1421aee64a
Review URL: https://codereview.chromium.org/1271533002
233 lines
6.7 KiB
C++
233 lines
6.7 KiB
C++
|
|
/*
|
|
* Copyright 2006 The Android Open Source Project
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
|
|
#ifndef SkMath_DEFINED
|
|
#define SkMath_DEFINED
|
|
|
|
#include "SkTypes.h"
|
|
|
|
// 64bit -> 32bit utilities
|
|
|
|
/**
|
|
* Return true iff the 64bit value can exactly be represented in signed 32bits
|
|
*/
|
|
static inline bool sk_64_isS32(int64_t value) {
|
|
return (int32_t)value == value;
|
|
}
|
|
|
|
/**
|
|
* Return the 64bit argument as signed 32bits, asserting in debug that the arg
|
|
* exactly fits in signed 32bits. In the release build, no checks are preformed
|
|
* and the return value if the arg does not fit is undefined.
|
|
*/
|
|
static inline int32_t sk_64_asS32(int64_t value) {
|
|
SkASSERT(sk_64_isS32(value));
|
|
return (int32_t)value;
|
|
}
|
|
|
|
// Handy util that can be passed two ints, and will automatically promote to
|
|
// 64bits before the multiply, so the caller doesn't have to remember to cast
|
|
// e.g. (int64_t)a * b;
|
|
static inline int64_t sk_64_mul(int64_t a, int64_t b) {
|
|
return a * b;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
/**
|
|
* Computes numer1 * numer2 / denom in full 64 intermediate precision.
|
|
* It is an error for denom to be 0. There is no special handling if
|
|
* the result overflows 32bits.
|
|
*/
|
|
static inline int32_t SkMulDiv(int32_t numer1, int32_t numer2, int32_t denom) {
|
|
SkASSERT(denom);
|
|
|
|
int64_t tmp = sk_64_mul(numer1, numer2) / denom;
|
|
return sk_64_asS32(tmp);
|
|
}
|
|
|
|
/**
|
|
* Computes (numer1 << shift) / denom in full 64 intermediate precision.
|
|
* It is an error for denom to be 0. There is no special handling if
|
|
* the result overflows 32bits.
|
|
*/
|
|
int32_t SkDivBits(int32_t numer, int32_t denom, int shift);
|
|
|
|
/**
|
|
* Return the integer square root of value, with a bias of bitBias
|
|
*/
|
|
int32_t SkSqrtBits(int32_t value, int bitBias);
|
|
|
|
/** Return the integer square root of n, treated as a SkFixed (16.16)
|
|
*/
|
|
#define SkSqrt32(n) SkSqrtBits(n, 15)
|
|
|
|
//! Returns the number of leading zero bits (0...32)
|
|
int SkCLZ_portable(uint32_t);
|
|
|
|
#ifndef SkCLZ
|
|
#if defined(_MSC_VER) && _MSC_VER >= 1400
|
|
#include <intrin.h>
|
|
|
|
static inline int SkCLZ(uint32_t mask) {
|
|
if (mask) {
|
|
DWORD index;
|
|
_BitScanReverse(&index, mask);
|
|
// Suppress this bogus /analyze warning. The check for non-zero
|
|
// guarantees that _BitScanReverse will succeed.
|
|
#pragma warning(suppress : 6102) // Using 'index' from failed function call
|
|
return index ^ 0x1F;
|
|
} else {
|
|
return 32;
|
|
}
|
|
}
|
|
#elif defined(SK_CPU_ARM32) || defined(__GNUC__) || defined(__clang__)
|
|
static inline int SkCLZ(uint32_t mask) {
|
|
// __builtin_clz(0) is undefined, so we have to detect that case.
|
|
return mask ? __builtin_clz(mask) : 32;
|
|
}
|
|
#else
|
|
#define SkCLZ(x) SkCLZ_portable(x)
|
|
#endif
|
|
#endif
|
|
|
|
/**
|
|
* Returns (value < 0 ? 0 : value) efficiently (i.e. no compares or branches)
|
|
*/
|
|
static inline int SkClampPos(int value) {
|
|
return value & ~(value >> 31);
|
|
}
|
|
|
|
/** Given an integer and a positive (max) integer, return the value
|
|
* pinned against 0 and max, inclusive.
|
|
* @param value The value we want returned pinned between [0...max]
|
|
* @param max The positive max value
|
|
* @return 0 if value < 0, max if value > max, else value
|
|
*/
|
|
static inline int SkClampMax(int value, int max) {
|
|
// ensure that max is positive
|
|
SkASSERT(max >= 0);
|
|
if (value < 0) {
|
|
value = 0;
|
|
}
|
|
if (value > max) {
|
|
value = max;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
/**
|
|
* Returns the smallest power-of-2 that is >= the specified value. If value
|
|
* is already a power of 2, then it is returned unchanged. It is undefined
|
|
* if value is <= 0.
|
|
*/
|
|
static inline int SkNextPow2(int value) {
|
|
SkASSERT(value > 0);
|
|
return 1 << (32 - SkCLZ(value - 1));
|
|
}
|
|
|
|
/**
|
|
* Returns the log2 of the specified value, were that value to be rounded up
|
|
* to the next power of 2. It is undefined to pass 0. Examples:
|
|
* SkNextLog2(1) -> 0
|
|
* SkNextLog2(2) -> 1
|
|
* SkNextLog2(3) -> 2
|
|
* SkNextLog2(4) -> 2
|
|
* SkNextLog2(5) -> 3
|
|
*/
|
|
static inline int SkNextLog2(uint32_t value) {
|
|
SkASSERT(value != 0);
|
|
return 32 - SkCLZ(value - 1);
|
|
}
|
|
|
|
/**
|
|
* Returns true if value is a power of 2. Does not explicitly check for
|
|
* value <= 0.
|
|
*/
|
|
template <typename T> inline bool SkIsPow2(T value) {
|
|
return (value & (value - 1)) == 0;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
/**
|
|
* SkMulS16(a, b) multiplies a * b, but requires that a and b are both int16_t.
|
|
* With this requirement, we can generate faster instructions on some
|
|
* architectures.
|
|
*/
|
|
#ifdef SK_ARM_HAS_EDSP
|
|
static inline int32_t SkMulS16(S16CPU x, S16CPU y) {
|
|
SkASSERT((int16_t)x == x);
|
|
SkASSERT((int16_t)y == y);
|
|
int32_t product;
|
|
asm("smulbb %0, %1, %2 \n"
|
|
: "=r"(product)
|
|
: "r"(x), "r"(y)
|
|
);
|
|
return product;
|
|
}
|
|
#else
|
|
#ifdef SK_DEBUG
|
|
static inline int32_t SkMulS16(S16CPU x, S16CPU y) {
|
|
SkASSERT((int16_t)x == x);
|
|
SkASSERT((int16_t)y == y);
|
|
return x * y;
|
|
}
|
|
#else
|
|
#define SkMulS16(x, y) ((x) * (y))
|
|
#endif
|
|
#endif
|
|
|
|
/**
|
|
* Return a*b/((1 << shift) - 1), rounding any fractional bits.
|
|
* Only valid if a and b are unsigned and <= 32767 and shift is > 0 and <= 8
|
|
*/
|
|
static inline unsigned SkMul16ShiftRound(U16CPU a, U16CPU b, int shift) {
|
|
SkASSERT(a <= 32767);
|
|
SkASSERT(b <= 32767);
|
|
SkASSERT(shift > 0 && shift <= 8);
|
|
unsigned prod = SkMulS16(a, b) + (1 << (shift - 1));
|
|
return (prod + (prod >> shift)) >> shift;
|
|
}
|
|
|
|
/**
|
|
* Return a*b/255, rounding any fractional bits.
|
|
* Only valid if a and b are unsigned and <= 32767.
|
|
*/
|
|
static inline U8CPU SkMulDiv255Round(U16CPU a, U16CPU b) {
|
|
SkASSERT(a <= 32767);
|
|
SkASSERT(b <= 32767);
|
|
unsigned prod = SkMulS16(a, b) + 128;
|
|
return (prod + (prod >> 8)) >> 8;
|
|
}
|
|
|
|
/**
|
|
* Stores numer/denom and numer%denom into div and mod respectively.
|
|
*/
|
|
template <typename In, typename Out>
|
|
inline void SkTDivMod(In numer, In denom, Out* div, Out* mod) {
|
|
#ifdef SK_CPU_ARM32
|
|
// If we wrote this as in the else branch, GCC won't fuse the two into one
|
|
// divmod call, but rather a div call followed by a divmod. Silly! This
|
|
// version is just as fast as calling __aeabi_[u]idivmod manually, but with
|
|
// prettier code.
|
|
//
|
|
// This benches as around 2x faster than the code in the else branch.
|
|
const In d = numer/denom;
|
|
*div = static_cast<Out>(d);
|
|
*mod = static_cast<Out>(numer-d*denom);
|
|
#else
|
|
// On x86 this will just be a single idiv.
|
|
*div = static_cast<Out>(numer/denom);
|
|
*mod = static_cast<Out>(numer%denom);
|
|
#endif
|
|
}
|
|
|
|
#endif
|