c1ed11d909
src/gpu/GrBlockAllocator -> src/core/SkBlockAllocator src/gpu/GrTBlockList -> src/core/SkTBlockList Tests and references also renamed. Bug: skia:12330 Change-Id: I5fad05faa3dcecd89a0a478dcf30c090ea7589f5 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/441477 Reviewed-by: Brian Osman <brianosman@google.com> Commit-Queue: Michael Ludwig <michaelludwig@google.com>
339 lines
12 KiB
C++
339 lines
12 KiB
C++
/*
|
|
* Copyright 2014 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "src/core/SkTBlockList.h"
|
|
#include "tests/Test.h"
|
|
|
|
namespace {
|
|
struct C {
|
|
C() : fID(-1) { ++gInstCnt; }
|
|
C(int id) : fID(id) { ++gInstCnt; }
|
|
C(C&& c) : C(c.fID) {}
|
|
C(const C& c) : C(c.fID) {}
|
|
|
|
C& operator=(C&&) = default;
|
|
C& operator=(const C&) = default;
|
|
|
|
~C() { --gInstCnt; }
|
|
|
|
int fID;
|
|
|
|
// Under the hood, SkTBlockList and SkBlockAllocator round up to max_align_t. If 'C' was
|
|
// just 4 bytes, that often means the internal blocks can squeeze a few extra instances in. This
|
|
// is fine, but makes predicting a little trickier, so make sure C is a bit bigger.
|
|
int fPadding[4];
|
|
|
|
static int gInstCnt;
|
|
};
|
|
int C::gInstCnt = 0;
|
|
|
|
struct D {
|
|
int fID;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
class TBlockListTestAccess {
|
|
public:
|
|
template<int N>
|
|
static size_t ScratchBlockSize(SkTBlockList<C, N>& list) {
|
|
return (size_t) list.fAllocator->scratchBlockSize();
|
|
}
|
|
|
|
template<int N>
|
|
static size_t TotalSize(SkTBlockList<C, N>& list) {
|
|
return list.fAllocator->totalSize();
|
|
}
|
|
};
|
|
|
|
// Checks that the allocator has the correct count, etc and that the element IDs are correct.
|
|
// Then pops popCnt items and checks again.
|
|
template<int N>
|
|
static void check_allocator_helper(SkTBlockList<C, N>* allocator, int cnt, int popCnt,
|
|
skiatest::Reporter* reporter) {
|
|
REPORTER_ASSERT(reporter, (0 == cnt) == allocator->empty());
|
|
REPORTER_ASSERT(reporter, cnt == allocator->count());
|
|
REPORTER_ASSERT(reporter, cnt == C::gInstCnt);
|
|
|
|
int i = 0;
|
|
for (const C& c : allocator->items()) {
|
|
REPORTER_ASSERT(reporter, i == c.fID);
|
|
REPORTER_ASSERT(reporter, allocator->item(i).fID == i);
|
|
++i;
|
|
}
|
|
REPORTER_ASSERT(reporter, i == cnt);
|
|
|
|
if (cnt > 0) {
|
|
REPORTER_ASSERT(reporter, cnt-1 == allocator->back().fID);
|
|
}
|
|
|
|
if (popCnt > 0) {
|
|
for (i = 0; i < popCnt; ++i) {
|
|
allocator->pop_back();
|
|
}
|
|
check_allocator_helper(allocator, cnt - popCnt, 0, reporter);
|
|
}
|
|
}
|
|
|
|
template<int N>
|
|
static void check_iterator_helper(SkTBlockList<C, N>* allocator,
|
|
const std::vector<C*>& expected,
|
|
skiatest::Reporter* reporter) {
|
|
const SkTBlockList<C, N>* cAlloc = allocator;
|
|
REPORTER_ASSERT(reporter, (size_t) allocator->count() == expected.size());
|
|
// Forward+const
|
|
int i = 0;
|
|
for (const C& c : cAlloc->items()) {
|
|
REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]);
|
|
++i;
|
|
}
|
|
REPORTER_ASSERT(reporter, (size_t) i == expected.size());
|
|
|
|
// Forward+non-const
|
|
i = 0;
|
|
for (C& c : allocator->items()) {
|
|
REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]);
|
|
++i;
|
|
}
|
|
REPORTER_ASSERT(reporter, (size_t) i == expected.size());
|
|
|
|
// Reverse+const
|
|
i = (int) expected.size() - 1;
|
|
for (const C& c : cAlloc->ritems()) {
|
|
REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]);
|
|
--i;
|
|
}
|
|
REPORTER_ASSERT(reporter, i == -1);
|
|
|
|
// Reverse+non-const
|
|
i = (int) expected.size() - 1;
|
|
for (C& c : allocator->ritems()) {
|
|
REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]);
|
|
--i;
|
|
}
|
|
REPORTER_ASSERT(reporter, i == -1);
|
|
|
|
// Also test random access
|
|
for (i = 0; i < allocator->count(); ++i) {
|
|
REPORTER_ASSERT(reporter, (uintptr_t) &allocator->item(i) == (uintptr_t) expected[i]);
|
|
REPORTER_ASSERT(reporter, (uintptr_t) &cAlloc->item(i) == (uintptr_t) expected[i]);
|
|
}
|
|
}
|
|
|
|
// Adds cnt items to the allocator, tests the cnts and iterators, pops popCnt items and checks
|
|
// again. Finally it resets the allocator and checks again.
|
|
template<int N>
|
|
static void check_allocator(SkTBlockList<C, N>* allocator, int cnt, int popCnt,
|
|
skiatest::Reporter* reporter) {
|
|
enum ItemInitializer : int {
|
|
kCopyCtor,
|
|
kMoveCtor,
|
|
kCopyAssign,
|
|
kMoveAssign,
|
|
kEmplace,
|
|
};
|
|
static constexpr int kInitCount = (int) kEmplace + 1;
|
|
|
|
SkASSERT(allocator);
|
|
SkASSERT(allocator->empty());
|
|
std::vector<C*> items;
|
|
for (int i = 0; i < cnt; ++i) {
|
|
switch((ItemInitializer) (i % kInitCount)) {
|
|
case kCopyCtor:
|
|
allocator->push_back(C(i));
|
|
break;
|
|
case kMoveCtor:
|
|
allocator->push_back(std::move(C(i)));
|
|
break;
|
|
case kCopyAssign:
|
|
allocator->push_back() = C(i);
|
|
break;
|
|
case kMoveAssign:
|
|
allocator->push_back() = std::move(C(i));
|
|
break;
|
|
case kEmplace:
|
|
allocator->emplace_back(i);
|
|
break;
|
|
}
|
|
items.push_back(&allocator->back());
|
|
}
|
|
check_iterator_helper(allocator, items, reporter);
|
|
check_allocator_helper(allocator, cnt, popCnt, reporter);
|
|
allocator->reset();
|
|
check_iterator_helper(allocator, {}, reporter);
|
|
check_allocator_helper(allocator, 0, 0, reporter);
|
|
}
|
|
|
|
template<int N>
|
|
static void run_allocator_test(SkTBlockList<C, N>* allocator, skiatest::Reporter* reporter) {
|
|
check_allocator(allocator, 0, 0, reporter);
|
|
check_allocator(allocator, 1, 1, reporter);
|
|
check_allocator(allocator, 2, 2, reporter);
|
|
check_allocator(allocator, 10, 1, reporter);
|
|
check_allocator(allocator, 10, 5, reporter);
|
|
check_allocator(allocator, 10, 10, reporter);
|
|
check_allocator(allocator, 100, 10, reporter);
|
|
}
|
|
|
|
template<int N1, int N2>
|
|
static void run_concat_test(skiatest::Reporter* reporter, int aCount, int bCount) {
|
|
|
|
SkTBlockList<C, N1> listA;
|
|
SkTBlockList<C, N2> listB;
|
|
|
|
for (int i = 0; i < aCount; ++i) {
|
|
listA.emplace_back(i);
|
|
}
|
|
for (int i = 0; i < bCount; ++i) {
|
|
listB.emplace_back(aCount + i);
|
|
}
|
|
|
|
REPORTER_ASSERT(reporter, listA.count() == aCount && listB.count() == bCount);
|
|
REPORTER_ASSERT(reporter, C::gInstCnt == aCount + bCount);
|
|
|
|
// Concatenate B into A and verify.
|
|
listA.concat(std::move(listB));
|
|
REPORTER_ASSERT(reporter, listA.count() == aCount + bCount);
|
|
// SkTBlockList guarantees the moved list is empty, but clang-tidy doesn't know about it;
|
|
// in practice we won't really be using moved lists so this won't pollute our main code base
|
|
// with lots of warning disables.
|
|
REPORTER_ASSERT(reporter, listB.count() == 0); // NOLINT(bugprone-use-after-move)
|
|
REPORTER_ASSERT(reporter, C::gInstCnt == aCount + bCount);
|
|
|
|
int i = 0;
|
|
for (const C& item : listA.items()) {
|
|
// By construction of A and B originally, the concatenated id sequence is continuous
|
|
REPORTER_ASSERT(reporter, i == item.fID);
|
|
i++;
|
|
}
|
|
REPORTER_ASSERT(reporter, i == (aCount + bCount));
|
|
}
|
|
|
|
template<int N1, int N2>
|
|
static void run_concat_trivial_test(skiatest::Reporter* reporter, int aCount, int bCount) {
|
|
static_assert(std::is_trivially_copyable<D>::value);
|
|
|
|
// This is similar to run_concat_test(), except since D is trivial we can't verify the instant
|
|
// counts that are tracked via ctor/dtor.
|
|
SkTBlockList<D, N1> listA;
|
|
SkTBlockList<D, N2> listB;
|
|
|
|
for (int i = 0; i < aCount; ++i) {
|
|
listA.push_back({i});
|
|
}
|
|
for (int i = 0; i < bCount; ++i) {
|
|
listB.push_back({aCount + i});
|
|
}
|
|
|
|
REPORTER_ASSERT(reporter, listA.count() == aCount && listB.count() == bCount);
|
|
// Concatenate B into A and verify.
|
|
listA.concat(std::move(listB));
|
|
REPORTER_ASSERT(reporter, listA.count() == aCount + bCount);
|
|
REPORTER_ASSERT(reporter, listB.count() == 0); // NOLINT(bugprone-use-after-move): see above
|
|
|
|
int i = 0;
|
|
for (const D& item : listA.items()) {
|
|
// By construction of A and B originally, the concatenated id sequence is continuous
|
|
REPORTER_ASSERT(reporter, i == item.fID);
|
|
i++;
|
|
}
|
|
REPORTER_ASSERT(reporter, i == (aCount + bCount));
|
|
}
|
|
|
|
template<int N>
|
|
static void run_reserve_test(skiatest::Reporter* reporter) {
|
|
constexpr int kItemsPerBlock = N + 4; // Make this a number > 1, even if N starting items == 1
|
|
|
|
SkTBlockList<C, N> list(kItemsPerBlock);
|
|
size_t initialSize = TBlockListTestAccess::TotalSize(list);
|
|
// Should be able to add N instances of T w/o changing size from initialSize
|
|
for (int i = 0; i < N; ++i) {
|
|
list.push_back(C(i));
|
|
}
|
|
REPORTER_ASSERT(reporter, initialSize == TBlockListTestAccess::TotalSize(list));
|
|
|
|
// Reserve room for 2*kItemsPerBlock items
|
|
list.reserve(2 * kItemsPerBlock);
|
|
REPORTER_ASSERT(reporter, list.count() == N); // count shouldn't change though
|
|
|
|
size_t reservedSize = TBlockListTestAccess::TotalSize(list);
|
|
REPORTER_ASSERT(reporter, reservedSize >= initialSize + 2 * kItemsPerBlock * sizeof(C));
|
|
for (int i = 0; i < 2 * kItemsPerBlock; ++i) {
|
|
list.push_back(C(i));
|
|
}
|
|
REPORTER_ASSERT(reporter, reservedSize == TBlockListTestAccess::TotalSize(list));
|
|
|
|
// Make the next block partially fully (N > 0 but < kItemsPerBlock)
|
|
for (int i = 0; i < N; ++i) {
|
|
list.push_back(C(i));
|
|
}
|
|
|
|
// Reserve room again for 2*kItemsPerBlock, but reserve should automatically take account of the
|
|
// (kItemsPerBlock-N) that are still available in the active block
|
|
list.reserve(2 * kItemsPerBlock);
|
|
int extraReservedCount = kItemsPerBlock + N;
|
|
// Because SkTBlockList normally allocates blocks in fixed sizes, and extraReservedCount >
|
|
// items-per-block, it will always use that size and not that of the growth policy.
|
|
REPORTER_ASSERT(reporter, TBlockListTestAccess::ScratchBlockSize(list) >=
|
|
extraReservedCount * sizeof(C));
|
|
|
|
reservedSize = TBlockListTestAccess::TotalSize(list);
|
|
for (int i = 0; i < 2 * kItemsPerBlock; ++i) {
|
|
list.push_back(C(i));
|
|
}
|
|
REPORTER_ASSERT(reporter, reservedSize == TBlockListTestAccess::TotalSize(list));
|
|
|
|
// If we reserve a count < items-per-block, it will use the fixed size from the growth policy.
|
|
list.reserve(2);
|
|
REPORTER_ASSERT(reporter, TBlockListTestAccess::ScratchBlockSize(list) >=
|
|
kItemsPerBlock * sizeof(C));
|
|
|
|
// Ensure the reservations didn't initialize any more D's than anticipated
|
|
int expectedInstanceCount = 2 * (N + 2 * kItemsPerBlock);
|
|
REPORTER_ASSERT(reporter, expectedInstanceCount == C::gInstCnt);
|
|
|
|
list.reset();
|
|
REPORTER_ASSERT(reporter, 0 == C::gInstCnt);
|
|
}
|
|
|
|
DEF_TEST(SkTBlockList, reporter) {
|
|
// Test combinations of allocators with and without stack storage and with different block sizes
|
|
SkTBlockList<C> a1(1);
|
|
run_allocator_test(&a1, reporter);
|
|
|
|
SkTBlockList<C> a2(2);
|
|
run_allocator_test(&a2, reporter);
|
|
|
|
SkTBlockList<C> a5(5);
|
|
run_allocator_test(&a5, reporter);
|
|
|
|
SkTBlockList<C, 1> sa1;
|
|
run_allocator_test(&sa1, reporter);
|
|
|
|
SkTBlockList<C, 3> sa3;
|
|
run_allocator_test(&sa3, reporter);
|
|
|
|
SkTBlockList<C, 4> sa4;
|
|
run_allocator_test(&sa4, reporter);
|
|
|
|
run_reserve_test<1>(reporter);
|
|
run_reserve_test<2>(reporter);
|
|
run_reserve_test<3>(reporter);
|
|
run_reserve_test<4>(reporter);
|
|
run_reserve_test<5>(reporter);
|
|
|
|
run_concat_test<1, 1>(reporter, 10, 10);
|
|
run_concat_test<5, 1>(reporter, 50, 10);
|
|
run_concat_test<1, 5>(reporter, 10, 50);
|
|
run_concat_test<5, 5>(reporter, 100, 100);
|
|
|
|
run_concat_trivial_test<1, 1>(reporter, 10, 10);
|
|
run_concat_trivial_test<5, 1>(reporter, 50, 10);
|
|
run_concat_trivial_test<1, 5>(reporter, 10, 50);
|
|
run_concat_trivial_test<5, 5>(reporter, 100, 100);
|
|
}
|