f21d6b9b71
This reverts commit 07438b0cda
.
Bug: skia:10369
Bug: skia:10371
This will allow Skia clients developing for Android 11+ to rely on
Android's NDK APIs for decoding, which will allow them to decode
without including their own decoding libraries (e.g. libjpeg-turbo).
Using these APIs also provides support for static HEIF images.
Run ImageGenSrc in kPlatform_Mode on Android to verify decoding
visually.
Add tests and a grayscale png.
Update some test bots running Android R to specify ndk_api so they will
run the new code.
Change-Id: I4ca07d832dbd6a9d8cff0faea975fd70da00718f
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/308185
Reviewed-by: Mike Klein <mtklein@google.com>
Commit-Queue: Leon Scroggins <scroggo@google.com>
2399 lines
94 KiB
C++
2399 lines
94 KiB
C++
/*
|
|
* Copyright 2015 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "dm/DMSrcSink.h"
|
|
#include "gm/verifiers/gmverifier.h"
|
|
#include "include/codec/SkAndroidCodec.h"
|
|
#include "include/codec/SkCodec.h"
|
|
#include "include/core/SkColorSpace.h"
|
|
#include "include/core/SkData.h"
|
|
#include "include/core/SkDeferredDisplayListRecorder.h"
|
|
#include "include/core/SkDocument.h"
|
|
#include "include/core/SkExecutor.h"
|
|
#include "include/core/SkImageGenerator.h"
|
|
#include "include/core/SkMallocPixelRef.h"
|
|
#include "include/core/SkPictureRecorder.h"
|
|
#include "include/core/SkStream.h"
|
|
#include "include/core/SkSurface.h"
|
|
#include "include/core/SkSurfaceCharacterization.h"
|
|
#include "include/docs/SkPDFDocument.h"
|
|
#include "include/gpu/GrBackendSurface.h"
|
|
#include "include/gpu/GrDirectContext.h"
|
|
#include "include/ports/SkImageGeneratorCG.h"
|
|
#include "include/ports/SkImageGeneratorNDK.h"
|
|
#include "include/ports/SkImageGeneratorWIC.h"
|
|
#include "include/private/SkImageInfoPriv.h"
|
|
#include "include/private/SkTLogic.h"
|
|
#include "include/third_party/skcms/skcms.h"
|
|
#include "include/utils/SkNullCanvas.h"
|
|
#include "include/utils/SkRandom.h"
|
|
#include "modules/skottie/utils/SkottieUtils.h"
|
|
#include "src/codec/SkCodecImageGenerator.h"
|
|
#include "src/codec/SkSwizzler.h"
|
|
#include "src/core/SkAutoMalloc.h"
|
|
#include "src/core/SkAutoPixmapStorage.h"
|
|
#include "src/core/SkOSFile.h"
|
|
#include "src/core/SkOpts.h"
|
|
#include "src/core/SkPictureCommon.h"
|
|
#include "src/core/SkPictureData.h"
|
|
#include "src/core/SkRecordDraw.h"
|
|
#include "src/core/SkRecorder.h"
|
|
#include "src/core/SkTaskGroup.h"
|
|
#include "src/gpu/GrContextPriv.h"
|
|
#include "src/gpu/GrGpu.h"
|
|
#include "src/utils/SkMultiPictureDocumentPriv.h"
|
|
#include "src/utils/SkOSPath.h"
|
|
#include "tools/DDLPromiseImageHelper.h"
|
|
#include "tools/DDLTileHelper.h"
|
|
#include "tools/Resources.h"
|
|
#include "tools/debugger/DebugCanvas.h"
|
|
#include "tools/gpu/MemoryCache.h"
|
|
#if defined(SK_BUILD_FOR_WIN)
|
|
#include "include/docs/SkXPSDocument.h"
|
|
#include "src/utils/win/SkAutoCoInitialize.h"
|
|
#include "src/utils/win/SkHRESULT.h"
|
|
#include "src/utils/win/SkTScopedComPtr.h"
|
|
#include <XpsObjectModel.h>
|
|
#endif
|
|
|
|
#if defined(SK_ENABLE_SKOTTIE)
|
|
#include "modules/skottie/include/Skottie.h"
|
|
#include "modules/skresources/include/SkResources.h"
|
|
#endif
|
|
|
|
#if defined(SK_ENABLE_SKRIVE)
|
|
#include "experimental/skrive/include/SkRive.h"
|
|
#endif
|
|
|
|
#if defined(SK_XML)
|
|
#include "experimental/svg/model/SkSVGDOM.h"
|
|
#include "include/svg/SkSVGCanvas.h"
|
|
#include "src/xml/SkXMLWriter.h"
|
|
#endif
|
|
|
|
#if defined(SK_ENABLE_ANDROID_UTILS)
|
|
#include "client_utils/android/BitmapRegionDecoder.h"
|
|
#endif
|
|
#include "tests/TestUtils.h"
|
|
|
|
#include <cmath>
|
|
#include <functional>
|
|
|
|
static DEFINE_bool(multiPage, false,
|
|
"For document-type backends, render the source into multiple pages");
|
|
static DEFINE_bool(RAW_threading, true, "Allow RAW decodes to run on multiple threads?");
|
|
|
|
DECLARE_int(gpuThreads);
|
|
|
|
using sk_gpu_test::GrContextFactory;
|
|
using sk_gpu_test::ContextInfo;
|
|
|
|
namespace DM {
|
|
|
|
GMSrc::GMSrc(skiagm::GMFactory factory) : fFactory(factory) {}
|
|
|
|
Result GMSrc::draw(GrDirectContext* context, SkCanvas* canvas) const {
|
|
std::unique_ptr<skiagm::GM> gm(fFactory());
|
|
SkString msg;
|
|
|
|
skiagm::DrawResult gpuSetupResult = gm->gpuSetup(context, canvas, &msg);
|
|
switch (gpuSetupResult) {
|
|
case skiagm::DrawResult::kOk : break;
|
|
case skiagm::DrawResult::kFail: return Result(Result::Status::Fatal, msg);
|
|
case skiagm::DrawResult::kSkip: return Result(Result::Status::Skip, msg);
|
|
default: SK_ABORT("");
|
|
}
|
|
|
|
skiagm::DrawResult drawResult = gm->draw(canvas, &msg);
|
|
switch (drawResult) {
|
|
case skiagm::DrawResult::kOk : return Result(Result::Status::Ok, msg);
|
|
case skiagm::DrawResult::kFail: return Result(Result::Status::Fatal, msg);
|
|
case skiagm::DrawResult::kSkip: return Result(Result::Status::Skip, msg);
|
|
default: SK_ABORT("");
|
|
}
|
|
|
|
// Note: we don't call "gpuTeardown" here because, when testing DDL recording, we want
|
|
// the gpu-backed images to live past the lifetime of the GM.
|
|
}
|
|
|
|
SkISize GMSrc::size() const {
|
|
std::unique_ptr<skiagm::GM> gm(fFactory());
|
|
return gm->getISize();
|
|
}
|
|
|
|
Name GMSrc::name() const {
|
|
std::unique_ptr<skiagm::GM> gm(fFactory());
|
|
return gm->getName();
|
|
}
|
|
|
|
void GMSrc::modifyGrContextOptions(GrContextOptions* options) const {
|
|
std::unique_ptr<skiagm::GM> gm(fFactory());
|
|
gm->modifyGrContextOptions(options);
|
|
}
|
|
|
|
std::unique_ptr<skiagm::verifiers::VerifierList> GMSrc::getVerifiers() const {
|
|
std::unique_ptr<skiagm::GM> gm(fFactory());
|
|
return gm->getVerifiers();
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
static SkString get_scaled_name(const Path& path, float scale) {
|
|
return SkStringPrintf("%s_%.3f", SkOSPath::Basename(path.c_str()).c_str(), scale);
|
|
}
|
|
|
|
#ifdef SK_ENABLE_ANDROID_UTILS
|
|
BRDSrc::BRDSrc(Path path, Mode mode, CodecSrc::DstColorType dstColorType, uint32_t sampleSize)
|
|
: fPath(path)
|
|
, fMode(mode)
|
|
, fDstColorType(dstColorType)
|
|
, fSampleSize(sampleSize)
|
|
{}
|
|
|
|
bool BRDSrc::veto(SinkFlags flags) const {
|
|
// No need to test to non-raster or indirect backends.
|
|
return flags.type != SinkFlags::kRaster
|
|
|| flags.approach != SinkFlags::kDirect;
|
|
}
|
|
|
|
static std::unique_ptr<android::skia::BitmapRegionDecoder> create_brd(Path path) {
|
|
sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str()));
|
|
return android::skia::BitmapRegionDecoder::Make(encoded);
|
|
}
|
|
|
|
static inline void alpha8_to_gray8(SkBitmap* bitmap) {
|
|
// Android requires kGray8 bitmaps to be tagged as kAlpha8. Here we convert
|
|
// them back to kGray8 so our test framework can draw them correctly.
|
|
if (kAlpha_8_SkColorType == bitmap->info().colorType()) {
|
|
SkImageInfo newInfo = bitmap->info().makeColorType(kGray_8_SkColorType)
|
|
.makeAlphaType(kOpaque_SkAlphaType);
|
|
*const_cast<SkImageInfo*>(&bitmap->info()) = newInfo;
|
|
}
|
|
}
|
|
|
|
Result BRDSrc::draw(GrDirectContext*, SkCanvas* canvas) const {
|
|
SkColorType colorType = canvas->imageInfo().colorType();
|
|
if (kRGB_565_SkColorType == colorType &&
|
|
CodecSrc::kGetFromCanvas_DstColorType != fDstColorType)
|
|
{
|
|
return Result::Skip("Testing non-565 to 565 is uninteresting.");
|
|
}
|
|
switch (fDstColorType) {
|
|
case CodecSrc::kGetFromCanvas_DstColorType:
|
|
break;
|
|
case CodecSrc::kGrayscale_Always_DstColorType:
|
|
colorType = kGray_8_SkColorType;
|
|
break;
|
|
default:
|
|
SkASSERT(false);
|
|
break;
|
|
}
|
|
|
|
auto brd = create_brd(fPath);
|
|
if (nullptr == brd.get()) {
|
|
return Result::Skip("Could not create brd for %s.", fPath.c_str());
|
|
}
|
|
|
|
auto recommendedCT = brd->computeOutputColorType(colorType);
|
|
if (kRGB_565_SkColorType == colorType && recommendedCT != colorType) {
|
|
return Result::Skip("Skip decoding non-opaque to 565.");
|
|
}
|
|
colorType = recommendedCT;
|
|
|
|
auto colorSpace = brd->computeOutputColorSpace(colorType, nullptr);
|
|
|
|
const uint32_t width = brd->width();
|
|
const uint32_t height = brd->height();
|
|
// Visually inspecting very small output images is not necessary.
|
|
if ((width / fSampleSize <= 10 || height / fSampleSize <= 10) && 1 != fSampleSize) {
|
|
return Result::Skip("Scaling very small images is uninteresting.");
|
|
}
|
|
switch (fMode) {
|
|
case kFullImage_Mode: {
|
|
SkBitmap bitmap;
|
|
if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(0, 0, width, height),
|
|
fSampleSize, colorType, false, colorSpace)) {
|
|
return Result::Fatal("Cannot decode (full) region.");
|
|
}
|
|
alpha8_to_gray8(&bitmap);
|
|
|
|
canvas->drawBitmap(bitmap, 0, 0);
|
|
return Result::Ok();
|
|
}
|
|
case kDivisor_Mode: {
|
|
const uint32_t divisor = 2;
|
|
if (width < divisor || height < divisor) {
|
|
return Result::Skip("Divisor is larger than image dimension.");
|
|
}
|
|
|
|
// Use a border to test subsets that extend outside the image.
|
|
// We will not allow the border to be larger than the image dimensions. Allowing
|
|
// these large borders causes off by one errors that indicate a problem with the
|
|
// test suite, not a problem with the implementation.
|
|
const uint32_t maxBorder = std::min(width, height) / (fSampleSize * divisor);
|
|
const uint32_t scaledBorder = std::min(5u, maxBorder);
|
|
const uint32_t unscaledBorder = scaledBorder * fSampleSize;
|
|
|
|
// We may need to clear the canvas to avoid uninitialized memory.
|
|
// Assume we are scaling a 780x780 image with sampleSize = 8.
|
|
// The output image should be 97x97.
|
|
// Each subset will be 390x390.
|
|
// Each scaled subset be 48x48.
|
|
// Four scaled subsets will only fill a 96x96 image.
|
|
// The bottom row and last column will not be touched.
|
|
// This is an unfortunate result of our rounding rules when scaling.
|
|
// Maybe we need to consider testing scaled subsets without trying to
|
|
// combine them to match the full scaled image? Or maybe this is the
|
|
// best we can do?
|
|
canvas->clear(0);
|
|
|
|
for (uint32_t x = 0; x < divisor; x++) {
|
|
for (uint32_t y = 0; y < divisor; y++) {
|
|
// Calculate the subset dimensions
|
|
uint32_t subsetWidth = width / divisor;
|
|
uint32_t subsetHeight = height / divisor;
|
|
const int left = x * subsetWidth;
|
|
const int top = y * subsetHeight;
|
|
|
|
// Increase the size of the last subset in each row or column, when the
|
|
// divisor does not divide evenly into the image dimensions
|
|
subsetWidth += (x + 1 == divisor) ? (width % divisor) : 0;
|
|
subsetHeight += (y + 1 == divisor) ? (height % divisor) : 0;
|
|
|
|
// Increase the size of the subset in order to have a border on each side
|
|
const int decodeLeft = left - unscaledBorder;
|
|
const int decodeTop = top - unscaledBorder;
|
|
const uint32_t decodeWidth = subsetWidth + unscaledBorder * 2;
|
|
const uint32_t decodeHeight = subsetHeight + unscaledBorder * 2;
|
|
SkBitmap bitmap;
|
|
if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(decodeLeft,
|
|
decodeTop, decodeWidth, decodeHeight), fSampleSize, colorType, false,
|
|
colorSpace)) {
|
|
return Result::Fatal("Cannot decode region.");
|
|
}
|
|
|
|
alpha8_to_gray8(&bitmap);
|
|
canvas->drawBitmapRect(bitmap,
|
|
SkRect::MakeXYWH((SkScalar) scaledBorder, (SkScalar) scaledBorder,
|
|
(SkScalar) (subsetWidth / fSampleSize),
|
|
(SkScalar) (subsetHeight / fSampleSize)),
|
|
SkRect::MakeXYWH((SkScalar) (left / fSampleSize),
|
|
(SkScalar) (top / fSampleSize),
|
|
(SkScalar) (subsetWidth / fSampleSize),
|
|
(SkScalar) (subsetHeight / fSampleSize)),
|
|
nullptr);
|
|
}
|
|
}
|
|
return Result::Ok();
|
|
}
|
|
default:
|
|
SkASSERT(false);
|
|
return Result::Fatal("Error: Should not be reached.");
|
|
}
|
|
}
|
|
|
|
SkISize BRDSrc::size() const {
|
|
auto brd = create_brd(fPath);
|
|
if (brd) {
|
|
return {std::max(1, brd->width() / (int)fSampleSize),
|
|
std::max(1, brd->height() / (int)fSampleSize)};
|
|
}
|
|
return {0, 0};
|
|
}
|
|
|
|
Name BRDSrc::name() const {
|
|
// We will replicate the names used by CodecSrc so that images can
|
|
// be compared in Gold.
|
|
if (1 == fSampleSize) {
|
|
return SkOSPath::Basename(fPath.c_str());
|
|
}
|
|
return get_scaled_name(fPath, 1.0f / (float) fSampleSize);
|
|
}
|
|
|
|
#endif // SK_ENABLE_ANDROID_UTILS
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
static bool serial_from_path_name(const SkString& path) {
|
|
if (!FLAGS_RAW_threading) {
|
|
static const char* const exts[] = {
|
|
"arw", "cr2", "dng", "nef", "nrw", "orf", "raf", "rw2", "pef", "srw",
|
|
"ARW", "CR2", "DNG", "NEF", "NRW", "ORF", "RAF", "RW2", "PEF", "SRW",
|
|
};
|
|
const char* actualExt = strrchr(path.c_str(), '.');
|
|
if (actualExt) {
|
|
actualExt++;
|
|
for (auto* ext : exts) {
|
|
if (0 == strcmp(ext, actualExt)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
CodecSrc::CodecSrc(Path path, Mode mode, DstColorType dstColorType, SkAlphaType dstAlphaType,
|
|
float scale)
|
|
: fPath(path)
|
|
, fMode(mode)
|
|
, fDstColorType(dstColorType)
|
|
, fDstAlphaType(dstAlphaType)
|
|
, fScale(scale)
|
|
, fRunSerially(serial_from_path_name(path))
|
|
{}
|
|
|
|
bool CodecSrc::veto(SinkFlags flags) const {
|
|
// Test to direct raster backends (8888 and 565).
|
|
return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect;
|
|
}
|
|
|
|
// Allows us to test decodes to non-native 8888.
|
|
static void swap_rb_if_necessary(SkBitmap& bitmap, CodecSrc::DstColorType dstColorType) {
|
|
if (CodecSrc::kNonNative8888_Always_DstColorType != dstColorType) {
|
|
return;
|
|
}
|
|
|
|
for (int y = 0; y < bitmap.height(); y++) {
|
|
uint32_t* row = (uint32_t*) bitmap.getAddr(0, y);
|
|
SkOpts::RGBA_to_BGRA(row, row, bitmap.width());
|
|
}
|
|
}
|
|
|
|
static bool get_decode_info(SkImageInfo* decodeInfo, SkColorType canvasColorType,
|
|
CodecSrc::DstColorType dstColorType, SkAlphaType dstAlphaType) {
|
|
switch (dstColorType) {
|
|
case CodecSrc::kGrayscale_Always_DstColorType:
|
|
if (kRGB_565_SkColorType == canvasColorType) {
|
|
return false;
|
|
}
|
|
*decodeInfo = decodeInfo->makeColorType(kGray_8_SkColorType);
|
|
break;
|
|
case CodecSrc::kNonNative8888_Always_DstColorType:
|
|
if (kRGB_565_SkColorType == canvasColorType
|
|
|| kRGBA_F16_SkColorType == canvasColorType) {
|
|
return false;
|
|
}
|
|
#ifdef SK_PMCOLOR_IS_RGBA
|
|
*decodeInfo = decodeInfo->makeColorType(kBGRA_8888_SkColorType);
|
|
#else
|
|
*decodeInfo = decodeInfo->makeColorType(kRGBA_8888_SkColorType);
|
|
#endif
|
|
break;
|
|
default:
|
|
if (kRGB_565_SkColorType == canvasColorType &&
|
|
kOpaque_SkAlphaType != decodeInfo->alphaType()) {
|
|
return false;
|
|
}
|
|
|
|
*decodeInfo = decodeInfo->makeColorType(canvasColorType);
|
|
break;
|
|
}
|
|
|
|
*decodeInfo = decodeInfo->makeAlphaType(dstAlphaType);
|
|
return true;
|
|
}
|
|
|
|
static void draw_to_canvas(SkCanvas* canvas, const SkImageInfo& info, void* pixels, size_t rowBytes,
|
|
CodecSrc::DstColorType dstColorType,
|
|
SkScalar left = 0, SkScalar top = 0) {
|
|
SkBitmap bitmap;
|
|
bitmap.installPixels(info, pixels, rowBytes);
|
|
swap_rb_if_necessary(bitmap, dstColorType);
|
|
canvas->drawBitmap(bitmap, left, top);
|
|
}
|
|
|
|
// For codec srcs, we want the "draw" step to be a memcpy. Any interesting color space or
|
|
// color format conversions should be performed by the codec. Sometimes the output of the
|
|
// decode will be in an interesting color space. On our srgb and f16 backends, we need to
|
|
// "pretend" that the color space is standard sRGB to avoid triggering color conversion
|
|
// at draw time.
|
|
static void set_bitmap_color_space(SkImageInfo* info) {
|
|
*info = info->makeColorSpace(SkColorSpace::MakeSRGB());
|
|
}
|
|
|
|
Result CodecSrc::draw(GrDirectContext*, SkCanvas* canvas) const {
|
|
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
|
|
if (!encoded) {
|
|
return Result::Fatal("Couldn't read %s.", fPath.c_str());
|
|
}
|
|
|
|
std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded));
|
|
if (nullptr == codec.get()) {
|
|
return Result::Fatal("Couldn't create codec for %s.", fPath.c_str());
|
|
}
|
|
|
|
SkImageInfo decodeInfo = codec->getInfo();
|
|
if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType,
|
|
fDstAlphaType)) {
|
|
return Result::Skip("Skipping uninteresting test.");
|
|
}
|
|
|
|
// Try to scale the image if it is desired
|
|
SkISize size = codec->getScaledDimensions(fScale);
|
|
if (size == decodeInfo.dimensions() && 1.0f != fScale) {
|
|
return Result::Skip("Test without scaling is uninteresting.");
|
|
}
|
|
|
|
// Visually inspecting very small output images is not necessary. We will
|
|
// cover these cases in unit testing.
|
|
if ((size.width() <= 10 || size.height() <= 10) && 1.0f != fScale) {
|
|
return Result::Skip("Scaling very small images is uninteresting.");
|
|
}
|
|
decodeInfo = decodeInfo.makeDimensions(size);
|
|
|
|
const int bpp = decodeInfo.bytesPerPixel();
|
|
const size_t rowBytes = size.width() * bpp;
|
|
const size_t safeSize = decodeInfo.computeByteSize(rowBytes);
|
|
SkAutoMalloc pixels(safeSize);
|
|
|
|
SkCodec::Options options;
|
|
if (kCodecZeroInit_Mode == fMode) {
|
|
memset(pixels.get(), 0, size.height() * rowBytes);
|
|
options.fZeroInitialized = SkCodec::kYes_ZeroInitialized;
|
|
}
|
|
|
|
SkImageInfo bitmapInfo = decodeInfo;
|
|
set_bitmap_color_space(&bitmapInfo);
|
|
if (kRGBA_8888_SkColorType == decodeInfo.colorType() ||
|
|
kBGRA_8888_SkColorType == decodeInfo.colorType()) {
|
|
bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType);
|
|
}
|
|
|
|
switch (fMode) {
|
|
case kAnimated_Mode: {
|
|
std::vector<SkCodec::FrameInfo> frameInfos = codec->getFrameInfo();
|
|
if (frameInfos.size() <= 1) {
|
|
return Result::Fatal("%s is not an animated image.", fPath.c_str());
|
|
}
|
|
|
|
// As in CodecSrc::size(), compute a roughly square grid to draw the frames
|
|
// into. "factor" is the number of frames to draw on one row. There will be
|
|
// up to "factor" rows as well.
|
|
const float root = sqrt((float) frameInfos.size());
|
|
const int factor = sk_float_ceil2int(root);
|
|
|
|
// Used to cache a frame that future frames will depend on.
|
|
SkAutoMalloc priorFramePixels;
|
|
int cachedFrame = SkCodec::kNoFrame;
|
|
for (int i = 0; static_cast<size_t>(i) < frameInfos.size(); i++) {
|
|
options.fFrameIndex = i;
|
|
// Check for a prior frame
|
|
const int reqFrame = frameInfos[i].fRequiredFrame;
|
|
if (reqFrame != SkCodec::kNoFrame && reqFrame == cachedFrame
|
|
&& priorFramePixels.get()) {
|
|
// Copy into pixels
|
|
memcpy(pixels.get(), priorFramePixels.get(), safeSize);
|
|
options.fPriorFrame = reqFrame;
|
|
} else {
|
|
options.fPriorFrame = SkCodec::kNoFrame;
|
|
}
|
|
SkCodec::Result result = codec->getPixels(decodeInfo, pixels.get(),
|
|
rowBytes, &options);
|
|
if (SkCodec::kInvalidInput == result && i > 0) {
|
|
// Some of our test images have truncated later frames. Treat that
|
|
// the same as incomplete.
|
|
result = SkCodec::kIncompleteInput;
|
|
}
|
|
switch (result) {
|
|
case SkCodec::kSuccess:
|
|
case SkCodec::kErrorInInput:
|
|
case SkCodec::kIncompleteInput: {
|
|
// If the next frame depends on this one, store it in priorFrame.
|
|
// It is possible that we may discard a frame that future frames depend on,
|
|
// but the codec will simply redecode the discarded frame.
|
|
// Do this before calling draw_to_canvas, which premultiplies in place. If
|
|
// we're decoding to unpremul, we want to pass the unmodified frame to the
|
|
// codec for decoding the next frame.
|
|
if (static_cast<size_t>(i+1) < frameInfos.size()
|
|
&& frameInfos[i+1].fRequiredFrame == i) {
|
|
memcpy(priorFramePixels.reset(safeSize), pixels.get(), safeSize);
|
|
cachedFrame = i;
|
|
}
|
|
|
|
SkAutoCanvasRestore acr(canvas, true);
|
|
const int xTranslate = (i % factor) * decodeInfo.width();
|
|
const int yTranslate = (i / factor) * decodeInfo.height();
|
|
canvas->translate(SkIntToScalar(xTranslate), SkIntToScalar(yTranslate));
|
|
draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType);
|
|
if (result != SkCodec::kSuccess) {
|
|
return Result::Ok();
|
|
}
|
|
break;
|
|
}
|
|
case SkCodec::kInvalidConversion:
|
|
if (i > 0 && (decodeInfo.colorType() == kRGB_565_SkColorType)) {
|
|
return Result::Skip(
|
|
"Cannot decode frame %i to 565 (%s).", i, fPath.c_str());
|
|
}
|
|
[[fallthrough]];
|
|
default:
|
|
return Result::Fatal(
|
|
"Couldn't getPixels for frame %i in %s.", i, fPath.c_str());
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case kCodecZeroInit_Mode:
|
|
case kCodec_Mode: {
|
|
switch (codec->getPixels(decodeInfo, pixels.get(), rowBytes, &options)) {
|
|
case SkCodec::kSuccess:
|
|
// We consider these to be valid, since we should still decode what is
|
|
// available.
|
|
case SkCodec::kErrorInInput:
|
|
case SkCodec::kIncompleteInput:
|
|
break;
|
|
default:
|
|
// Everything else is considered a failure.
|
|
return Result::Fatal("Couldn't getPixels %s.", fPath.c_str());
|
|
}
|
|
|
|
draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType);
|
|
break;
|
|
}
|
|
case kScanline_Mode: {
|
|
void* dst = pixels.get();
|
|
uint32_t height = decodeInfo.height();
|
|
const bool useIncremental = [this]() {
|
|
auto exts = { "png", "PNG", "gif", "GIF" };
|
|
for (auto ext : exts) {
|
|
if (fPath.endsWith(ext)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}();
|
|
// ico may use the old scanline method or the new one, depending on whether it
|
|
// internally holds a bmp or a png.
|
|
const bool ico = fPath.endsWith("ico");
|
|
bool useOldScanlineMethod = !useIncremental && !ico;
|
|
if (useIncremental || ico) {
|
|
if (SkCodec::kSuccess == codec->startIncrementalDecode(decodeInfo, dst,
|
|
rowBytes, &options)) {
|
|
int rowsDecoded;
|
|
auto result = codec->incrementalDecode(&rowsDecoded);
|
|
if (SkCodec::kIncompleteInput == result || SkCodec::kErrorInInput == result) {
|
|
codec->fillIncompleteImage(decodeInfo, dst, rowBytes,
|
|
SkCodec::kNo_ZeroInitialized, height,
|
|
rowsDecoded);
|
|
}
|
|
} else {
|
|
if (useIncremental) {
|
|
// Error: These should support incremental decode.
|
|
return Result::Fatal("Could not start incremental decode");
|
|
}
|
|
// Otherwise, this is an ICO. Since incremental failed, it must contain a BMP,
|
|
// which should work via startScanlineDecode
|
|
useOldScanlineMethod = true;
|
|
}
|
|
}
|
|
|
|
if (useOldScanlineMethod) {
|
|
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo)) {
|
|
return Result::Fatal("Could not start scanline decoder");
|
|
}
|
|
|
|
// We do not need to check the return value. On an incomplete
|
|
// image, memory will be filled with a default value.
|
|
codec->getScanlines(dst, height, rowBytes);
|
|
}
|
|
|
|
draw_to_canvas(canvas, bitmapInfo, dst, rowBytes, fDstColorType);
|
|
break;
|
|
}
|
|
case kStripe_Mode: {
|
|
const int height = decodeInfo.height();
|
|
// This value is chosen arbitrarily. We exercise more cases by choosing a value that
|
|
// does not align with image blocks.
|
|
const int stripeHeight = 37;
|
|
const int numStripes = (height + stripeHeight - 1) / stripeHeight;
|
|
void* dst = pixels.get();
|
|
|
|
// Decode odd stripes
|
|
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, &options)) {
|
|
return Result::Fatal("Could not start scanline decoder");
|
|
}
|
|
|
|
// This mode was designed to test the new skip scanlines API in libjpeg-turbo.
|
|
// Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting
|
|
// to run this test for image types that do not have this scanline ordering.
|
|
// We only run this on Jpeg, which is always kTopDown.
|
|
SkASSERT(SkCodec::kTopDown_SkScanlineOrder == codec->getScanlineOrder());
|
|
|
|
for (int i = 0; i < numStripes; i += 2) {
|
|
// Skip a stripe
|
|
const int linesToSkip = std::min(stripeHeight, height - i * stripeHeight);
|
|
codec->skipScanlines(linesToSkip);
|
|
|
|
// Read a stripe
|
|
const int startY = (i + 1) * stripeHeight;
|
|
const int linesToRead = std::min(stripeHeight, height - startY);
|
|
if (linesToRead > 0) {
|
|
codec->getScanlines(SkTAddOffset<void>(dst, rowBytes * startY), linesToRead,
|
|
rowBytes);
|
|
}
|
|
}
|
|
|
|
// Decode even stripes
|
|
const SkCodec::Result startResult = codec->startScanlineDecode(decodeInfo);
|
|
if (SkCodec::kSuccess != startResult) {
|
|
return Result::Fatal("Failed to restart scanline decoder with same parameters.");
|
|
}
|
|
for (int i = 0; i < numStripes; i += 2) {
|
|
// Read a stripe
|
|
const int startY = i * stripeHeight;
|
|
const int linesToRead = std::min(stripeHeight, height - startY);
|
|
codec->getScanlines(SkTAddOffset<void>(dst, rowBytes * startY), linesToRead,
|
|
rowBytes);
|
|
|
|
// Skip a stripe
|
|
const int linesToSkip = std::min(stripeHeight, height - (i + 1) * stripeHeight);
|
|
if (linesToSkip > 0) {
|
|
codec->skipScanlines(linesToSkip);
|
|
}
|
|
}
|
|
|
|
draw_to_canvas(canvas, bitmapInfo, dst, rowBytes, fDstColorType);
|
|
break;
|
|
}
|
|
case kCroppedScanline_Mode: {
|
|
const int width = decodeInfo.width();
|
|
const int height = decodeInfo.height();
|
|
// This value is chosen because, as we move across the image, it will sometimes
|
|
// align with the jpeg block sizes and it will sometimes not. This allows us
|
|
// to test interestingly different code paths in the implementation.
|
|
const int tileSize = 36;
|
|
SkIRect subset;
|
|
for (int x = 0; x < width; x += tileSize) {
|
|
subset = SkIRect::MakeXYWH(x, 0, std::min(tileSize, width - x), height);
|
|
options.fSubset = ⊂
|
|
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, &options)) {
|
|
return Result::Fatal("Could not start scanline decoder.");
|
|
}
|
|
|
|
codec->getScanlines(SkTAddOffset<void>(pixels.get(), x * bpp), height, rowBytes);
|
|
}
|
|
|
|
draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType);
|
|
break;
|
|
}
|
|
case kSubset_Mode: {
|
|
// Arbitrarily choose a divisor.
|
|
int divisor = 2;
|
|
// Total width/height of the image.
|
|
const int W = codec->getInfo().width();
|
|
const int H = codec->getInfo().height();
|
|
if (divisor > W || divisor > H) {
|
|
return Result::Skip("Cannot codec subset: divisor %d is too big "
|
|
"for %s with dimensions (%d x %d)", divisor,
|
|
fPath.c_str(), W, H);
|
|
}
|
|
// subset dimensions
|
|
// SkWebpCodec, the only one that supports subsets, requires even top/left boundaries.
|
|
const int w = SkAlign2(W / divisor);
|
|
const int h = SkAlign2(H / divisor);
|
|
SkIRect subset;
|
|
options.fSubset = ⊂
|
|
SkBitmap subsetBm;
|
|
// We will reuse pixel memory from bitmap.
|
|
void* dst = pixels.get();
|
|
// Keep track of left and top (for drawing subsetBm into canvas). We could use
|
|
// fScale * x and fScale * y, but we want integers such that the next subset will start
|
|
// where the last one ended. So we'll add decodeInfo.width() and height().
|
|
int left = 0;
|
|
for (int x = 0; x < W; x += w) {
|
|
int top = 0;
|
|
for (int y = 0; y < H; y+= h) {
|
|
// Do not make the subset go off the edge of the image.
|
|
const int preScaleW = std::min(w, W - x);
|
|
const int preScaleH = std::min(h, H - y);
|
|
subset.setXYWH(x, y, preScaleW, preScaleH);
|
|
// And scale
|
|
// FIXME: Should we have a version of getScaledDimensions that takes a subset
|
|
// into account?
|
|
const int scaledW = std::max(1, SkScalarRoundToInt(preScaleW * fScale));
|
|
const int scaledH = std::max(1, SkScalarRoundToInt(preScaleH * fScale));
|
|
decodeInfo = decodeInfo.makeWH(scaledW, scaledH);
|
|
SkImageInfo subsetBitmapInfo = bitmapInfo.makeWH(scaledW, scaledH);
|
|
size_t subsetRowBytes = subsetBitmapInfo.minRowBytes();
|
|
const SkCodec::Result result = codec->getPixels(decodeInfo, dst, subsetRowBytes,
|
|
&options);
|
|
switch (result) {
|
|
case SkCodec::kSuccess:
|
|
case SkCodec::kErrorInInput:
|
|
case SkCodec::kIncompleteInput:
|
|
break;
|
|
default:
|
|
return Result::Fatal("subset codec failed to decode (%d, %d, %d, %d) "
|
|
"from %s with dimensions (%d x %d)\t error %d",
|
|
x, y, decodeInfo.width(), decodeInfo.height(),
|
|
fPath.c_str(), W, H, result);
|
|
}
|
|
draw_to_canvas(canvas, subsetBitmapInfo, dst, subsetRowBytes, fDstColorType,
|
|
SkIntToScalar(left), SkIntToScalar(top));
|
|
|
|
// translate by the scaled height.
|
|
top += decodeInfo.height();
|
|
}
|
|
// translate by the scaled width.
|
|
left += decodeInfo.width();
|
|
}
|
|
return Result::Ok();
|
|
}
|
|
default:
|
|
SkASSERT(false);
|
|
return Result::Fatal("Invalid fMode");
|
|
}
|
|
return Result::Ok();
|
|
}
|
|
|
|
SkISize CodecSrc::size() const {
|
|
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
|
|
std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded));
|
|
if (nullptr == codec) {
|
|
return {0, 0};
|
|
}
|
|
|
|
auto imageSize = codec->getScaledDimensions(fScale);
|
|
if (fMode == kAnimated_Mode) {
|
|
// We'll draw one of each frame, so make it big enough to hold them all
|
|
// in a grid. The grid will be roughly square, with "factor" frames per
|
|
// row and up to "factor" rows.
|
|
const size_t count = codec->getFrameInfo().size();
|
|
const float root = sqrt((float) count);
|
|
const int factor = sk_float_ceil2int(root);
|
|
imageSize.fWidth = imageSize.fWidth * factor;
|
|
imageSize.fHeight = imageSize.fHeight * sk_float_ceil2int((float) count / (float) factor);
|
|
}
|
|
return imageSize;
|
|
}
|
|
|
|
Name CodecSrc::name() const {
|
|
if (1.0f == fScale) {
|
|
Name name = SkOSPath::Basename(fPath.c_str());
|
|
if (fMode == kAnimated_Mode) {
|
|
name.append("_animated");
|
|
}
|
|
return name;
|
|
}
|
|
SkASSERT(fMode != kAnimated_Mode);
|
|
return get_scaled_name(fPath, fScale);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
AndroidCodecSrc::AndroidCodecSrc(Path path, CodecSrc::DstColorType dstColorType,
|
|
SkAlphaType dstAlphaType, int sampleSize)
|
|
: fPath(path)
|
|
, fDstColorType(dstColorType)
|
|
, fDstAlphaType(dstAlphaType)
|
|
, fSampleSize(sampleSize)
|
|
, fRunSerially(serial_from_path_name(path))
|
|
{}
|
|
|
|
bool AndroidCodecSrc::veto(SinkFlags flags) const {
|
|
// No need to test decoding to non-raster or indirect backend.
|
|
return flags.type != SinkFlags::kRaster
|
|
|| flags.approach != SinkFlags::kDirect;
|
|
}
|
|
|
|
Result AndroidCodecSrc::draw(GrDirectContext*, SkCanvas* canvas) const {
|
|
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
|
|
if (!encoded) {
|
|
return Result::Fatal("Couldn't read %s.", fPath.c_str());
|
|
}
|
|
std::unique_ptr<SkAndroidCodec> codec(SkAndroidCodec::MakeFromData(encoded));
|
|
if (nullptr == codec) {
|
|
return Result::Fatal("Couldn't create android codec for %s.", fPath.c_str());
|
|
}
|
|
|
|
SkImageInfo decodeInfo = codec->getInfo();
|
|
if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType,
|
|
fDstAlphaType)) {
|
|
return Result::Skip("Skipping uninteresting test.");
|
|
}
|
|
|
|
// Scale the image if it is desired.
|
|
SkISize size = codec->getSampledDimensions(fSampleSize);
|
|
|
|
// Visually inspecting very small output images is not necessary. We will
|
|
// cover these cases in unit testing.
|
|
if ((size.width() <= 10 || size.height() <= 10) && 1 != fSampleSize) {
|
|
return Result::Skip("Scaling very small images is uninteresting.");
|
|
}
|
|
decodeInfo = decodeInfo.makeDimensions(size);
|
|
|
|
int bpp = decodeInfo.bytesPerPixel();
|
|
size_t rowBytes = size.width() * bpp;
|
|
SkAutoMalloc pixels(size.height() * rowBytes);
|
|
|
|
SkBitmap bitmap;
|
|
SkImageInfo bitmapInfo = decodeInfo;
|
|
set_bitmap_color_space(&bitmapInfo);
|
|
if (kRGBA_8888_SkColorType == decodeInfo.colorType() ||
|
|
kBGRA_8888_SkColorType == decodeInfo.colorType()) {
|
|
bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType);
|
|
}
|
|
|
|
// Create options for the codec.
|
|
SkAndroidCodec::AndroidOptions options;
|
|
options.fSampleSize = fSampleSize;
|
|
|
|
switch (codec->getAndroidPixels(decodeInfo, pixels.get(), rowBytes, &options)) {
|
|
case SkCodec::kSuccess:
|
|
case SkCodec::kErrorInInput:
|
|
case SkCodec::kIncompleteInput:
|
|
break;
|
|
default:
|
|
return Result::Fatal("Couldn't getPixels %s.", fPath.c_str());
|
|
}
|
|
draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType);
|
|
return Result::Ok();
|
|
}
|
|
|
|
SkISize AndroidCodecSrc::size() const {
|
|
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
|
|
std::unique_ptr<SkAndroidCodec> codec(SkAndroidCodec::MakeFromData(encoded));
|
|
if (nullptr == codec) {
|
|
return {0, 0};
|
|
}
|
|
return codec->getSampledDimensions(fSampleSize);
|
|
}
|
|
|
|
Name AndroidCodecSrc::name() const {
|
|
// We will replicate the names used by CodecSrc so that images can
|
|
// be compared in Gold.
|
|
if (1 == fSampleSize) {
|
|
return SkOSPath::Basename(fPath.c_str());
|
|
}
|
|
return get_scaled_name(fPath, 1.0f / (float) fSampleSize);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
ImageGenSrc::ImageGenSrc(Path path, Mode mode, SkAlphaType alphaType, bool isGpu)
|
|
: fPath(path)
|
|
, fMode(mode)
|
|
, fDstAlphaType(alphaType)
|
|
, fIsGpu(isGpu)
|
|
, fRunSerially(serial_from_path_name(path))
|
|
{}
|
|
|
|
bool ImageGenSrc::veto(SinkFlags flags) const {
|
|
if (fIsGpu) {
|
|
// MSAA runs tend to run out of memory and tests the same code paths as regular gpu configs.
|
|
return flags.type != SinkFlags::kGPU || flags.approach != SinkFlags::kDirect ||
|
|
flags.multisampled == SinkFlags::kMultisampled;
|
|
}
|
|
|
|
return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect;
|
|
}
|
|
|
|
Result ImageGenSrc::draw(GrDirectContext*, SkCanvas* canvas) const {
|
|
if (kRGB_565_SkColorType == canvas->imageInfo().colorType()) {
|
|
return Result::Skip("Uninteresting to test image generator to 565.");
|
|
}
|
|
|
|
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
|
|
if (!encoded) {
|
|
return Result::Fatal("Couldn't read %s.", fPath.c_str());
|
|
}
|
|
|
|
#if defined(SK_BUILD_FOR_WIN)
|
|
// Initialize COM in order to test with WIC.
|
|
SkAutoCoInitialize com;
|
|
if (!com.succeeded()) {
|
|
return Result::Fatal("Could not initialize COM.");
|
|
}
|
|
#endif
|
|
|
|
std::unique_ptr<SkImageGenerator> gen(nullptr);
|
|
switch (fMode) {
|
|
case kCodec_Mode:
|
|
gen = SkCodecImageGenerator::MakeFromEncodedCodec(encoded);
|
|
if (!gen) {
|
|
return Result::Fatal("Could not create codec image generator.");
|
|
}
|
|
break;
|
|
case kPlatform_Mode: {
|
|
#if defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS)
|
|
gen = SkImageGeneratorCG::MakeFromEncodedCG(encoded);
|
|
#elif defined(SK_BUILD_FOR_WIN)
|
|
gen = SkImageGeneratorWIC::MakeFromEncodedWIC(encoded);
|
|
#elif defined(SK_ENABLE_NDK_DECODING)
|
|
gen = SkImageGeneratorNDK::MakeFromEncodedNDK(encoded);
|
|
#endif
|
|
if (!gen) {
|
|
return Result::Fatal("Could not create platform image generator.");
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
SkASSERT(false);
|
|
return Result::Fatal("Invalid image generator mode");
|
|
}
|
|
|
|
// Test deferred decoding path on GPU
|
|
if (fIsGpu) {
|
|
sk_sp<SkImage> image(SkImage::MakeFromGenerator(std::move(gen)));
|
|
if (!image) {
|
|
return Result::Fatal("Could not create image from codec image generator.");
|
|
}
|
|
canvas->drawImage(image, 0, 0);
|
|
return Result::Ok();
|
|
}
|
|
|
|
// Test various color and alpha types on CPU
|
|
SkImageInfo decodeInfo = gen->getInfo().makeAlphaType(fDstAlphaType);
|
|
|
|
int bpp = decodeInfo.bytesPerPixel();
|
|
size_t rowBytes = decodeInfo.width() * bpp;
|
|
SkAutoMalloc pixels(decodeInfo.height() * rowBytes);
|
|
if (!gen->getPixels(decodeInfo, pixels.get(), rowBytes)) {
|
|
Result::Status status = Result::Status::Fatal;
|
|
#if defined(SK_BUILD_FOR_WIN)
|
|
if (kPlatform_Mode == fMode) {
|
|
// Do not issue a fatal error for WIC flakiness.
|
|
status = Result::Status::Skip;
|
|
}
|
|
#endif
|
|
return Result(status, "Image generator could not getPixels() for %s\n", fPath.c_str());
|
|
}
|
|
|
|
set_bitmap_color_space(&decodeInfo);
|
|
draw_to_canvas(canvas, decodeInfo, pixels.get(), rowBytes,
|
|
CodecSrc::kGetFromCanvas_DstColorType);
|
|
return Result::Ok();
|
|
}
|
|
|
|
SkISize ImageGenSrc::size() const {
|
|
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
|
|
std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded));
|
|
if (nullptr == codec) {
|
|
return {0, 0};
|
|
}
|
|
return codec->getInfo().dimensions();
|
|
}
|
|
|
|
Name ImageGenSrc::name() const {
|
|
return SkOSPath::Basename(fPath.c_str());
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
ColorCodecSrc::ColorCodecSrc(Path path, bool decode_to_dst) : fPath(path)
|
|
, fDecodeToDst(decode_to_dst) {}
|
|
|
|
bool ColorCodecSrc::veto(SinkFlags flags) const {
|
|
// Test to direct raster backends (8888 and 565).
|
|
return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect;
|
|
}
|
|
|
|
Result ColorCodecSrc::draw(GrDirectContext*, SkCanvas* canvas) const {
|
|
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
|
|
if (!encoded) {
|
|
return Result::Fatal("Couldn't read %s.", fPath.c_str());
|
|
}
|
|
|
|
std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded));
|
|
if (nullptr == codec) {
|
|
return Result::Fatal("Couldn't create codec for %s.", fPath.c_str());
|
|
}
|
|
|
|
SkImageInfo info = codec->getInfo();
|
|
if (fDecodeToDst) {
|
|
SkImageInfo canvasInfo = canvas->imageInfo();
|
|
if (!canvasInfo.colorSpace()) {
|
|
// This will skip color conversion, and the resulting images will
|
|
// look different from images they are compared against in Gold, but
|
|
// that doesn't mean they are wrong. We have a test verifying that
|
|
// passing a null SkColorSpace skips conversion, so skip this
|
|
// misleading test.
|
|
return Result::Skip("Skipping decoding without color transform.");
|
|
}
|
|
info = canvasInfo.makeDimensions(info.dimensions());
|
|
}
|
|
|
|
SkBitmap bitmap;
|
|
if (!bitmap.tryAllocPixels(info)) {
|
|
return Result::Fatal("Image(%s) is too large (%d x %d)",
|
|
fPath.c_str(), info.width(), info.height());
|
|
}
|
|
|
|
switch (auto r = codec->getPixels(info, bitmap.getPixels(), bitmap.rowBytes())) {
|
|
case SkCodec::kSuccess:
|
|
case SkCodec::kErrorInInput:
|
|
case SkCodec::kIncompleteInput:
|
|
canvas->drawBitmap(bitmap, 0,0);
|
|
return Result::Ok();
|
|
case SkCodec::kInvalidConversion:
|
|
// TODO(mtklein): why are there formats we can't decode to?
|
|
return Result::Skip("SkCodec can't decode to this format.");
|
|
default:
|
|
return Result::Fatal("Couldn't getPixels %s. Error code %d", fPath.c_str(), r);
|
|
}
|
|
}
|
|
|
|
SkISize ColorCodecSrc::size() const {
|
|
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
|
|
std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded));
|
|
if (nullptr == codec) {
|
|
return {0, 0};
|
|
}
|
|
return {codec->getInfo().width(), codec->getInfo().height()};
|
|
}
|
|
|
|
Name ColorCodecSrc::name() const {
|
|
return SkOSPath::Basename(fPath.c_str());
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
static DEFINE_int(skpViewportSize, 1000,
|
|
"Width & height of the viewport used to crop skp rendering.");
|
|
|
|
SKPSrc::SKPSrc(Path path) : fPath(path) { }
|
|
|
|
Result SKPSrc::draw(GrDirectContext*, SkCanvas* canvas) const {
|
|
std::unique_ptr<SkStream> stream = SkStream::MakeFromFile(fPath.c_str());
|
|
if (!stream) {
|
|
return Result::Fatal("Couldn't read %s.", fPath.c_str());
|
|
}
|
|
sk_sp<SkPicture> pic(SkPicture::MakeFromStream(stream.get()));
|
|
if (!pic) {
|
|
return Result::Fatal("Couldn't parse file %s.", fPath.c_str());
|
|
}
|
|
stream = nullptr; // Might as well drop this when we're done with it.
|
|
canvas->clipRect(SkRect::MakeWH(FLAGS_skpViewportSize, FLAGS_skpViewportSize));
|
|
canvas->drawPicture(pic);
|
|
return Result::Ok();
|
|
}
|
|
|
|
static SkRect get_cull_rect_for_skp(const char* path) {
|
|
std::unique_ptr<SkStream> stream = SkStream::MakeFromFile(path);
|
|
if (!stream) {
|
|
return SkRect::MakeEmpty();
|
|
}
|
|
SkPictInfo info;
|
|
if (!SkPicture_StreamIsSKP(stream.get(), &info)) {
|
|
return SkRect::MakeEmpty();
|
|
}
|
|
|
|
return info.fCullRect;
|
|
}
|
|
|
|
SkISize SKPSrc::size() const {
|
|
SkRect viewport = get_cull_rect_for_skp(fPath.c_str());
|
|
if (!viewport.intersect((SkRect::MakeWH(FLAGS_skpViewportSize, FLAGS_skpViewportSize)))) {
|
|
return {0, 0};
|
|
}
|
|
return viewport.roundOut().size();
|
|
}
|
|
|
|
Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
BisectSrc::BisectSrc(Path path, const char* trail) : INHERITED(path), fTrail(trail) {}
|
|
|
|
Result BisectSrc::draw(GrDirectContext* context, SkCanvas* canvas) const {
|
|
struct FoundPath {
|
|
SkPath fPath;
|
|
SkPaint fPaint;
|
|
SkMatrix fViewMatrix;
|
|
};
|
|
|
|
// This subclass of SkCanvas just extracts all the SkPaths (drawn via drawPath) from an SKP.
|
|
class PathFindingCanvas : public SkCanvas {
|
|
public:
|
|
PathFindingCanvas(int width, int height) : SkCanvas(width, height, nullptr) {}
|
|
const SkTArray<FoundPath>& foundPaths() const { return fFoundPaths; }
|
|
|
|
private:
|
|
void onDrawPath(const SkPath& path, const SkPaint& paint) override {
|
|
fFoundPaths.push_back() = {path, paint, this->getTotalMatrix()};
|
|
}
|
|
|
|
SkTArray<FoundPath> fFoundPaths;
|
|
};
|
|
|
|
PathFindingCanvas pathFinder(canvas->getBaseLayerSize().width(),
|
|
canvas->getBaseLayerSize().height());
|
|
Result result = this->INHERITED::draw(context, &pathFinder);
|
|
if (!result.isOk()) {
|
|
return result;
|
|
}
|
|
|
|
int start = 0, end = pathFinder.foundPaths().count();
|
|
for (const char* ch = fTrail.c_str(); *ch; ++ch) {
|
|
int midpt = (start + end) / 2;
|
|
if ('l' == *ch) {
|
|
start = midpt;
|
|
} else if ('r' == *ch) {
|
|
end = midpt;
|
|
}
|
|
}
|
|
|
|
for (int i = start; i < end; ++i) {
|
|
const FoundPath& path = pathFinder.foundPaths()[i];
|
|
SkAutoCanvasRestore acr(canvas, true);
|
|
canvas->concat(path.fViewMatrix);
|
|
canvas->drawPath(path.fPath, path.fPaint);
|
|
}
|
|
|
|
return Result::Ok();
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
#if defined(SK_ENABLE_SKOTTIE)
|
|
static DEFINE_bool(useLottieGlyphPaths, false,
|
|
"Prioritize embedded glyph paths over native fonts.");
|
|
|
|
SkottieSrc::SkottieSrc(Path path) : fPath(std::move(path)) {}
|
|
|
|
Result SkottieSrc::draw(GrDirectContext*, SkCanvas* canvas) const {
|
|
auto resource_provider =
|
|
skresources::DataURIResourceProviderProxy::Make(
|
|
skresources::FileResourceProvider::Make(SkOSPath::Dirname(fPath.c_str()),
|
|
/*predecode=*/true),
|
|
/*predecode=*/true);
|
|
|
|
static constexpr char kInterceptPrefix[] = "__";
|
|
auto precomp_interceptor =
|
|
sk_make_sp<skottie_utils::ExternalAnimationPrecompInterceptor>(resource_provider,
|
|
kInterceptPrefix);
|
|
uint32_t flags = 0;
|
|
if (FLAGS_useLottieGlyphPaths) {
|
|
flags |= skottie::Animation::Builder::kPreferEmbeddedFonts;
|
|
}
|
|
|
|
auto animation = skottie::Animation::Builder(flags)
|
|
.setResourceProvider(std::move(resource_provider))
|
|
.setPrecompInterceptor(std::move(precomp_interceptor))
|
|
.makeFromFile(fPath.c_str());
|
|
if (!animation) {
|
|
return Result::Fatal("Unable to parse file: %s", fPath.c_str());
|
|
}
|
|
|
|
canvas->drawColor(SK_ColorWHITE);
|
|
|
|
const auto t_rate = 1.0f / (kTileCount * kTileCount - 1);
|
|
|
|
// Draw the frames in a shuffled order to exercise non-linear
|
|
// frame progression. The film strip will still be in order left-to-right,
|
|
// top-down, just not drawn in that order.
|
|
static constexpr int frameOrder[] = { 4, 0, 3, 1, 2 };
|
|
static_assert(SK_ARRAY_COUNT(frameOrder) == kTileCount, "");
|
|
|
|
for (int i = 0; i < kTileCount; ++i) {
|
|
const SkScalar y = frameOrder[i] * kTileSize;
|
|
|
|
for (int j = 0; j < kTileCount; ++j) {
|
|
const SkScalar x = frameOrder[j] * kTileSize;
|
|
SkRect dest = SkRect::MakeXYWH(x, y, kTileSize, kTileSize);
|
|
|
|
const auto t = t_rate * (frameOrder[i] * kTileCount + frameOrder[j]);
|
|
{
|
|
SkAutoCanvasRestore acr(canvas, true);
|
|
canvas->clipRect(dest, true);
|
|
canvas->concat(SkMatrix::MakeRectToRect(SkRect::MakeSize(animation->size()),
|
|
dest,
|
|
SkMatrix::kCenter_ScaleToFit));
|
|
animation->seek(t);
|
|
animation->render(canvas);
|
|
}
|
|
}
|
|
}
|
|
|
|
return Result::Ok();
|
|
}
|
|
|
|
SkISize SkottieSrc::size() const {
|
|
return SkISize::Make(kTargetSize, kTargetSize);
|
|
}
|
|
|
|
Name SkottieSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }
|
|
|
|
bool SkottieSrc::veto(SinkFlags flags) const {
|
|
// No need to test to non-(raster||gpu||vector) or indirect backends.
|
|
bool type_ok = flags.type == SinkFlags::kRaster
|
|
|| flags.type == SinkFlags::kGPU
|
|
|| flags.type == SinkFlags::kVector;
|
|
|
|
return !type_ok || flags.approach != SinkFlags::kDirect;
|
|
}
|
|
#endif
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
#if defined(SK_ENABLE_SKRIVE)
|
|
SkRiveSrc::SkRiveSrc(Path path) : fPath(std::move(path)) {}
|
|
|
|
Result SkRiveSrc::draw(GrDirectContext*, SkCanvas* canvas) const {
|
|
auto fileStream = SkFILEStream::Make(fPath.c_str());
|
|
if (!fileStream) {
|
|
return Result::Fatal("Unable to open file: %s", fPath.c_str());
|
|
}
|
|
|
|
const auto skrive = skrive::SkRive::Builder().make(std::move(fileStream));
|
|
if (!skrive) {
|
|
return Result::Fatal("Unable to parse file: %s", fPath.c_str());
|
|
}
|
|
|
|
auto bounds = SkRect::MakeEmpty();
|
|
|
|
for (const auto& ab : skrive->artboards()) {
|
|
const auto& pos = ab->getTranslation();
|
|
const auto& size = ab->getSize();
|
|
|
|
bounds.join(SkRect::MakeXYWH(pos.x, pos.y, size.x, size.y));
|
|
}
|
|
|
|
canvas->drawColor(SK_ColorWHITE);
|
|
|
|
if (!bounds.isEmpty()) {
|
|
// TODO: tiled frames when we add animation support
|
|
SkAutoCanvasRestore acr(canvas, true);
|
|
canvas->concat(SkMatrix::MakeRectToRect(bounds,
|
|
SkRect::MakeWH(kTargetSize, kTargetSize),
|
|
SkMatrix::kCenter_ScaleToFit ));
|
|
for (const auto& ab : skrive->artboards()) {
|
|
ab->render(canvas);
|
|
}
|
|
}
|
|
|
|
return Result::Ok();
|
|
}
|
|
|
|
SkISize SkRiveSrc::size() const {
|
|
return SkISize::Make(kTargetSize, kTargetSize);
|
|
}
|
|
|
|
Name SkRiveSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }
|
|
|
|
bool SkRiveSrc::veto(SinkFlags flags) const {
|
|
// No need to test to non-(raster||gpu||vector) or indirect backends.
|
|
bool type_ok = flags.type == SinkFlags::kRaster
|
|
|| flags.type == SinkFlags::kGPU
|
|
|| flags.type == SinkFlags::kVector;
|
|
|
|
return !type_ok || flags.approach != SinkFlags::kDirect;
|
|
}
|
|
#endif
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
#if defined(SK_XML)
|
|
// Used when the image doesn't have an intrinsic size.
|
|
static const SkSize kDefaultSVGSize = {1000, 1000};
|
|
|
|
// Used to force-scale tiny fixed-size images.
|
|
static const SkSize kMinimumSVGSize = {128, 128};
|
|
|
|
SVGSrc::SVGSrc(Path path)
|
|
: fName(SkOSPath::Basename(path.c_str()))
|
|
, fScale(1) {
|
|
|
|
sk_sp<SkData> data(SkData::MakeFromFileName(path.c_str()));
|
|
if (!data) {
|
|
return;
|
|
}
|
|
|
|
SkMemoryStream stream(std::move(data));
|
|
fDom = SkSVGDOM::MakeFromStream(stream);
|
|
if (!fDom) {
|
|
return;
|
|
}
|
|
|
|
const SkSize& sz = fDom->containerSize();
|
|
if (sz.isEmpty()) {
|
|
// no intrinsic size
|
|
fDom->setContainerSize(kDefaultSVGSize);
|
|
} else {
|
|
fScale = std::max(1.f, std::max(kMinimumSVGSize.width() / sz.width(),
|
|
kMinimumSVGSize.height() / sz.height()));
|
|
}
|
|
}
|
|
|
|
Result SVGSrc::draw(GrDirectContext*, SkCanvas* canvas) const {
|
|
if (!fDom) {
|
|
return Result::Fatal("Unable to parse file: %s", fName.c_str());
|
|
}
|
|
|
|
SkAutoCanvasRestore acr(canvas, true);
|
|
canvas->scale(fScale, fScale);
|
|
fDom->render(canvas);
|
|
|
|
return Result::Ok();
|
|
}
|
|
|
|
SkISize SVGSrc::size() const {
|
|
if (!fDom) {
|
|
return {0, 0};
|
|
}
|
|
|
|
return SkSize{fDom->containerSize().width() * fScale, fDom->containerSize().height() * fScale}
|
|
.toRound();
|
|
}
|
|
|
|
Name SVGSrc::name() const { return fName; }
|
|
|
|
bool SVGSrc::veto(SinkFlags flags) const {
|
|
// No need to test to non-(raster||gpu||vector) or indirect backends.
|
|
bool type_ok = flags.type == SinkFlags::kRaster
|
|
|| flags.type == SinkFlags::kGPU
|
|
|| flags.type == SinkFlags::kVector;
|
|
|
|
return !type_ok || flags.approach != SinkFlags::kDirect;
|
|
}
|
|
|
|
#endif // defined(SK_XML)
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
MSKPSrc::MSKPSrc(Path path) : fPath(path) {
|
|
std::unique_ptr<SkStreamAsset> stream = SkStream::MakeFromFile(fPath.c_str());
|
|
int count = SkMultiPictureDocumentReadPageCount(stream.get());
|
|
if (count > 0) {
|
|
fPages.reset(count);
|
|
(void)SkMultiPictureDocumentReadPageSizes(stream.get(), &fPages[0], fPages.count());
|
|
}
|
|
}
|
|
|
|
int MSKPSrc::pageCount() const { return fPages.count(); }
|
|
|
|
SkISize MSKPSrc::size() const { return this->size(0); }
|
|
SkISize MSKPSrc::size(int i) const {
|
|
return i >= 0 && i < fPages.count() ? fPages[i].fSize.toCeil() : SkISize{0, 0};
|
|
}
|
|
|
|
Result MSKPSrc::draw(GrDirectContext* context, SkCanvas* c) const {
|
|
return this->draw(0, context, c);
|
|
}
|
|
Result MSKPSrc::draw(int i, GrDirectContext*, SkCanvas* canvas) const {
|
|
if (this->pageCount() == 0) {
|
|
return Result::Fatal("Unable to parse MultiPictureDocument file: %s", fPath.c_str());
|
|
}
|
|
if (i >= fPages.count() || i < 0) {
|
|
return Result::Fatal("MultiPictureDocument page number out of range: %d", i);
|
|
}
|
|
SkPicture* page = fPages[i].fPicture.get();
|
|
if (!page) {
|
|
std::unique_ptr<SkStreamAsset> stream = SkStream::MakeFromFile(fPath.c_str());
|
|
if (!stream) {
|
|
return Result::Fatal("Unable to open file: %s", fPath.c_str());
|
|
}
|
|
if (!SkMultiPictureDocumentRead(stream.get(), &fPages[0], fPages.count())) {
|
|
return Result::Fatal("SkMultiPictureDocument reader failed on page %d: %s", i,
|
|
fPath.c_str());
|
|
}
|
|
page = fPages[i].fPicture.get();
|
|
}
|
|
canvas->drawPicture(page);
|
|
return Result::Ok();
|
|
}
|
|
|
|
Name MSKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
Result NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const {
|
|
return src.draw(nullptr, SkMakeNullCanvas().get());
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
static Result compare_bitmaps(const SkBitmap& reference, const SkBitmap& bitmap) {
|
|
// The dimensions are a property of the Src only, and so should be identical.
|
|
SkASSERT(reference.computeByteSize() == bitmap.computeByteSize());
|
|
if (reference.computeByteSize() != bitmap.computeByteSize()) {
|
|
return Result::Fatal("Dimensions don't match reference");
|
|
}
|
|
// All SkBitmaps in DM are tight, so this comparison is easy.
|
|
if (0 != memcmp(reference.getPixels(), bitmap.getPixels(), reference.computeByteSize())) {
|
|
SkString encoded;
|
|
SkString errString("Pixels don't match reference");
|
|
if (BipmapToBase64DataURI(reference, &encoded)) {
|
|
errString.append("\nExpected: ");
|
|
errString.append(encoded);
|
|
} else {
|
|
errString.append("\nExpected image failed to encode: ");
|
|
errString.append(encoded);
|
|
}
|
|
if (BipmapToBase64DataURI(bitmap, &encoded)) {
|
|
errString.append("\nActual: ");
|
|
errString.append(encoded);
|
|
} else {
|
|
errString.append("\nActual image failed to encode: ");
|
|
errString.append(encoded);
|
|
}
|
|
return Result::Fatal(errString);
|
|
}
|
|
return Result::Ok();
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
static DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?");
|
|
static DEFINE_bool(preAbandonGpuContext, false,
|
|
"Test abandoning the GrContext before running the test.");
|
|
static DEFINE_bool(abandonGpuContext, false,
|
|
"Test abandoning the GrContext after running each test.");
|
|
static DEFINE_bool(releaseAndAbandonGpuContext, false,
|
|
"Test releasing all gpu resources and abandoning the GrContext "
|
|
"after running each test");
|
|
static DEFINE_bool(drawOpClip, false, "Clip each GrDrawOp to its device bounds for testing.");
|
|
static DEFINE_bool(programBinaryCache, true, "Use in-memory program binary cache");
|
|
|
|
GPUSink::GPUSink(const SkCommandLineConfigGpu* config,
|
|
const GrContextOptions& grCtxOptions)
|
|
: fContextType(config->getContextType())
|
|
, fContextOverrides(config->getContextOverrides())
|
|
, fSurfType(config->getSurfType())
|
|
, fSampleCount(config->getSamples())
|
|
, fUseDIText(config->getUseDIText())
|
|
, fColorType(config->getColorType())
|
|
, fAlphaType(config->getAlphaType())
|
|
, fColorSpace(sk_ref_sp(config->getColorSpace()))
|
|
, fBaseContextOptions(grCtxOptions) {
|
|
if (FLAGS_programBinaryCache) {
|
|
fBaseContextOptions.fPersistentCache = &fMemoryCache;
|
|
}
|
|
}
|
|
|
|
Result GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream* dstStream, SkString* log) const {
|
|
return this->onDraw(src, dst, dstStream, log, fBaseContextOptions);
|
|
}
|
|
|
|
sk_sp<SkSurface> GPUSink::createDstSurface(GrDirectContext* context, SkISize size,
|
|
GrBackendTexture* backendTexture,
|
|
GrBackendRenderTarget* backendRT) const {
|
|
sk_sp<SkSurface> surface;
|
|
|
|
SkImageInfo info = SkImageInfo::Make(size, fColorType, fAlphaType, fColorSpace);
|
|
uint32_t flags = fUseDIText ? SkSurfaceProps::kUseDeviceIndependentFonts_Flag : 0;
|
|
SkSurfaceProps props(flags, SkSurfaceProps::kLegacyFontHost_InitType);
|
|
|
|
switch (fSurfType) {
|
|
case SkCommandLineConfigGpu::SurfType::kDefault:
|
|
surface = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, info, fSampleCount,
|
|
&props);
|
|
break;
|
|
case SkCommandLineConfigGpu::SurfType::kBackendTexture:
|
|
CreateBackendTexture(context, backendTexture, info.width(), info.height(),
|
|
info.colorType(), SkColors::kTransparent, GrMipmapped::kNo,
|
|
GrRenderable::kYes, GrProtected::kNo);
|
|
surface = SkSurface::MakeFromBackendTexture(context, *backendTexture,
|
|
kTopLeft_GrSurfaceOrigin, fSampleCount,
|
|
fColorType, info.refColorSpace(), &props);
|
|
break;
|
|
case SkCommandLineConfigGpu::SurfType::kBackendRenderTarget:
|
|
if (1 == fSampleCount) {
|
|
auto colorType = SkColorTypeToGrColorType(info.colorType());
|
|
*backendRT = context->priv().getGpu()->createTestingOnlyBackendRenderTarget(
|
|
info.width(), info.height(), colorType);
|
|
surface = SkSurface::MakeFromBackendRenderTarget(
|
|
context, *backendRT, kBottomLeft_GrSurfaceOrigin, info.colorType(),
|
|
info.refColorSpace(), &props);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return surface;
|
|
}
|
|
|
|
bool GPUSink::readBack(SkSurface* surface, SkBitmap* dst) const {
|
|
SkCanvas* canvas = surface->getCanvas();
|
|
SkISize size = surface->imageInfo().dimensions();
|
|
|
|
SkImageInfo info = SkImageInfo::Make(size, fColorType, fAlphaType, fColorSpace);
|
|
dst->allocPixels(info);
|
|
return canvas->readPixels(*dst, 0, 0);
|
|
}
|
|
|
|
Result GPUSink::onDraw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log,
|
|
const GrContextOptions& baseOptions,
|
|
std::function<void(GrContext*)> initContext) const {
|
|
GrContextOptions grOptions = baseOptions;
|
|
|
|
// We don't expect the src to mess with the persistent cache or the executor.
|
|
SkDEBUGCODE(auto cache = grOptions.fPersistentCache);
|
|
SkDEBUGCODE(auto exec = grOptions.fExecutor);
|
|
src.modifyGrContextOptions(&grOptions);
|
|
SkASSERT(cache == grOptions.fPersistentCache);
|
|
SkASSERT(exec == grOptions.fExecutor);
|
|
|
|
GrContextFactory factory(grOptions);
|
|
auto direct = factory.getContextInfo(fContextType, fContextOverrides).directContext();
|
|
if (initContext) {
|
|
initContext(direct);
|
|
}
|
|
|
|
const int maxDimension = direct->priv().caps()->maxTextureSize();
|
|
if (maxDimension < std::max(src.size().width(), src.size().height())) {
|
|
return Result::Skip("Src too large to create a texture.\n");
|
|
}
|
|
|
|
GrBackendTexture backendTexture;
|
|
GrBackendRenderTarget backendRT;
|
|
sk_sp<SkSurface> surface = this->createDstSurface(direct, src.size(),
|
|
&backendTexture, &backendRT);
|
|
if (!surface) {
|
|
return Result::Fatal("Could not create a surface.");
|
|
}
|
|
if (FLAGS_preAbandonGpuContext) {
|
|
factory.abandonContexts();
|
|
}
|
|
SkCanvas* canvas = surface->getCanvas();
|
|
Result result = src.draw(direct, canvas);
|
|
if (!result.isOk()) {
|
|
return result;
|
|
}
|
|
surface->flushAndSubmit();
|
|
if (FLAGS_gpuStats) {
|
|
direct->priv().dumpCacheStats(log);
|
|
direct->priv().dumpGpuStats(log);
|
|
direct->priv().dumpContextStats(log);
|
|
}
|
|
|
|
this->readBack(surface.get(), dst);
|
|
|
|
if (FLAGS_abandonGpuContext) {
|
|
factory.abandonContexts();
|
|
} else if (FLAGS_releaseAndAbandonGpuContext) {
|
|
factory.releaseResourcesAndAbandonContexts();
|
|
}
|
|
if (!direct->abandoned()) {
|
|
surface.reset();
|
|
if (backendTexture.isValid()) {
|
|
direct->deleteBackendTexture(backendTexture);
|
|
}
|
|
if (backendRT.isValid()) {
|
|
direct->priv().getGpu()->deleteTestingOnlyBackendRenderTarget(backendRT);
|
|
}
|
|
}
|
|
if (grOptions.fPersistentCache) {
|
|
direct->storeVkPipelineCacheData();
|
|
}
|
|
return Result::Ok();
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
GPUThreadTestingSink::GPUThreadTestingSink(const SkCommandLineConfigGpu* config,
|
|
const GrContextOptions& grCtxOptions)
|
|
: INHERITED(config, grCtxOptions)
|
|
, fExecutor(SkExecutor::MakeFIFOThreadPool(FLAGS_gpuThreads)) {
|
|
SkASSERT(fExecutor);
|
|
}
|
|
|
|
Result GPUThreadTestingSink::draw(const Src& src, SkBitmap* dst, SkWStream* wStream,
|
|
SkString* log) const {
|
|
// Draw twice, once with worker threads, and once without. Verify that we get the same result.
|
|
// Also, force us to only use the software path renderer, so we really stress-test the threaded
|
|
// version of that code.
|
|
GrContextOptions contextOptions = this->baseContextOptions();
|
|
contextOptions.fGpuPathRenderers = GpuPathRenderers::kNone;
|
|
contextOptions.fExecutor = fExecutor.get();
|
|
|
|
Result result = this->onDraw(src, dst, wStream, log, contextOptions);
|
|
if (!result.isOk() || !dst) {
|
|
return result;
|
|
}
|
|
|
|
SkBitmap reference;
|
|
SkString refLog;
|
|
SkDynamicMemoryWStream refStream;
|
|
contextOptions.fExecutor = nullptr;
|
|
Result refResult = this->onDraw(src, &reference, &refStream, &refLog, contextOptions);
|
|
if (!refResult.isOk()) {
|
|
return refResult;
|
|
}
|
|
|
|
return compare_bitmaps(reference, *dst);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
GPUPersistentCacheTestingSink::GPUPersistentCacheTestingSink(const SkCommandLineConfigGpu* config,
|
|
const GrContextOptions& grCtxOptions)
|
|
: INHERITED(config, grCtxOptions)
|
|
, fCacheType(config->getTestPersistentCache()) {}
|
|
|
|
Result GPUPersistentCacheTestingSink::draw(const Src& src, SkBitmap* dst, SkWStream* wStream,
|
|
SkString* log) const {
|
|
// Draw twice, once with a cold cache, and again with a warm cache. Verify that we get the same
|
|
// result.
|
|
sk_gpu_test::MemoryCache memoryCache;
|
|
GrContextOptions contextOptions = this->baseContextOptions();
|
|
contextOptions.fPersistentCache = &memoryCache;
|
|
if (fCacheType == 2) {
|
|
contextOptions.fShaderCacheStrategy = GrContextOptions::ShaderCacheStrategy::kBackendSource;
|
|
}
|
|
|
|
Result result = this->onDraw(src, dst, wStream, log, contextOptions);
|
|
if (!result.isOk() || !dst) {
|
|
return result;
|
|
}
|
|
|
|
SkBitmap reference;
|
|
SkString refLog;
|
|
SkDynamicMemoryWStream refStream;
|
|
memoryCache.resetCacheStats();
|
|
Result refResult = this->onDraw(src, &reference, &refStream, &refLog, contextOptions);
|
|
if (!refResult.isOk()) {
|
|
return refResult;
|
|
}
|
|
SkASSERT(!memoryCache.numCacheMisses());
|
|
SkASSERT(!memoryCache.numCacheStores());
|
|
|
|
return compare_bitmaps(reference, *dst);
|
|
}
|
|
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
GPUPrecompileTestingSink::GPUPrecompileTestingSink(const SkCommandLineConfigGpu* config,
|
|
const GrContextOptions& grCtxOptions)
|
|
: INHERITED(config, grCtxOptions) {}
|
|
|
|
Result GPUPrecompileTestingSink::draw(const Src& src, SkBitmap* dst, SkWStream* wStream,
|
|
SkString* log) const {
|
|
// Three step process:
|
|
// 1) Draw once with an SkSL cache, and store off the shader blobs.
|
|
// 2) For the second context, pre-compile the shaders to warm the cache.
|
|
// 3) Draw with the second context, ensuring that we get the same result, and no cache misses.
|
|
sk_gpu_test::MemoryCache memoryCache;
|
|
GrContextOptions contextOptions = this->baseContextOptions();
|
|
contextOptions.fPersistentCache = &memoryCache;
|
|
contextOptions.fShaderCacheStrategy = GrContextOptions::ShaderCacheStrategy::kSkSL;
|
|
|
|
Result result = this->onDraw(src, dst, wStream, log, contextOptions);
|
|
if (!result.isOk() || !dst) {
|
|
return result;
|
|
}
|
|
|
|
auto precompileShaders = [&memoryCache](GrContext* context) {
|
|
memoryCache.foreach([context](sk_sp<const SkData> key, sk_sp<SkData> data, int /*count*/) {
|
|
SkAssertResult(context->precompileShader(*key, *data));
|
|
});
|
|
};
|
|
|
|
sk_gpu_test::MemoryCache replayCache;
|
|
GrContextOptions replayOptions = this->baseContextOptions();
|
|
// Ensure that the runtime cache is large enough to hold all of the shaders we pre-compile
|
|
replayOptions.fRuntimeProgramCacheSize = memoryCache.numCacheMisses();
|
|
replayOptions.fPersistentCache = &replayCache;
|
|
|
|
SkBitmap reference;
|
|
SkString refLog;
|
|
SkDynamicMemoryWStream refStream;
|
|
Result refResult = this->onDraw(src, &reference, &refStream, &refLog, replayOptions,
|
|
precompileShaders);
|
|
if (!refResult.isOk()) {
|
|
return refResult;
|
|
}
|
|
SkASSERT(!replayCache.numCacheMisses());
|
|
|
|
return compare_bitmaps(reference, *dst);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
GPUOOPRSink::GPUOOPRSink(const SkCommandLineConfigGpu* config, const GrContextOptions& ctxOptions)
|
|
: INHERITED(config, ctxOptions) {
|
|
}
|
|
|
|
Result GPUOOPRSink::ooprDraw(const Src& src,
|
|
sk_sp<SkSurface> dstSurface,
|
|
GrDirectContext* context) const {
|
|
SkSurfaceCharacterization dstCharacterization;
|
|
SkAssertResult(dstSurface->characterize(&dstCharacterization));
|
|
|
|
SkDeferredDisplayListRecorder recorder(dstCharacterization);
|
|
|
|
Result result = src.draw(context, recorder.getCanvas());
|
|
if (!result.isOk()) {
|
|
return result;
|
|
}
|
|
|
|
auto ddl = recorder.detach();
|
|
|
|
SkDeferredDisplayList::ProgramIterator iter(context, ddl.get());
|
|
for (; !iter.done(); iter.next()) {
|
|
iter.compile();
|
|
}
|
|
|
|
SkAssertResult(dstSurface->draw(std::move(ddl)));
|
|
|
|
return Result::Ok();
|
|
}
|
|
|
|
Result GPUOOPRSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const {
|
|
GrContextOptions contextOptions = this->baseContextOptions();
|
|
src.modifyGrContextOptions(&contextOptions);
|
|
contextOptions.fPersistentCache = nullptr;
|
|
contextOptions.fExecutor = nullptr;
|
|
|
|
GrContextFactory factory(contextOptions);
|
|
|
|
ContextInfo ctxInfo = factory.getContextInfo(this->contextType(), this->contextOverrides());
|
|
auto context = ctxInfo.directContext();
|
|
if (!context) {
|
|
return Result::Fatal("Could not create context.");
|
|
}
|
|
|
|
SkASSERT(context->priv().getGpu());
|
|
|
|
GrBackendTexture backendTexture;
|
|
GrBackendRenderTarget backendRT;
|
|
sk_sp<SkSurface> surface = this->createDstSurface(context, src.size(),
|
|
&backendTexture, &backendRT);
|
|
if (!surface) {
|
|
return Result::Fatal("Could not create a surface.");
|
|
}
|
|
|
|
Result result = this->ooprDraw(src, surface, context);
|
|
if (!result.isOk()) {
|
|
return result;
|
|
}
|
|
|
|
if (FLAGS_gpuStats) {
|
|
context->priv().dumpCacheStats(log);
|
|
context->priv().dumpGpuStats(log);
|
|
context->priv().dumpContextStats(log);
|
|
}
|
|
|
|
if (!this->readBack(surface.get(), dst)) {
|
|
return Result::Fatal("Could not readback from surface.");
|
|
}
|
|
|
|
surface.reset();
|
|
if (backendTexture.isValid()) {
|
|
context->deleteBackendTexture(backendTexture);
|
|
}
|
|
if (backendRT.isValid()) {
|
|
context->priv().getGpu()->deleteTestingOnlyBackendRenderTarget(backendRT);
|
|
}
|
|
|
|
return Result::Ok();
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
GPUDDLSink::GPUDDLSink(const SkCommandLineConfigGpu* config, const GrContextOptions& ctxOptions)
|
|
: INHERITED(config, ctxOptions)
|
|
, fRecordingExecutor(SkExecutor::MakeLIFOThreadPool(1))
|
|
, fGPUExecutor(SkExecutor::MakeFIFOThreadPool(1, false)) {
|
|
}
|
|
|
|
Result GPUDDLSink::ddlDraw(const Src& src,
|
|
sk_sp<SkSurface> dstSurface,
|
|
SkTaskGroup* recordingTaskGroup,
|
|
SkTaskGroup* gpuTaskGroup,
|
|
sk_gpu_test::TestContext* gpuTestCtx,
|
|
GrDirectContext* gpuThreadCtx) const {
|
|
|
|
// We have to do this here bc characterization can hit the SkGpuDevice's thread guard (i.e.,
|
|
// leaving it until the DDLTileHelper ctor will result in multiple threads trying to use the
|
|
// same context (this thread and the gpuThread - which will be uploading textures)).
|
|
SkSurfaceCharacterization dstCharacterization;
|
|
SkAssertResult(dstSurface->characterize(&dstCharacterization));
|
|
|
|
auto size = src.size();
|
|
SkPictureRecorder recorder;
|
|
Result result = src.draw(gpuThreadCtx, recorder.beginRecording(SkIntToScalar(size.width()),
|
|
SkIntToScalar(size.height())));
|
|
if (!result.isOk()) {
|
|
return result;
|
|
}
|
|
sk_sp<SkPicture> inputPicture(recorder.finishRecordingAsPicture());
|
|
|
|
// this is our ultimate final drawing area/rect
|
|
SkIRect viewport = SkIRect::MakeWH(size.fWidth, size.fHeight);
|
|
|
|
DDLPromiseImageHelper promiseImageHelper;
|
|
sk_sp<SkData> compressedPictureData = promiseImageHelper.deflateSKP(inputPicture.get());
|
|
if (!compressedPictureData) {
|
|
return Result::Fatal("GPUDDLSink: Couldn't deflate SkPicture");
|
|
}
|
|
|
|
promiseImageHelper.createCallbackContexts(gpuThreadCtx);
|
|
|
|
// 'gpuTestCtx/gpuThreadCtx' is being shifted to the gpuThread. Leave the main (this)
|
|
// thread w/o a context.
|
|
gpuTestCtx->makeNotCurrent();
|
|
|
|
// Job one for the GPU thread is to make 'gpuTestCtx' current!
|
|
gpuTaskGroup->add([gpuTestCtx] { gpuTestCtx->makeCurrent(); });
|
|
|
|
// TODO: move the image upload to the utility thread
|
|
promiseImageHelper.uploadAllToGPU(gpuTaskGroup, gpuThreadCtx);
|
|
|
|
// Care must be taken when using 'gpuThreadCtx' bc it moves between the gpu-thread and this
|
|
// one. About all it can be consistently used for is GrCaps access and 'defaultBackendFormat'
|
|
// calls.
|
|
constexpr int kNumDivisions = 3;
|
|
DDLTileHelper tiles(gpuThreadCtx, dstCharacterization, viewport, kNumDivisions);
|
|
|
|
tiles.createBackendTextures(gpuTaskGroup, gpuThreadCtx);
|
|
|
|
// Reinflate the compressed picture individually for each thread.
|
|
tiles.createSKPPerTile(compressedPictureData.get(), promiseImageHelper);
|
|
|
|
tiles.kickOffThreadedWork(recordingTaskGroup, gpuTaskGroup, gpuThreadCtx);
|
|
|
|
// We have to wait for the recording threads to schedule all their work on the gpu thread
|
|
// before we can schedule the composition draw and the flush. Note that the gpu thread
|
|
// is not blocked at this point and this thread is borrowing recording work.
|
|
recordingTaskGroup->wait();
|
|
|
|
// Note: at this point the recording thread(s) are stalled out w/ nothing to do.
|
|
|
|
// The recording threads have already scheduled the drawing of each tile's DDL on the gpu
|
|
// thread. The composition DDL must be scheduled last bc it relies on the result of all
|
|
// the tiles' rendering. Additionally, bc we're aliasing the tiles' backend textures,
|
|
// there is nothing in the DAG to automatically force the required order.
|
|
gpuTaskGroup->add([dstSurface, ddl = tiles.composeDDL()]() {
|
|
dstSurface->draw(ddl);
|
|
});
|
|
|
|
// This should be the only explicit flush for the entire DDL draw.
|
|
// TODO: remove the flushes in do_gpu_stuff
|
|
gpuTaskGroup->add([gpuThreadCtx]() {
|
|
// We need to ensure all the GPU work is finished so
|
|
// the following 'deleteAllFromGPU' call will work
|
|
// on Vulkan.
|
|
// TODO: switch over to using the promiseImage callbacks
|
|
// to free the backendTextures. This is complicated a
|
|
// bit by which thread possesses the direct context.
|
|
gpuThreadCtx->flush();
|
|
gpuThreadCtx->submit(true);
|
|
});
|
|
|
|
// The backend textures are created on the gpuThread by the 'uploadAllToGPU' call.
|
|
// It is simpler to also delete them at this point on the gpuThread.
|
|
promiseImageHelper.deleteAllFromGPU(gpuTaskGroup, gpuThreadCtx);
|
|
|
|
tiles.deleteBackendTextures(gpuTaskGroup, gpuThreadCtx);
|
|
|
|
// A flush has already been scheduled on the gpu thread along with the clean up of the backend
|
|
// textures so it is safe to schedule making 'gpuTestCtx' not current on the gpuThread.
|
|
gpuTaskGroup->add([gpuTestCtx] { gpuTestCtx->makeNotCurrent(); });
|
|
|
|
// All the work is scheduled on the gpu thread, we just need to wait
|
|
gpuTaskGroup->wait();
|
|
|
|
return Result::Ok();
|
|
}
|
|
|
|
Result GPUDDLSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const {
|
|
GrContextOptions contextOptions = this->baseContextOptions();
|
|
src.modifyGrContextOptions(&contextOptions);
|
|
contextOptions.fPersistentCache = nullptr;
|
|
contextOptions.fExecutor = nullptr;
|
|
|
|
GrContextFactory factory(contextOptions);
|
|
|
|
// This captures the context destined to be the main gpu context
|
|
ContextInfo mainCtxInfo = factory.getContextInfo(this->contextType(), this->contextOverrides());
|
|
sk_gpu_test::TestContext* mainTestCtx = mainCtxInfo.testContext();
|
|
auto mainCtx = mainCtxInfo.directContext();
|
|
if (!mainCtx) {
|
|
return Result::Fatal("Could not create context.");
|
|
}
|
|
|
|
SkASSERT(mainCtx->priv().getGpu());
|
|
|
|
// TODO: make use of 'otherCtx' for uploads & compilation
|
|
#if 0
|
|
// This captures the context destined to be the utility context. It is in a share group
|
|
// with the main context
|
|
ContextInfo otherCtxInfo = factory.getSharedContextInfo(mainCtx);
|
|
sk_gpu_test::TestContext* otherTestCtx = otherCtxInfo.testContext();
|
|
GrContext* otherCtx = otherCtxInfo.grContext();
|
|
if (!otherCtx) {
|
|
return Result::Fatal("Cound not create shared context.");
|
|
}
|
|
|
|
SkASSERT(otherCtx->priv().getGpu());
|
|
#endif
|
|
|
|
SkTaskGroup recordingTaskGroup(*fRecordingExecutor);
|
|
SkTaskGroup gpuTaskGroup(*fGPUExecutor);
|
|
|
|
// Make sure 'mainCtx' is current
|
|
mainTestCtx->makeCurrent();
|
|
|
|
GrBackendTexture backendTexture;
|
|
GrBackendRenderTarget backendRT;
|
|
sk_sp<SkSurface> surface = this->createDstSurface(mainCtx, src.size(),
|
|
&backendTexture, &backendRT);
|
|
if (!surface) {
|
|
return Result::Fatal("Could not create a surface.");
|
|
}
|
|
|
|
Result result = this->ddlDraw(src, surface, &recordingTaskGroup, &gpuTaskGroup,
|
|
mainTestCtx, mainCtx);
|
|
if (!result.isOk()) {
|
|
return result;
|
|
}
|
|
|
|
// 'ddlDraw' will have made 'mainCtx' not current on the gpuThread
|
|
mainTestCtx->makeCurrent();
|
|
|
|
if (FLAGS_gpuStats) {
|
|
mainCtx->priv().dumpCacheStats(log);
|
|
mainCtx->priv().dumpGpuStats(log);
|
|
mainCtx->priv().dumpContextStats(log);
|
|
|
|
#if 0
|
|
otherCtx->priv().dumpCacheStats(log);
|
|
otherCtx->priv().dumpGpuStats(log);
|
|
otherCtx->priv().dumpContextStats(log);
|
|
#endif
|
|
}
|
|
|
|
if (!this->readBack(surface.get(), dst)) {
|
|
return Result::Fatal("Could not readback from surface.");
|
|
}
|
|
|
|
surface.reset();
|
|
if (backendTexture.isValid()) {
|
|
mainCtx->deleteBackendTexture(backendTexture);
|
|
}
|
|
if (backendRT.isValid()) {
|
|
mainCtx->priv().getGpu()->deleteTestingOnlyBackendRenderTarget(backendRT);
|
|
}
|
|
|
|
return Result::Ok();
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
static Result draw_skdocument(const Src& src, SkDocument* doc, SkWStream* dst) {
|
|
if (src.size().isEmpty()) {
|
|
return Result::Fatal("Source has empty dimensions");
|
|
}
|
|
SkASSERT(doc);
|
|
int pageCount = src.pageCount();
|
|
for (int i = 0; i < pageCount; ++i) {
|
|
int width = src.size(i).width(), height = src.size(i).height();
|
|
SkCanvas* canvas =
|
|
doc->beginPage(SkIntToScalar(width), SkIntToScalar(height));
|
|
if (!canvas) {
|
|
return Result::Fatal("SkDocument::beginPage(w,h) returned nullptr");
|
|
}
|
|
Result result = src.draw(i, nullptr, canvas);
|
|
if (!result.isOk()) {
|
|
return result;
|
|
}
|
|
doc->endPage();
|
|
}
|
|
doc->close();
|
|
dst->flush();
|
|
return Result::Ok();
|
|
}
|
|
|
|
Result PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
|
|
SkPDF::Metadata metadata;
|
|
metadata.fTitle = src.name();
|
|
metadata.fSubject = "rendering correctness test";
|
|
metadata.fCreator = "Skia/DM";
|
|
metadata.fRasterDPI = fRasterDpi;
|
|
metadata.fPDFA = fPDFA;
|
|
#if SK_PDF_TEST_EXECUTOR
|
|
std::unique_ptr<SkExecutor> executor = SkExecutor::MakeFIFOThreadPool();
|
|
metadata.fExecutor = executor.get();
|
|
#endif
|
|
auto doc = SkPDF::MakeDocument(dst, metadata);
|
|
if (!doc) {
|
|
return Result::Fatal("SkPDF::MakeDocument() returned nullptr");
|
|
}
|
|
return draw_skdocument(src, doc.get(), dst);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
XPSSink::XPSSink() {}
|
|
|
|
#if defined(SK_SUPPORT_XPS)
|
|
static SkTScopedComPtr<IXpsOMObjectFactory> make_xps_factory() {
|
|
IXpsOMObjectFactory* factory;
|
|
HRN(CoCreateInstance(CLSID_XpsOMObjectFactory,
|
|
nullptr,
|
|
CLSCTX_INPROC_SERVER,
|
|
IID_PPV_ARGS(&factory)));
|
|
return SkTScopedComPtr<IXpsOMObjectFactory>(factory);
|
|
}
|
|
|
|
Result XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
|
|
SkAutoCoInitialize com;
|
|
if (!com.succeeded()) {
|
|
return Result::Fatal("Could not initialize COM.");
|
|
}
|
|
SkTScopedComPtr<IXpsOMObjectFactory> factory = make_xps_factory();
|
|
if (!factory) {
|
|
return Result::Fatal("Failed to create XPS Factory.");
|
|
}
|
|
auto doc = SkXPS::MakeDocument(dst, factory.get());
|
|
if (!doc) {
|
|
return Result::Fatal("SkXPS::MakeDocument() returned nullptr");
|
|
}
|
|
return draw_skdocument(src, doc.get(), dst);
|
|
}
|
|
#else
|
|
Result XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
|
|
return Result::Fatal("XPS not supported on this platform.");
|
|
}
|
|
#endif
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
SKPSink::SKPSink() {}
|
|
|
|
Result SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
|
|
auto size = SkSize::Make(src.size());
|
|
SkPictureRecorder recorder;
|
|
Result result = src.draw(nullptr, recorder.beginRecording(size.width(), size.height()));
|
|
if (!result.isOk()) {
|
|
return result;
|
|
}
|
|
recorder.finishRecordingAsPicture()->serialize(dst);
|
|
return Result::Ok();
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
Result DebugSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
|
|
DebugCanvas debugCanvas(src.size().width(), src.size().height());
|
|
Result result = src.draw(nullptr, &debugCanvas);
|
|
if (!result.isOk()) {
|
|
return result;
|
|
}
|
|
std::unique_ptr<SkCanvas> nullCanvas = SkMakeNullCanvas();
|
|
UrlDataManager dataManager(SkString("data"));
|
|
SkJSONWriter writer(dst, SkJSONWriter::Mode::kPretty);
|
|
writer.beginObject(); // root
|
|
debugCanvas.toJSON(writer, dataManager, nullCanvas.get());
|
|
writer.endObject(); // root
|
|
writer.flush();
|
|
return Result::Ok();
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
SVGSink::SVGSink(int pageIndex) : fPageIndex(pageIndex) {}
|
|
|
|
Result SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
|
|
#if defined(SK_XML)
|
|
if (src.pageCount() > 1) {
|
|
int pageCount = src.pageCount();
|
|
if (fPageIndex > pageCount - 1) {
|
|
return Result::Fatal("Page index %d too high for document with only %d pages.",
|
|
fPageIndex, pageCount);
|
|
}
|
|
}
|
|
return src.draw(fPageIndex, nullptr,
|
|
SkSVGCanvas::Make(SkRect::MakeWH(SkIntToScalar(src.size().width()),
|
|
SkIntToScalar(src.size().height())),
|
|
dst)
|
|
.get());
|
|
#else
|
|
(void)fPageIndex;
|
|
return Result::Fatal("SVG sink is disabled.");
|
|
#endif // SK_XML
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
RasterSink::RasterSink(SkColorType colorType, sk_sp<SkColorSpace> colorSpace)
|
|
: fColorType(colorType)
|
|
, fColorSpace(std::move(colorSpace)) {}
|
|
|
|
Result RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const {
|
|
const SkISize size = src.size();
|
|
// If there's an appropriate alpha type for this color type, use it, otherwise use premul.
|
|
SkAlphaType alphaType = kPremul_SkAlphaType;
|
|
(void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType);
|
|
|
|
dst->allocPixelsFlags(SkImageInfo::Make(size, fColorType, alphaType, fColorSpace),
|
|
SkBitmap::kZeroPixels_AllocFlag);
|
|
|
|
SkCanvas canvas(*dst);
|
|
return src.draw(nullptr, &canvas);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
// Handy for front-patching a Src. Do whatever up-front work you need, then call draw_to_canvas(),
|
|
// passing the Sink draw() arguments, a size, and a function draws into an SkCanvas.
|
|
// Several examples below.
|
|
|
|
template <typename Fn>
|
|
static Result draw_to_canvas(Sink* sink, SkBitmap* bitmap, SkWStream* stream, SkString* log,
|
|
SkISize size, const Fn& draw) {
|
|
class ProxySrc : public Src {
|
|
public:
|
|
ProxySrc(SkISize size, const Fn& draw) : fSize(size), fDraw(draw) {}
|
|
Result draw(GrDirectContext*, SkCanvas* canvas) const override { return fDraw(canvas); }
|
|
Name name() const override { return "ProxySrc"; }
|
|
SkISize size() const override { return fSize; }
|
|
private:
|
|
SkISize fSize;
|
|
const Fn& fDraw;
|
|
};
|
|
return sink->draw(ProxySrc(size, draw), bitmap, stream, log);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
static DEFINE_bool(check, true, "If true, have most Via- modes fail if they affect the output.");
|
|
|
|
// Is *bitmap identical to what you get drawing src into sink?
|
|
static Result check_against_reference(const SkBitmap* bitmap, const Src& src, Sink* sink) {
|
|
// We can only check raster outputs.
|
|
// (Non-raster outputs like .pdf, .skp, .svg may differ but still draw identically.)
|
|
if (FLAGS_check && bitmap) {
|
|
SkBitmap reference;
|
|
SkString log;
|
|
SkDynamicMemoryWStream wStream;
|
|
Result result = sink->draw(src, &reference, &wStream, &log);
|
|
// If we can draw into this Sink via some pipeline, we should be able to draw directly.
|
|
SkASSERT(result.isOk());
|
|
if (!result.isOk()) {
|
|
return result;
|
|
}
|
|
return compare_bitmaps(reference, *bitmap);
|
|
}
|
|
return Result::Ok();
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) {
|
|
SkRect bounds = SkRect::MakeIWH(srcW, srcH);
|
|
matrix->mapRect(&bounds);
|
|
matrix->postTranslate(-bounds.x(), -bounds.y());
|
|
return {SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height())};
|
|
}
|
|
|
|
ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {}
|
|
|
|
Result ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
SkMatrix matrix = fMatrix;
|
|
SkISize size = auto_compute_translate(&matrix, src.size().width(), src.size().height());
|
|
return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) {
|
|
canvas->concat(matrix);
|
|
return src.draw(nullptr, canvas);
|
|
});
|
|
}
|
|
|
|
// Undoes any flip or 90 degree rotate without changing the scale of the bitmap.
|
|
// This should be pixel-preserving.
|
|
ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {}
|
|
|
|
Result ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
Result result = fSink->draw(src, bitmap, stream, log);
|
|
if (!result.isOk()) {
|
|
return result;
|
|
}
|
|
|
|
SkMatrix inverse;
|
|
if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) {
|
|
return Result::Fatal("Cannot upright --matrix.");
|
|
}
|
|
SkMatrix upright = SkMatrix::I();
|
|
upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX()));
|
|
upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY()));
|
|
upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX()));
|
|
upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY()));
|
|
|
|
SkBitmap uprighted;
|
|
SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height());
|
|
uprighted.allocPixels(bitmap->info().makeDimensions(size));
|
|
|
|
SkCanvas canvas(uprighted);
|
|
canvas.concat(upright);
|
|
SkPaint paint;
|
|
paint.setBlendMode(SkBlendMode::kSrc);
|
|
canvas.drawBitmap(*bitmap, 0, 0, &paint);
|
|
|
|
*bitmap = uprighted;
|
|
return Result::Ok();
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
Result ViaSerialization::draw(
|
|
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
// Record our Src into a picture.
|
|
auto size = src.size();
|
|
SkPictureRecorder recorder;
|
|
Result result = src.draw(nullptr, recorder.beginRecording(SkIntToScalar(size.width()),
|
|
SkIntToScalar(size.height())));
|
|
if (!result.isOk()) {
|
|
return result;
|
|
}
|
|
sk_sp<SkPicture> pic(recorder.finishRecordingAsPicture());
|
|
|
|
// Serialize it and then deserialize it.
|
|
sk_sp<SkPicture> deserialized(SkPicture::MakeFromData(pic->serialize().get()));
|
|
|
|
result = draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) {
|
|
canvas->drawPicture(deserialized);
|
|
return Result::Ok();
|
|
});
|
|
if (!result.isOk()) {
|
|
return result;
|
|
}
|
|
|
|
return check_against_reference(bitmap, src, fSink.get());
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
ViaDDL::ViaDDL(int numReplays, int numDivisions, Sink* sink)
|
|
: Via(sink), fNumReplays(numReplays), fNumDivisions(numDivisions) {}
|
|
|
|
Result ViaDDL::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
auto size = src.size();
|
|
SkPictureRecorder recorder;
|
|
Result result = src.draw(nullptr, recorder.beginRecording(SkIntToScalar(size.width()),
|
|
SkIntToScalar(size.height())));
|
|
if (!result.isOk()) {
|
|
return result;
|
|
}
|
|
sk_sp<SkPicture> inputPicture(recorder.finishRecordingAsPicture());
|
|
|
|
// this is our ultimate final drawing area/rect
|
|
SkIRect viewport = SkIRect::MakeWH(size.fWidth, size.fHeight);
|
|
|
|
DDLPromiseImageHelper promiseImageHelper;
|
|
sk_sp<SkData> compressedPictureData = promiseImageHelper.deflateSKP(inputPicture.get());
|
|
if (!compressedPictureData) {
|
|
return Result::Fatal("ViaDDL: Couldn't deflate SkPicture");
|
|
}
|
|
auto draw = [&](SkCanvas* canvas) -> Result {
|
|
auto direct = canvas->recordingContext() ? canvas->recordingContext()->asDirectContext()
|
|
: nullptr;
|
|
if (!direct) {
|
|
return Result::Fatal("ViaDDL: DDLs are GPU only");
|
|
}
|
|
SkSurface* tmp = canvas->getSurface();
|
|
if (!tmp) {
|
|
return Result::Fatal("ViaDDL: cannot get surface from canvas");
|
|
}
|
|
sk_sp<SkSurface> dstSurface = sk_ref_sp(tmp);
|
|
|
|
SkSurfaceCharacterization dstCharacterization;
|
|
SkAssertResult(dstSurface->characterize(&dstCharacterization));
|
|
|
|
promiseImageHelper.createCallbackContexts(direct);
|
|
|
|
// This is here bc this is the first point where we have access to the context
|
|
promiseImageHelper.uploadAllToGPU(nullptr, direct);
|
|
// We draw N times, with a clear between.
|
|
for (int replay = 0; replay < fNumReplays; ++replay) {
|
|
if (replay > 0) {
|
|
// Clear the drawing of the previous replay
|
|
canvas->clear(SK_ColorTRANSPARENT);
|
|
}
|
|
// First, create all the tiles (including their individual dest surfaces)
|
|
DDLTileHelper tiles(direct, dstCharacterization, viewport, fNumDivisions);
|
|
|
|
tiles.createBackendTextures(nullptr, direct);
|
|
|
|
// Second, reinflate the compressed picture individually for each thread
|
|
// This recreates the promise SkImages on each replay iteration. We are currently
|
|
// relying on this to test using a SkPromiseImageTexture to fulfill different
|
|
// SkImages. On each replay the promise SkImages are recreated in createSKPPerTile.
|
|
tiles.createSKPPerTile(compressedPictureData.get(), promiseImageHelper);
|
|
|
|
// Third, create the DDLs in parallel
|
|
tiles.createDDLsInParallel();
|
|
|
|
if (replay == fNumReplays - 1) {
|
|
// All the DDLs are created and they ref any created promise images which,
|
|
// in turn, ref the callback contexts. If it is the last run, drop the
|
|
// promise image helper's refs on the callback contexts.
|
|
promiseImageHelper.reset();
|
|
// Note: we cannot drop the tiles' callback contexts here bc they are needed
|
|
// to create each tile's destination surface.
|
|
}
|
|
|
|
// Fourth, synchronously render the display lists into the dest tiles
|
|
// TODO: it would be cool to not wait until all the tiles are drawn to begin
|
|
// drawing to the GPU and composing to the final surface
|
|
tiles.precompileAndDrawAllTiles(direct);
|
|
|
|
if (replay == fNumReplays - 1) {
|
|
// At this point the compose DDL holds refs to the composition promise images
|
|
// which, in turn, hold refs on the tile callback contexts. If it is the last run,
|
|
// drop the refs on tile callback contexts.
|
|
tiles.dropCallbackContexts();
|
|
}
|
|
|
|
dstSurface->draw(tiles.composeDDL());
|
|
|
|
// We need to ensure all the GPU work is finished so the promise image callback
|
|
// contexts will delete all the backend textures.
|
|
direct->flush();
|
|
direct->submit(true);
|
|
}
|
|
return Result::Ok();
|
|
};
|
|
return draw_to_canvas(fSink.get(), bitmap, stream, log, size, draw);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
Result ViaPicture::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
auto size = src.size();
|
|
Result result = draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) {
|
|
SkPictureRecorder recorder;
|
|
sk_sp<SkPicture> pic;
|
|
Result result = src.draw(nullptr, recorder.beginRecording(SkIntToScalar(size.width()),
|
|
SkIntToScalar(size.height())));
|
|
if (!result.isOk()) {
|
|
return result;
|
|
}
|
|
pic = recorder.finishRecordingAsPicture();
|
|
canvas->drawPicture(pic);
|
|
return result;
|
|
});
|
|
if (!result.isOk()) {
|
|
return result;
|
|
}
|
|
|
|
return check_against_reference(bitmap, src, fSink.get());
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
#ifdef TEST_VIA_SVG
|
|
#include "experimental/svg/model/SkSVGDOM.h"
|
|
#include "include/svg/SkSVGCanvas.h"
|
|
#include "src/xml/SkXMLWriter.h"
|
|
|
|
Result ViaSVG::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
auto size = src.size();
|
|
return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) -> Result {
|
|
SkDynamicMemoryWStream wstream;
|
|
SkXMLStreamWriter writer(&wstream);
|
|
Result result = src.draw(SkSVGCanvas::Make(SkRect::Make(size), &writer).get());
|
|
if (!result.isOk()) {
|
|
return result;
|
|
}
|
|
std::unique_ptr<SkStream> rstream(wstream.detachAsStream());
|
|
auto dom = SkSVGDOM::MakeFromStream(*rstream);
|
|
if (dom) {
|
|
dom->setContainerSize(SkSize::Make(size));
|
|
dom->render(canvas);
|
|
}
|
|
return Result::Ok();
|
|
});
|
|
}
|
|
#endif
|
|
|
|
} // namespace DM
|