshTestProcessor>();
|
|
}
|
|
|
|
const char* name() const override { return "GrMeshTest Processor"; }
|
|
|
|
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const final {}
|
|
|
|
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const final;
|
|
|
|
protected:
|
|
const Attribute& fVertex;
|
|
const Attribute& fColor;
|
|
|
|
friend class GLSLMeshTestProcessor;
|
|
typedef GrGeometryProcessor INHERITED;
|
|
};
|
|
|
|
class GLSLMeshTestProcessor : public GrGLSLGeometryProcessor {
|
|
void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor&,
|
|
FPCoordTransformIter&& transformIter) final {}
|
|
|
|
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) final {
|
|
const GrMeshTestProcessor& mp = args.fGP.cast<GrMeshTestProcessor>();
|
|
|
|
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
|
|
varyingHandler->emitAttributes(mp);
|
|
varyingHandler->addPassThroughAttribute(&mp.fColor, args.fOutputColor);
|
|
|
|
GrGLSLVertexBuilder* v = args.fVertBuilder;
|
|
v->codeAppendf("vec2 vertex = %s;", mp.fVertex.fName);
|
|
gpArgs->fPositionVar.set(kVec2f_GrSLType, "vertex");
|
|
|
|
GrGLSLPPFragmentBuilder* f = args.fFragBuilder;
|
|
f->codeAppendf("%s = vec4(1);", args.fOutputCoverage);
|
|
}
|
|
};
|
|
|
|
GrGLSLPrimitiveProcessor* GrMeshTestProcessor::createGLSLInstance(const GrShaderCaps&) const {
|
|
return new GLSLMeshTestProcessor;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template<typename T>
|
|
sk_sp<const GrBuffer> DrawMeshHelper::makeVertexBuffer(const T* data, int count) {
|
|
return sk_sp<const GrBuffer>(
|
|
fState->resourceProvider()->createBuffer(
|
|
count * sizeof(T), kVertex_GrBufferType, kDynamic_GrAccessPattern,
|
|
GrResourceProvider::kNoPendingIO_Flag |
|
|
GrResourceProvider::kRequireGpuMemory_Flag, data));
|
|
}
|
|
|
|
sk_sp<const GrBuffer> DrawMeshHelper::getIndexBuffer() {
|
|
GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey);
|
|
return sk_sp<const GrBuffer>(
|
|
fState->resourceProvider()->findOrCreatePatternedIndexBuffer(
|
|
kIndexPattern, 6, kIndexPatternRepeatCount, 4, gIndexBufferKey));
|
|
}
|
|
|
|
void DrawMeshHelper::drawMesh(const GrMesh& mesh) {
|
|
GrRenderTarget* rt = fState->drawOpArgs().fRenderTarget;
|
|
GrPipeline pipeline(rt, SkBlendMode::kSrc);
|
|
fState->commandBuffer()->draw(pipeline, GrMeshTestProcessor(), &mesh, 1,
|
|
SkRect::MakeIWH(kImageWidth, kImageHeight));
|
|
}
|
|
|
|
static void run_test(const char* testName, skiatest::Reporter* reporter,
|
|
const sk_sp<GrRenderTargetContext>& rtc, const SkBitmap& gold,
|
|
std::function<void(DrawMeshHelper*)> testFn) {
|
|
const int w = gold.width(), h = gold.height(), rowBytes = gold.rowBytes();
|
|
const uint32_t* goldPx = reinterpret_cast<const uint32_t*>(gold.getPixels());
|
|
if (h != rtc->height() || w != rtc->width()) {
|
|
ERRORF(reporter, "[%s] expectation and rtc not compatible (?).", testName);
|
|
return;
|
|
}
|
|
if (sizeof(uint32_t) * kImageWidth != gold.rowBytes()) {
|
|
ERRORF(reporter, "unexpected row bytes in gold image.", testName);
|
|
return;
|
|
}
|
|
|
|
SkAutoSTMalloc<kImageHeight * kImageWidth, uint32_t> resultPx(h * rowBytes);
|
|
rtc->clear(nullptr, 0xbaaaaaad, true);
|
|
rtc->priv().testingOnly_addDrawOp(skstd::make_unique<GrMeshTestOp>(testFn));
|
|
rtc->readPixels(gold.info(), resultPx, rowBytes, 0, 0, 0);
|
|
for (int y = 0; y < h; ++y) {
|
|
for (int x = 0; x < w; ++x) {
|
|
uint32_t expected = goldPx[y * kImageWidth + x];
|
|
uint32_t actual = resultPx[y * kImageWidth + x];
|
|
if (expected != actual) {
|
|
ERRORF(reporter, "[%s] pixel (%i,%i): got 0x%x expected 0x%x",
|
|
testName, x, y, actual, expected);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|