skia2/include/utils/SkRandom.h
commit-bot@chromium.org e0e7cfe44b Change old PRG to be SkLCGRandom; change new one to SkRandom
The goal here is to get people to start using the new random number
generator, while leaving the old one in place so we don't have to 
rebaseline GMs.

R=reed@google.com, bsalomon@google.com

Author: jvanverth@google.com

Review URL: https://chromiumcodereview.appspot.com/23576015

git-svn-id: http://skia.googlecode.com/svn/trunk@11169 2bbb7eff-a529-9590-31e7-b0007b416f81
2013-09-09 20:09:12 +00:00

324 lines
9.5 KiB
C++

/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkRandom_DEFINED
#define SkRandom_DEFINED
#include "Sk64.h"
#include "SkScalar.h"
/** \class SkLCGRandom
Utility class that implements pseudo random 32bit numbers using a fast
linear equation. Unlike rand(), this class holds its own seed (initially
set to 0), so that multiple instances can be used with no side-effects.
*/
class SkLCGRandom {
public:
SkLCGRandom() : fSeed(0) {}
SkLCGRandom(uint32_t seed) : fSeed(seed) {}
/** Return the next pseudo random number as an unsigned 32bit value.
*/
uint32_t nextU() { uint32_t r = fSeed * kMul + kAdd; fSeed = r; return r; }
/** Return the next pseudo random number as a signed 32bit value.
*/
int32_t nextS() { return (int32_t)this->nextU(); }
/** Return the next pseudo random number as an unsigned 16bit value.
*/
U16CPU nextU16() { return this->nextU() >> 16; }
/** Return the next pseudo random number as a signed 16bit value.
*/
S16CPU nextS16() { return this->nextS() >> 16; }
/**
* Returns value [0...1) as a float
*/
float nextF() {
// const is 1 / (2^32 - 1)
return (float)(this->nextU() * 2.32830644e-10);
}
/**
* Returns value [min...max) as a float
*/
float nextRangeF(float min, float max) {
return min + this->nextF() * (max - min);
}
/** Return the next pseudo random number, as an unsigned value of
at most bitCount bits.
@param bitCount The maximum number of bits to be returned
*/
uint32_t nextBits(unsigned bitCount) {
SkASSERT(bitCount > 0 && bitCount <= 32);
return this->nextU() >> (32 - bitCount);
}
/** Return the next pseudo random unsigned number, mapped to lie within
[min, max] inclusive.
*/
uint32_t nextRangeU(uint32_t min, uint32_t max) {
SkASSERT(min <= max);
uint32_t range = max - min + 1;
if (0 == range) {
return this->nextU();
} else {
return min + this->nextU() % range;
}
}
/** Return the next pseudo random unsigned number, mapped to lie within
[0, count).
*/
uint32_t nextULessThan(uint32_t count) {
SkASSERT(count > 0);
return this->nextRangeU(0, count - 1);
}
/** Return the next pseudo random number expressed as an unsigned SkFixed
in the range [0..SK_Fixed1).
*/
SkFixed nextUFixed1() { return this->nextU() >> 16; }
/** Return the next pseudo random number expressed as a signed SkFixed
in the range (-SK_Fixed1..SK_Fixed1).
*/
SkFixed nextSFixed1() { return this->nextS() >> 15; }
/** Return the next pseudo random number expressed as a SkScalar
in the range [0..SK_Scalar1).
*/
SkScalar nextUScalar1() { return SkFixedToScalar(this->nextUFixed1()); }
/** Return the next pseudo random number expressed as a SkScalar
in the range [min..max).
*/
SkScalar nextRangeScalar(SkScalar min, SkScalar max) {
return SkScalarMul(this->nextUScalar1(), (max - min)) + min;
}
/** Return the next pseudo random number expressed as a SkScalar
in the range (-SK_Scalar1..SK_Scalar1).
*/
SkScalar nextSScalar1() { return SkFixedToScalar(this->nextSFixed1()); }
/** Return the next pseudo random number as a bool.
*/
bool nextBool() { return this->nextU() >= 0x80000000; }
/** A biased version of nextBool().
*/
bool nextBiasedBool(SkScalar fractionTrue) {
SkASSERT(fractionTrue >= 0 && fractionTrue <= SK_Scalar1);
return this->nextUScalar1() <= fractionTrue;
}
/** Return the next pseudo random number as a signed 64bit value.
*/
void next64(Sk64* a) {
SkASSERT(a);
a->set(this->nextS(), this->nextU());
}
/**
* Return the current seed. This allows the caller to later reset to the
* same seed (using setSeed) so it can generate the same sequence.
*/
int32_t getSeed() const { return fSeed; }
/** Set the seed of the random object. The seed is initialized to 0 when the
object is first created, and is updated each time the next pseudo random
number is requested.
*/
void setSeed(int32_t seed) { fSeed = (uint32_t)seed; }
private:
// See "Numerical Recipes in C", 1992 page 284 for these constants
enum {
kMul = 1664525,
kAdd = 1013904223
};
uint32_t fSeed;
};
/** \class SkRandom
Utility class that implements pseudo random 32bit numbers using Marsaglia's
multiply-with-carry "mother of all" algorithm. Unlike rand(), this class holds
its own state, so that multiple instances can be used with no side-effects.
Has a large period and all bits are well-randomized.
*/
class SkRandom {
public:
SkRandom() { init(0); }
SkRandom(uint32_t seed) { init(seed); }
SkRandom(const SkRandom& rand) : fK(rand.fK), fJ(rand.fJ) {}
SkRandom& operator=(const SkRandom& rand) {
fK = rand.fK;
fJ = rand.fJ;
return *this;
}
/** Return the next pseudo random number as an unsigned 32bit value.
*/
uint32_t nextU() {
fK = kKMul*(fK & 0xffff) + (fK >> 16);
fJ = kJMul*(fJ & 0xffff) + (fJ >> 16);
return (((fK << 16) | (fK >> 16)) + fJ);
}
/** Return the next pseudo random number as a signed 32bit value.
*/
int32_t nextS() { return (int32_t)this->nextU(); }
/** Return the next pseudo random number as an unsigned 16bit value.
*/
U16CPU nextU16() { return this->nextU() >> 16; }
/** Return the next pseudo random number as a signed 16bit value.
*/
S16CPU nextS16() { return this->nextS() >> 16; }
/**
* Returns value [0...1) as an IEEE float
*/
float nextF() {
unsigned int floatint = 0x3f800000 | (this->nextU() >> 9);
float f = SkBits2Float(floatint) - 1.0f;
return f;
}
/**
* Returns value [min...max) as a float
*/
float nextRangeF(float min, float max) {
return min + this->nextF() * (max - min);
}
/** Return the next pseudo random number, as an unsigned value of
at most bitCount bits.
@param bitCount The maximum number of bits to be returned
*/
uint32_t nextBits(unsigned bitCount) {
SkASSERT(bitCount > 0 && bitCount <= 32);
return this->nextU() >> (32 - bitCount);
}
/** Return the next pseudo random unsigned number, mapped to lie within
[min, max] inclusive.
*/
uint32_t nextRangeU(uint32_t min, uint32_t max) {
SkASSERT(min <= max);
uint32_t range = max - min + 1;
if (0 == range) {
return this->nextU();
} else {
return min + this->nextU() % range;
}
}
/** Return the next pseudo random unsigned number, mapped to lie within
[0, count).
*/
uint32_t nextULessThan(uint32_t count) {
SkASSERT(count > 0);
return this->nextRangeU(0, count - 1);
}
/** Return the next pseudo random number expressed as an unsigned SkFixed
in the range [0..SK_Fixed1).
*/
SkFixed nextUFixed1() { return this->nextU() >> 16; }
/** Return the next pseudo random number expressed as a signed SkFixed
in the range (-SK_Fixed1..SK_Fixed1).
*/
SkFixed nextSFixed1() { return this->nextS() >> 15; }
/** Return the next pseudo random number expressed as a SkScalar
in the range [0..SK_Scalar1).
*/
SkScalar nextUScalar1() { return SkFixedToScalar(this->nextUFixed1()); }
/** Return the next pseudo random number expressed as a SkScalar
in the range [min..max).
*/
SkScalar nextRangeScalar(SkScalar min, SkScalar max) {
return SkScalarMul(this->nextUScalar1(), (max - min)) + min;
}
/** Return the next pseudo random number expressed as a SkScalar
in the range (-SK_Scalar1..SK_Scalar1).
*/
SkScalar nextSScalar1() { return SkFixedToScalar(this->nextSFixed1()); }
/** Return the next pseudo random number as a bool.
*/
bool nextBool() { return this->nextU() >= 0x80000000; }
/** A biased version of nextBool().
*/
bool nextBiasedBool(SkScalar fractionTrue) {
SkASSERT(fractionTrue >= 0 && fractionTrue <= SK_Scalar1);
return this->nextUScalar1() <= fractionTrue;
}
/** Return the next pseudo random number as a signed 64bit value.
*/
void next64(Sk64* a) {
SkASSERT(a);
a->set(this->nextS(), this->nextU());
}
/** Reset the random object.
*/
void setSeed(uint32_t seed) { init(seed); }
private:
// Initialize state variables with LCG.
// We must ensure that both J and K are non-zero, otherwise the
// multiply-with-carry step will forevermore return zero.
void init(uint32_t seed) {
fK = NextLCG(seed);
if (0 == fK) {
fK = NextLCG(fK);
}
fJ = NextLCG(fK);
if (0 == fJ) {
fJ = NextLCG(fJ);
}
SkASSERT(0 != fK && 0 != fJ);
}
static uint32_t NextLCG(uint32_t seed) { return kMul*seed + kAdd; }
// See "Numerical Recipes in C", 1992 page 284 for these constants
// For the LCG that sets the initial state from a seed
enum {
kMul = 1664525,
kAdd = 1013904223
};
// Constants for the multiply-with-carry steps
enum {
kKMul = 30345,
kJMul = 18000,
};
uint32_t fK;
uint32_t fJ;
};
#endif