8fd97eab1d
Reason for revert: Breaking Android bots Bad use of the utils folder Original issue's description: > Provides various implementations of Android's SkBitmapRegionDecoder. > > Implements testing in DM for these implementations. > > nanobench testing will follow after this. > > BUG=skia: > > Committed: https://skia.googlesource.com/skia/+/76f755e6d54a32f9887ad254ce59a3a62f28bde4 TBR=scroggo@google.com,reed@google.com NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG=skia: Review URL: https://codereview.chromium.org/1322773004
1116 lines
47 KiB
C++
1116 lines
47 KiB
C++
/*
|
|
* Copyright 2015 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "DMSrcSink.h"
|
|
#include "SamplePipeControllers.h"
|
|
#include "SkCodec.h"
|
|
#include "SkCommonFlags.h"
|
|
#include "SkData.h"
|
|
#include "SkDocument.h"
|
|
#include "SkError.h"
|
|
#include "SkFunction.h"
|
|
#include "SkImageGenerator.h"
|
|
#include "SkMultiPictureDraw.h"
|
|
#include "SkNullCanvas.h"
|
|
#include "SkOSFile.h"
|
|
#include "SkPictureData.h"
|
|
#include "SkPictureRecorder.h"
|
|
#include "SkRandom.h"
|
|
#include "SkRecordDraw.h"
|
|
#include "SkRecorder.h"
|
|
#include "SkSVGCanvas.h"
|
|
#include "SkScanlineDecoder.h"
|
|
#include "SkStream.h"
|
|
#include "SkXMLWriter.h"
|
|
#include "SkScaledCodec.h"
|
|
|
|
DEFINE_bool(multiPage, false, "For document-type backends, render the source"
|
|
" into multiple pages");
|
|
|
|
static bool lazy_decode_bitmap(const void* src, size_t size, SkBitmap* dst) {
|
|
SkAutoTUnref<SkData> encoded(SkData::NewWithCopy(src, size));
|
|
return encoded && SkInstallDiscardablePixelRef(encoded, dst);
|
|
}
|
|
|
|
namespace DM {
|
|
|
|
GMSrc::GMSrc(skiagm::GMRegistry::Factory factory) : fFactory(factory) {}
|
|
|
|
Error GMSrc::draw(SkCanvas* canvas) const {
|
|
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
|
|
canvas->concat(gm->getInitialTransform());
|
|
gm->draw(canvas);
|
|
return "";
|
|
}
|
|
|
|
SkISize GMSrc::size() const {
|
|
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
|
|
return gm->getISize();
|
|
}
|
|
|
|
Name GMSrc::name() const {
|
|
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
|
|
return gm->getName();
|
|
}
|
|
|
|
void GMSrc::modifyGrContextOptions(GrContextOptions* options) const {
|
|
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
|
|
gm->modifyGrContextOptions(options);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
CodecSrc::CodecSrc(Path path, Mode mode, DstColorType dstColorType, float scale)
|
|
: fPath(path)
|
|
, fMode(mode)
|
|
, fDstColorType(dstColorType)
|
|
, fScale(scale)
|
|
{}
|
|
|
|
bool CodecSrc::veto(SinkFlags flags) const {
|
|
// No need to test decoding to non-raster or indirect backend.
|
|
// TODO: Once we implement GPU paths (e.g. JPEG YUV), we should use a deferred decode to
|
|
// let the GPU handle it.
|
|
return flags.type != SinkFlags::kRaster
|
|
|| flags.approach != SinkFlags::kDirect;
|
|
}
|
|
|
|
SkScanlineDecoder* start_scanline_decoder(SkData* encoded, const SkImageInfo& info,
|
|
SkPMColor* colorPtr, int* colorCountPtr) {
|
|
SkAutoTDelete<SkScanlineDecoder> scanlineDecoder(SkScanlineDecoder::NewFromData(encoded));
|
|
if (nullptr == scanlineDecoder) {
|
|
return nullptr;
|
|
}
|
|
if (SkCodec::kSuccess != scanlineDecoder->start(info, NULL, colorPtr, colorCountPtr)) {
|
|
return nullptr;
|
|
}
|
|
return scanlineDecoder.detach();
|
|
}
|
|
|
|
Error CodecSrc::draw(SkCanvas* canvas) const {
|
|
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
|
|
if (!encoded) {
|
|
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
|
|
}
|
|
SkAutoTDelete<SkCodec> codec(NULL);
|
|
if (kScaledCodec_Mode == fMode) {
|
|
codec.reset(SkScaledCodec::NewFromData(encoded));
|
|
// TODO (msarett): This should fall through to a fatal error once we support scaled
|
|
// codecs for all image types.
|
|
if (nullptr == codec.get()) {
|
|
return Error::Nonfatal(SkStringPrintf("Couldn't create scaled codec for %s.",
|
|
fPath.c_str()));
|
|
}
|
|
} else {
|
|
codec.reset(SkCodec::NewFromData(encoded));
|
|
}
|
|
if (nullptr == codec.get()) {
|
|
return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str());
|
|
}
|
|
|
|
// Choose the color type to decode to
|
|
SkImageInfo decodeInfo = codec->getInfo();
|
|
SkColorType canvasColorType = canvas->imageInfo().colorType();
|
|
switch (fDstColorType) {
|
|
case kIndex8_Always_DstColorType:
|
|
decodeInfo = codec->getInfo().makeColorType(kIndex_8_SkColorType);
|
|
if (kRGB_565_SkColorType == canvasColorType) {
|
|
return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
|
|
}
|
|
break;
|
|
case kGrayscale_Always_DstColorType:
|
|
decodeInfo = codec->getInfo().makeColorType(kGray_8_SkColorType);
|
|
if (kRGB_565_SkColorType == canvasColorType) {
|
|
return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
|
|
}
|
|
break;
|
|
default:
|
|
decodeInfo = decodeInfo.makeColorType(canvasColorType);
|
|
break;
|
|
}
|
|
|
|
// Try to scale the image if it is desired
|
|
SkISize size = codec->getScaledDimensions(fScale);
|
|
if (size == decodeInfo.dimensions() && 1.0f != fScale) {
|
|
return Error::Nonfatal("Test without scaling is uninteresting.");
|
|
}
|
|
|
|
// Visually inspecting very small output images is not necessary. We will
|
|
// cover these cases in unit testing.
|
|
if ((size.width() <= 10 || size.height() <= 10) && 1.0f != fScale) {
|
|
return Error::Nonfatal("Scaling very small images is uninteresting.");
|
|
}
|
|
decodeInfo = decodeInfo.makeWH(size.width(), size.height());
|
|
|
|
// Construct a color table for the decode if necessary
|
|
SkAutoTUnref<SkColorTable> colorTable(nullptr);
|
|
SkPMColor* colorPtr = nullptr;
|
|
int* colorCountPtr = nullptr;
|
|
int maxColors = 256;
|
|
if (kIndex_8_SkColorType == decodeInfo.colorType()) {
|
|
SkPMColor colors[256];
|
|
colorTable.reset(new SkColorTable(colors, maxColors));
|
|
colorPtr = const_cast<SkPMColor*>(colorTable->readColors());
|
|
colorCountPtr = &maxColors;
|
|
}
|
|
|
|
// FIXME: Currently we cannot draw unpremultiplied sources.
|
|
if (decodeInfo.alphaType() == kUnpremul_SkAlphaType) {
|
|
decodeInfo = decodeInfo.makeAlphaType(kPremul_SkAlphaType);
|
|
}
|
|
|
|
SkBitmap bitmap;
|
|
if (!bitmap.tryAllocPixels(decodeInfo, nullptr, colorTable.get())) {
|
|
return SkStringPrintf("Image(%s) is too large (%d x %d)\n", fPath.c_str(),
|
|
decodeInfo.width(), decodeInfo.height());
|
|
}
|
|
|
|
switch (fMode) {
|
|
case kScaledCodec_Mode:
|
|
case kCodec_Mode: {
|
|
switch (codec->getPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(), nullptr,
|
|
colorPtr, colorCountPtr)) {
|
|
case SkCodec::kSuccess:
|
|
// We consider incomplete to be valid, since we should still decode what is
|
|
// available.
|
|
case SkCodec::kIncompleteInput:
|
|
break;
|
|
case SkCodec::kInvalidConversion:
|
|
return Error::Nonfatal("Incompatible colortype conversion");
|
|
default:
|
|
// Everything else is considered a failure.
|
|
return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str());
|
|
}
|
|
canvas->drawBitmap(bitmap, 0, 0);
|
|
break;
|
|
}
|
|
case kScanline_Mode: {
|
|
SkAutoTDelete<SkScanlineDecoder> scanlineDecoder(
|
|
start_scanline_decoder(encoded.get(), decodeInfo, colorPtr, colorCountPtr));
|
|
if (nullptr == scanlineDecoder) {
|
|
return Error::Nonfatal("Could not start scanline decoder");
|
|
}
|
|
|
|
SkCodec::Result result = SkCodec::kUnimplemented;
|
|
switch (scanlineDecoder->getScanlineOrder()) {
|
|
case SkScanlineDecoder::kTopDown_SkScanlineOrder:
|
|
case SkScanlineDecoder::kBottomUp_SkScanlineOrder:
|
|
case SkScanlineDecoder::kNone_SkScanlineOrder:
|
|
result = scanlineDecoder->getScanlines(bitmap.getAddr(0, 0),
|
|
decodeInfo.height(), bitmap.rowBytes());
|
|
break;
|
|
case SkScanlineDecoder::kOutOfOrder_SkScanlineOrder: {
|
|
for (int y = 0; y < decodeInfo.height(); y++) {
|
|
int dstY = scanlineDecoder->getY();
|
|
void* dstPtr = bitmap.getAddr(0, dstY);
|
|
result = scanlineDecoder->getScanlines(dstPtr, 1, bitmap.rowBytes());
|
|
if (SkCodec::kSuccess != result && SkCodec::kIncompleteInput != result) {
|
|
return SkStringPrintf("%s failed with error message %d",
|
|
fPath.c_str(), (int) result);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (result) {
|
|
case SkCodec::kSuccess:
|
|
case SkCodec::kIncompleteInput:
|
|
break;
|
|
default:
|
|
return SkStringPrintf("%s failed with error message %d",
|
|
fPath.c_str(), (int) result);
|
|
}
|
|
canvas->drawBitmap(bitmap, 0, 0);
|
|
break;
|
|
}
|
|
case kScanline_Subset_Mode: {
|
|
//this mode decodes the image in divisor*divisor subsets, using a scanline decoder
|
|
const int divisor = 2;
|
|
const int w = decodeInfo.width();
|
|
const int h = decodeInfo.height();
|
|
if (divisor > w || divisor > h) {
|
|
return Error::Nonfatal(SkStringPrintf("Cannot decode subset: divisor %d is too big"
|
|
"for %s with dimensions (%d x %d)", divisor, fPath.c_str(), w, h));
|
|
}
|
|
const int subsetWidth = w/divisor;
|
|
const int subsetHeight = h/divisor;
|
|
// One of our subsets will be larger to contain any pixels that do not divide evenly.
|
|
const int extraX = w % divisor;
|
|
const int extraY = h % divisor;
|
|
/*
|
|
* if w or h are not evenly divided by divisor need to adjust width and height of end
|
|
* subsets to cover entire image.
|
|
* Add extraX and extraY to largestSubsetBm's width and height to adjust width
|
|
* and height of end subsets.
|
|
* subsetBm is extracted from largestSubsetBm.
|
|
* subsetBm's size is determined based on the current subset and may be larger for end
|
|
* subsets.
|
|
*/
|
|
SkImageInfo largestSubsetDecodeInfo =
|
|
decodeInfo.makeWH(subsetWidth + extraX, subsetHeight + extraY);
|
|
SkBitmap largestSubsetBm;
|
|
if (!largestSubsetBm.tryAllocPixels(largestSubsetDecodeInfo, nullptr,
|
|
colorTable.get())) {
|
|
return SkStringPrintf("Image(%s) is too large (%d x %d)\n", fPath.c_str(),
|
|
largestSubsetDecodeInfo.width(), largestSubsetDecodeInfo.height());
|
|
}
|
|
const size_t rowBytes = decodeInfo.minRowBytes();
|
|
char* buffer = new char[largestSubsetDecodeInfo.height() * rowBytes];
|
|
SkAutoTDeleteArray<char> lineDeleter(buffer);
|
|
for (int col = 0; col < divisor; col++) {
|
|
//currentSubsetWidth may be larger than subsetWidth for rightmost subsets
|
|
const int currentSubsetWidth = (col + 1 == divisor) ?
|
|
subsetWidth + extraX : subsetWidth;
|
|
const int x = col * subsetWidth;
|
|
for (int row = 0; row < divisor; row++) {
|
|
//currentSubsetHeight may be larger than subsetHeight for bottom subsets
|
|
const int currentSubsetHeight = (row + 1 == divisor) ?
|
|
subsetHeight + extraY : subsetHeight;
|
|
const int y = row * subsetHeight;
|
|
//create scanline decoder for each subset
|
|
SkAutoTDelete<SkScanlineDecoder> decoder(start_scanline_decoder(encoded.get(),
|
|
decodeInfo, colorPtr, colorCountPtr));
|
|
// TODO (msarett): Support this mode for all scanline orderings.
|
|
if (nullptr == decoder || SkScanlineDecoder::kTopDown_SkScanlineOrder !=
|
|
decoder->getScanlineOrder()) {
|
|
if (x == 0 && y == 0) {
|
|
//first try, image may not be compatible
|
|
return Error::Nonfatal("Could not start top-down scanline decoder");
|
|
} else {
|
|
return "Error scanline decoder is nullptr";
|
|
}
|
|
}
|
|
//skip to first line of subset
|
|
const SkCodec::Result skipResult = decoder->skipScanlines(y);
|
|
switch (skipResult) {
|
|
case SkCodec::kSuccess:
|
|
case SkCodec::kIncompleteInput:
|
|
break;
|
|
default:
|
|
return SkStringPrintf("%s failed after attempting to skip %d scanlines"
|
|
"with error message %d", fPath.c_str(), y, (int) skipResult);
|
|
}
|
|
//create and set size of subsetBm
|
|
SkBitmap subsetBm;
|
|
SkIRect bounds = SkIRect::MakeWH(subsetWidth, subsetHeight);
|
|
bounds.setXYWH(0, 0, currentSubsetWidth, currentSubsetHeight);
|
|
SkAssertResult(largestSubsetBm.extractSubset(&subsetBm, bounds));
|
|
SkAutoLockPixels autlockSubsetBm(subsetBm, true);
|
|
const SkCodec::Result subsetResult =
|
|
decoder->getScanlines(buffer, currentSubsetHeight, rowBytes);
|
|
switch (subsetResult) {
|
|
case SkCodec::kSuccess:
|
|
case SkCodec::kIncompleteInput:
|
|
break;
|
|
default:
|
|
return SkStringPrintf("%s failed with error message %d",
|
|
fPath.c_str(), (int) subsetResult);
|
|
}
|
|
const size_t bpp = decodeInfo.bytesPerPixel();
|
|
/*
|
|
* we copy all the lines at once becuase when calling getScanlines for
|
|
* interlaced pngs the entire image must be read regardless of the number
|
|
* of lines requested. Reading an interlaced png in a loop, line-by-line, would
|
|
* decode the entire image height times, which is very slow
|
|
* it is aknowledged that copying each line as you read it in a loop
|
|
* may be faster for other types of images. Since this is a correctness test
|
|
* that's okay.
|
|
*/
|
|
char* bufferRow = buffer;
|
|
for (int subsetY = 0; subsetY < currentSubsetHeight; ++subsetY) {
|
|
memcpy(subsetBm.getAddr(0, subsetY), bufferRow + x*bpp,
|
|
currentSubsetWidth*bpp);
|
|
bufferRow += rowBytes;
|
|
}
|
|
|
|
subsetBm.notifyPixelsChanged();
|
|
canvas->drawBitmap(subsetBm, SkIntToScalar(x), SkIntToScalar(y));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case kStripe_Mode: {
|
|
const int height = decodeInfo.height();
|
|
// This value is chosen arbitrarily. We exercise more cases by choosing a value that
|
|
// does not align with image blocks.
|
|
const int stripeHeight = 37;
|
|
const int numStripes = (height + stripeHeight - 1) / stripeHeight;
|
|
|
|
// Decode odd stripes
|
|
SkAutoTDelete<SkScanlineDecoder> decoder(
|
|
start_scanline_decoder(encoded.get(), decodeInfo, colorPtr, colorCountPtr));
|
|
if (nullptr == decoder ||
|
|
SkScanlineDecoder::kTopDown_SkScanlineOrder != decoder->getScanlineOrder()) {
|
|
// This mode was designed to test the new skip scanlines API in libjpeg-turbo.
|
|
// Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting
|
|
// to run this test for image types that do not have this scanline ordering.
|
|
return Error::Nonfatal("Could not start top-down scanline decoder");
|
|
}
|
|
for (int i = 0; i < numStripes; i += 2) {
|
|
// Skip a stripe
|
|
const int linesToSkip = SkTMin(stripeHeight, height - i * stripeHeight);
|
|
SkCodec::Result result = decoder->skipScanlines(linesToSkip);
|
|
switch (result) {
|
|
case SkCodec::kSuccess:
|
|
case SkCodec::kIncompleteInput:
|
|
break;
|
|
default:
|
|
return SkStringPrintf("Cannot skip scanlines for %s.", fPath.c_str());
|
|
}
|
|
|
|
// Read a stripe
|
|
const int startY = (i + 1) * stripeHeight;
|
|
const int linesToRead = SkTMin(stripeHeight, height - startY);
|
|
if (linesToRead > 0) {
|
|
result = decoder->getScanlines(bitmap.getAddr(0, startY),
|
|
linesToRead, bitmap.rowBytes());
|
|
switch (result) {
|
|
case SkCodec::kSuccess:
|
|
case SkCodec::kIncompleteInput:
|
|
break;
|
|
default:
|
|
return SkStringPrintf("Cannot get scanlines for %s.", fPath.c_str());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Decode even stripes
|
|
const SkCodec::Result startResult = decoder->start(decodeInfo, nullptr, colorPtr,
|
|
colorCountPtr);
|
|
if (SkCodec::kSuccess != startResult) {
|
|
return "Failed to restart scanline decoder with same parameters.";
|
|
}
|
|
for (int i = 0; i < numStripes; i += 2) {
|
|
// Read a stripe
|
|
const int startY = i * stripeHeight;
|
|
const int linesToRead = SkTMin(stripeHeight, height - startY);
|
|
SkCodec::Result result = decoder->getScanlines(bitmap.getAddr(0, startY),
|
|
linesToRead, bitmap.rowBytes());
|
|
switch (result) {
|
|
case SkCodec::kSuccess:
|
|
case SkCodec::kIncompleteInput:
|
|
break;
|
|
default:
|
|
return SkStringPrintf("Cannot get scanlines for %s.", fPath.c_str());
|
|
}
|
|
|
|
// Skip a stripe
|
|
const int linesToSkip = SkTMin(stripeHeight, height - (i + 1) * stripeHeight);
|
|
if (linesToSkip > 0) {
|
|
result = decoder->skipScanlines(linesToSkip);
|
|
switch (result) {
|
|
case SkCodec::kSuccess:
|
|
case SkCodec::kIncompleteInput:
|
|
break;
|
|
default:
|
|
return SkStringPrintf("Cannot skip scanlines for %s.", fPath.c_str());
|
|
}
|
|
}
|
|
}
|
|
canvas->drawBitmap(bitmap, 0, 0);
|
|
break;
|
|
}
|
|
case kSubset_Mode: {
|
|
// Arbitrarily choose a divisor.
|
|
int divisor = 2;
|
|
// Total width/height of the image.
|
|
const int W = codec->getInfo().width();
|
|
const int H = codec->getInfo().height();
|
|
if (divisor > W || divisor > H) {
|
|
return Error::Nonfatal(SkStringPrintf("Cannot codec subset: divisor %d is too big "
|
|
"for %s with dimensions (%d x %d)", divisor,
|
|
fPath.c_str(), W, H));
|
|
}
|
|
// subset dimensions
|
|
// SkWebpCodec, the only one that supports subsets, requires even top/left boundaries.
|
|
const int w = SkAlign2(W / divisor);
|
|
const int h = SkAlign2(H / divisor);
|
|
SkIRect subset;
|
|
SkCodec::Options opts;
|
|
opts.fSubset = ⊂
|
|
SkBitmap subsetBm;
|
|
// We will reuse pixel memory from bitmap.
|
|
void* pixels = bitmap.getPixels();
|
|
// Keep track of left and top (for drawing subsetBm into canvas). We could use
|
|
// fScale * x and fScale * y, but we want integers such that the next subset will start
|
|
// where the last one ended. So we'll add decodeInfo.width() and height().
|
|
int left = 0;
|
|
for (int x = 0; x < W; x += w) {
|
|
int top = 0;
|
|
for (int y = 0; y < H; y+= h) {
|
|
// Do not make the subset go off the edge of the image.
|
|
const int preScaleW = SkTMin(w, W - x);
|
|
const int preScaleH = SkTMin(h, H - y);
|
|
subset.setXYWH(x, y, preScaleW, preScaleH);
|
|
// And scale
|
|
// FIXME: Should we have a version of getScaledDimensions that takes a subset
|
|
// into account?
|
|
decodeInfo = decodeInfo.makeWH(SkScalarRoundToInt(preScaleW * fScale),
|
|
SkScalarRoundToInt(preScaleH * fScale));
|
|
size_t rowBytes = decodeInfo.minRowBytes();
|
|
if (!subsetBm.installPixels(decodeInfo, pixels, rowBytes, colorTable.get(),
|
|
nullptr, nullptr)) {
|
|
return SkStringPrintf("could not install pixels for %s.", fPath.c_str());
|
|
}
|
|
const SkCodec::Result result = codec->getPixels(decodeInfo, pixels, rowBytes,
|
|
&opts, colorPtr, colorCountPtr);
|
|
switch (result) {
|
|
case SkCodec::kSuccess:
|
|
case SkCodec::kIncompleteInput:
|
|
break;
|
|
case SkCodec::kInvalidConversion:
|
|
if (0 == (x|y)) {
|
|
// First subset is okay to return unimplemented.
|
|
return Error::Nonfatal("Incompatible colortype conversion");
|
|
}
|
|
// If the first subset succeeded, a later one should not fail.
|
|
// fall through to failure
|
|
case SkCodec::kUnimplemented:
|
|
if (0 == (x|y)) {
|
|
// First subset is okay to return unimplemented.
|
|
return Error::Nonfatal("subset codec not supported");
|
|
}
|
|
// If the first subset succeeded, why would a later one fail?
|
|
// fall through to failure
|
|
default:
|
|
return SkStringPrintf("subset codec failed to decode (%d, %d, %d, %d) "
|
|
"from %s with dimensions (%d x %d)\t error %d",
|
|
x, y, decodeInfo.width(), decodeInfo.height(),
|
|
fPath.c_str(), W, H, result);
|
|
}
|
|
canvas->drawBitmap(subsetBm, SkIntToScalar(left), SkIntToScalar(top));
|
|
// translate by the scaled height.
|
|
top += decodeInfo.height();
|
|
}
|
|
// translate by the scaled width.
|
|
left += decodeInfo.width();
|
|
}
|
|
return "";
|
|
}
|
|
}
|
|
return "";
|
|
}
|
|
|
|
SkISize CodecSrc::size() const {
|
|
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
|
|
SkAutoTDelete<SkCodec> codec(SkScaledCodec::NewFromData(encoded));
|
|
if (nullptr == codec) {
|
|
// scaledCodec not supported, try regular codec
|
|
codec.reset(SkCodec::NewFromData(encoded));
|
|
if (nullptr == codec) {
|
|
return SkISize::Make(0, 0);
|
|
}
|
|
}
|
|
SkISize size = codec->getScaledDimensions(fScale);
|
|
return size;
|
|
}
|
|
|
|
Name CodecSrc::name() const {
|
|
if (1.0f == fScale) {
|
|
return SkOSPath::Basename(fPath.c_str());
|
|
} else {
|
|
return SkStringPrintf("%s_%.3f", SkOSPath::Basename(fPath.c_str()).c_str(), fScale);
|
|
}
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
ImageSrc::ImageSrc(Path path, int divisor) : fPath(path), fDivisor(divisor) {}
|
|
|
|
bool ImageSrc::veto(SinkFlags flags) const {
|
|
// No need to test decoding to non-raster or indirect backend.
|
|
// TODO: Instead, use lazy decoding to allow the GPU to handle cases like YUV.
|
|
return flags.type != SinkFlags::kRaster
|
|
|| flags.approach != SinkFlags::kDirect;
|
|
}
|
|
|
|
Error ImageSrc::draw(SkCanvas* canvas) const {
|
|
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
|
|
if (!encoded) {
|
|
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
|
|
}
|
|
const SkColorType dstColorType = canvas->imageInfo().colorType();
|
|
if (fDivisor == 0) {
|
|
// Decode the full image.
|
|
SkBitmap bitmap;
|
|
if (!SkImageDecoder::DecodeMemory(encoded->data(), encoded->size(), &bitmap,
|
|
dstColorType, SkImageDecoder::kDecodePixels_Mode)) {
|
|
return SkStringPrintf("Couldn't decode %s.", fPath.c_str());
|
|
}
|
|
if (kRGB_565_SkColorType == dstColorType && !bitmap.isOpaque()) {
|
|
// Do not draw a bitmap with alpha to a destination without alpha.
|
|
return Error::Nonfatal("Uninteresting to decode image with alpha into 565.");
|
|
}
|
|
encoded.reset((SkData*)nullptr); // Might as well drop this when we're done with it.
|
|
canvas->drawBitmap(bitmap, 0,0);
|
|
return "";
|
|
}
|
|
// Decode subsets. This is a little involved.
|
|
SkAutoTDelete<SkMemoryStream> stream(new SkMemoryStream(encoded));
|
|
SkAutoTDelete<SkImageDecoder> decoder(SkImageDecoder::Factory(stream.get()));
|
|
if (!decoder) {
|
|
return SkStringPrintf("Can't find a good decoder for %s.", fPath.c_str());
|
|
}
|
|
stream->rewind();
|
|
int w,h;
|
|
if (!decoder->buildTileIndex(stream.detach(), &w, &h)) {
|
|
return Error::Nonfatal("Subset decoding not supported.");
|
|
}
|
|
|
|
// Divide the image into subsets that cover the entire image.
|
|
if (fDivisor > w || fDivisor > h) {
|
|
return Error::Nonfatal(SkStringPrintf("Cannot decode subset: divisor %d is too big"
|
|
"for %s with dimensions (%d x %d)", fDivisor, fPath.c_str(), w, h));
|
|
}
|
|
const int subsetWidth = w / fDivisor,
|
|
subsetHeight = h / fDivisor;
|
|
for (int y = 0; y < h; y += subsetHeight) {
|
|
for (int x = 0; x < w; x += subsetWidth) {
|
|
SkBitmap subset;
|
|
SkIRect rect = SkIRect::MakeXYWH(x, y, subsetWidth, subsetHeight);
|
|
if (!decoder->decodeSubset(&subset, rect, dstColorType)) {
|
|
return SkStringPrintf("Could not decode subset (%d, %d, %d, %d).",
|
|
x, y, x+subsetWidth, y+subsetHeight);
|
|
}
|
|
if (kRGB_565_SkColorType == dstColorType && !subset.isOpaque()) {
|
|
// Do not draw a bitmap with alpha to a destination without alpha.
|
|
// This is not an error, but there is nothing interesting to show.
|
|
|
|
// This should only happen on the first iteration through the loop.
|
|
SkASSERT(0 == x && 0 == y);
|
|
|
|
return Error::Nonfatal("Uninteresting to decode image with alpha into 565.");
|
|
}
|
|
canvas->drawBitmap(subset, SkIntToScalar(x), SkIntToScalar(y));
|
|
}
|
|
}
|
|
return "";
|
|
}
|
|
|
|
SkISize ImageSrc::size() const {
|
|
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
|
|
SkBitmap bitmap;
|
|
if (!encoded || !SkImageDecoder::DecodeMemory(encoded->data(),
|
|
encoded->size(),
|
|
&bitmap,
|
|
kUnknown_SkColorType,
|
|
SkImageDecoder::kDecodeBounds_Mode)) {
|
|
return SkISize::Make(0,0);
|
|
}
|
|
return bitmap.dimensions();
|
|
}
|
|
|
|
Name ImageSrc::name() const {
|
|
return SkOSPath::Basename(fPath.c_str());
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
static const SkRect kSKPViewport = {0,0, 1000,1000};
|
|
|
|
SKPSrc::SKPSrc(Path path) : fPath(path) {}
|
|
|
|
Error SKPSrc::draw(SkCanvas* canvas) const {
|
|
SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(fPath.c_str()));
|
|
if (!stream) {
|
|
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
|
|
}
|
|
SkAutoTUnref<SkPicture> pic(SkPicture::CreateFromStream(stream, &lazy_decode_bitmap));
|
|
if (!pic) {
|
|
return SkStringPrintf("Couldn't decode %s as a picture.", fPath.c_str());
|
|
}
|
|
stream.reset((SkStream*)nullptr); // Might as well drop this when we're done with it.
|
|
|
|
canvas->clipRect(kSKPViewport);
|
|
canvas->drawPicture(pic);
|
|
return "";
|
|
}
|
|
|
|
SkISize SKPSrc::size() const {
|
|
SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(fPath.c_str()));
|
|
if (!stream) {
|
|
return SkISize::Make(0,0);
|
|
}
|
|
SkPictInfo info;
|
|
if (!SkPicture::InternalOnly_StreamIsSKP(stream, &info)) {
|
|
return SkISize::Make(0,0);
|
|
}
|
|
SkRect viewport = kSKPViewport;
|
|
if (!viewport.intersect(info.fCullRect)) {
|
|
return SkISize::Make(0,0);
|
|
}
|
|
return viewport.roundOut().size();
|
|
}
|
|
|
|
Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
Error NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const {
|
|
SkAutoTDelete<SkCanvas> canvas(SkCreateNullCanvas());
|
|
return src.draw(canvas);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?");
|
|
|
|
GPUSink::GPUSink(GrContextFactory::GLContextType ct,
|
|
GrGLStandard api,
|
|
int samples,
|
|
bool diText,
|
|
bool threaded)
|
|
: fContextType(ct)
|
|
, fGpuAPI(api)
|
|
, fSampleCount(samples)
|
|
, fUseDIText(diText)
|
|
, fThreaded(threaded) {}
|
|
|
|
int GPUSink::enclave() const {
|
|
return fThreaded ? kAnyThread_Enclave : kGPU_Enclave;
|
|
}
|
|
|
|
void PreAbandonGpuContextErrorHandler(SkError, void*) {}
|
|
|
|
Error GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const {
|
|
GrContextOptions options;
|
|
src.modifyGrContextOptions(&options);
|
|
|
|
GrContextFactory factory(options);
|
|
const SkISize size = src.size();
|
|
const SkImageInfo info =
|
|
SkImageInfo::Make(size.width(), size.height(), kN32_SkColorType, kPremul_SkAlphaType);
|
|
SkAutoTUnref<SkSurface> surface(
|
|
NewGpuSurface(&factory, fContextType, fGpuAPI, info, fSampleCount, fUseDIText));
|
|
if (!surface) {
|
|
return "Could not create a surface.";
|
|
}
|
|
if (FLAGS_preAbandonGpuContext) {
|
|
SkSetErrorCallback(&PreAbandonGpuContextErrorHandler, nullptr);
|
|
factory.abandonContexts();
|
|
}
|
|
SkCanvas* canvas = surface->getCanvas();
|
|
Error err = src.draw(canvas);
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
canvas->flush();
|
|
if (FLAGS_gpuStats) {
|
|
canvas->getGrContext()->dumpCacheStats(log);
|
|
canvas->getGrContext()->dumpGpuStats(log);
|
|
}
|
|
dst->allocPixels(info);
|
|
canvas->readPixels(dst, 0, 0);
|
|
if (FLAGS_abandonGpuContext) {
|
|
factory.abandonContexts();
|
|
}
|
|
return "";
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
static Error draw_skdocument(const Src& src, SkDocument* doc, SkWStream* dst) {
|
|
// Print the given DM:Src to a document, breaking on 8.5x11 pages.
|
|
SkASSERT(doc);
|
|
int width = src.size().width(),
|
|
height = src.size().height();
|
|
|
|
if (FLAGS_multiPage) {
|
|
const int kLetterWidth = 612, // 8.5 * 72
|
|
kLetterHeight = 792; // 11 * 72
|
|
const SkRect letter = SkRect::MakeWH(SkIntToScalar(kLetterWidth),
|
|
SkIntToScalar(kLetterHeight));
|
|
|
|
int xPages = ((width - 1) / kLetterWidth) + 1;
|
|
int yPages = ((height - 1) / kLetterHeight) + 1;
|
|
|
|
for (int y = 0; y < yPages; ++y) {
|
|
for (int x = 0; x < xPages; ++x) {
|
|
int w = SkTMin(kLetterWidth, width - (x * kLetterWidth));
|
|
int h = SkTMin(kLetterHeight, height - (y * kLetterHeight));
|
|
SkCanvas* canvas =
|
|
doc->beginPage(SkIntToScalar(w), SkIntToScalar(h));
|
|
if (!canvas) {
|
|
return "SkDocument::beginPage(w,h) returned nullptr";
|
|
}
|
|
canvas->clipRect(letter);
|
|
canvas->translate(-letter.width() * x, -letter.height() * y);
|
|
Error err = src.draw(canvas);
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
doc->endPage();
|
|
}
|
|
}
|
|
} else {
|
|
SkCanvas* canvas =
|
|
doc->beginPage(SkIntToScalar(width), SkIntToScalar(height));
|
|
if (!canvas) {
|
|
return "SkDocument::beginPage(w,h) returned nullptr";
|
|
}
|
|
Error err = src.draw(canvas);
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
doc->endPage();
|
|
}
|
|
if (!doc->close()) {
|
|
return "SkDocument::close() returned false";
|
|
}
|
|
dst->flush();
|
|
return "";
|
|
}
|
|
|
|
PDFSink::PDFSink() {}
|
|
|
|
Error PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
|
|
SkAutoTUnref<SkDocument> doc(SkDocument::CreatePDF(dst));
|
|
if (!doc) {
|
|
return "SkDocument::CreatePDF() returned nullptr";
|
|
}
|
|
return draw_skdocument(src, doc.get(), dst);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
XPSSink::XPSSink() {}
|
|
|
|
Error XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
|
|
SkAutoTUnref<SkDocument> doc(SkDocument::CreateXPS(dst));
|
|
if (!doc) {
|
|
return "SkDocument::CreateXPS() returned nullptr";
|
|
}
|
|
return draw_skdocument(src, doc.get(), dst);
|
|
}
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
SKPSink::SKPSink() {}
|
|
|
|
Error SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
|
|
SkSize size;
|
|
size = src.size();
|
|
SkPictureRecorder recorder;
|
|
Error err = src.draw(recorder.beginRecording(size.width(), size.height()));
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
SkAutoTUnref<SkPicture> pic(recorder.endRecording());
|
|
pic->serialize(dst);
|
|
return "";
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
SVGSink::SVGSink() {}
|
|
|
|
Error SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
|
|
SkAutoTDelete<SkXMLWriter> xmlWriter(new SkXMLStreamWriter(dst));
|
|
SkAutoTUnref<SkCanvas> canvas(SkSVGCanvas::Create(
|
|
SkRect::MakeWH(SkIntToScalar(src.size().width()), SkIntToScalar(src.size().height())),
|
|
xmlWriter));
|
|
return src.draw(canvas);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
RasterSink::RasterSink(SkColorType colorType) : fColorType(colorType) {}
|
|
|
|
Error RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const {
|
|
const SkISize size = src.size();
|
|
// If there's an appropriate alpha type for this color type, use it, otherwise use premul.
|
|
SkAlphaType alphaType = kPremul_SkAlphaType;
|
|
(void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType);
|
|
|
|
dst->allocPixels(SkImageInfo::Make(size.width(), size.height(), fColorType, alphaType));
|
|
dst->eraseColor(SK_ColorTRANSPARENT);
|
|
SkCanvas canvas(*dst);
|
|
return src.draw(&canvas);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
// Handy for front-patching a Src. Do whatever up-front work you need, then call draw_to_canvas(),
|
|
// passing the Sink draw() arguments, a size, and a function draws into an SkCanvas.
|
|
// Several examples below.
|
|
|
|
static Error draw_to_canvas(Sink* sink, SkBitmap* bitmap, SkWStream* stream, SkString* log,
|
|
SkISize size, SkFunction<Error(SkCanvas*)> draw) {
|
|
class ProxySrc : public Src {
|
|
public:
|
|
ProxySrc(SkISize size, SkFunction<Error(SkCanvas*)> draw) : fSize(size), fDraw(draw) {}
|
|
Error draw(SkCanvas* canvas) const override { return fDraw(canvas); }
|
|
Name name() const override { sk_throw(); return ""; } // Won't be called.
|
|
SkISize size() const override { return fSize; }
|
|
private:
|
|
SkISize fSize;
|
|
SkFunction<Error(SkCanvas*)> fDraw;
|
|
};
|
|
return sink->draw(ProxySrc(size, draw), bitmap, stream, log);
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) {
|
|
SkRect bounds = SkRect::MakeIWH(srcW, srcH);
|
|
matrix->mapRect(&bounds);
|
|
matrix->postTranslate(-bounds.x(), -bounds.y());
|
|
return SkISize::Make(SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height()));
|
|
}
|
|
|
|
ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {}
|
|
|
|
Error ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
SkMatrix matrix = fMatrix;
|
|
SkISize size = auto_compute_translate(&matrix, src.size().width(), src.size().height());
|
|
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) {
|
|
canvas->concat(matrix);
|
|
return src.draw(canvas);
|
|
});
|
|
}
|
|
|
|
// Undoes any flip or 90 degree rotate without changing the scale of the bitmap.
|
|
// This should be pixel-preserving.
|
|
ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {}
|
|
|
|
Error ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
Error err = fSink->draw(src, bitmap, stream, log);
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
|
|
SkMatrix inverse;
|
|
if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) {
|
|
return "Cannot upright --matrix.";
|
|
}
|
|
SkMatrix upright = SkMatrix::I();
|
|
upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX()));
|
|
upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY()));
|
|
upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX()));
|
|
upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY()));
|
|
|
|
SkBitmap uprighted;
|
|
SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height());
|
|
uprighted.allocPixels(bitmap->info().makeWH(size.width(), size.height()));
|
|
|
|
SkCanvas canvas(uprighted);
|
|
canvas.concat(upright);
|
|
SkPaint paint;
|
|
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
|
|
canvas.drawBitmap(*bitmap, 0, 0, &paint);
|
|
|
|
*bitmap = uprighted;
|
|
bitmap->lockPixels();
|
|
return "";
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
Error ViaPipe::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
auto size = src.size();
|
|
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) {
|
|
PipeController controller(canvas, &SkImageDecoder::DecodeMemory);
|
|
SkGPipeWriter pipe;
|
|
const uint32_t kFlags = 0;
|
|
return src.draw(pipe.startRecording(&controller, kFlags, size.width(), size.height()));
|
|
});
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
Error ViaSerialization::draw(
|
|
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
// Record our Src into a picture.
|
|
auto size = src.size();
|
|
SkPictureRecorder recorder;
|
|
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
|
|
SkIntToScalar(size.height())));
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
SkAutoTUnref<SkPicture> pic(recorder.endRecording());
|
|
|
|
// Serialize it and then deserialize it.
|
|
SkDynamicMemoryWStream wStream;
|
|
pic->serialize(&wStream);
|
|
SkAutoTDelete<SkStream> rStream(wStream.detachAsStream());
|
|
SkAutoTUnref<SkPicture> deserialized(SkPicture::CreateFromStream(rStream, &lazy_decode_bitmap));
|
|
|
|
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) {
|
|
canvas->drawPicture(deserialized);
|
|
return "";
|
|
});
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
ViaTiles::ViaTiles(int w, int h, SkBBHFactory* factory, Sink* sink)
|
|
: Via(sink)
|
|
, fW(w)
|
|
, fH(h)
|
|
, fFactory(factory) {}
|
|
|
|
Error ViaTiles::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
auto size = src.size();
|
|
SkPictureRecorder recorder;
|
|
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
|
|
SkIntToScalar(size.height()),
|
|
fFactory.get()));
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
SkAutoTUnref<SkPicture> pic(recorder.endRecordingAsPicture());
|
|
|
|
return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) {
|
|
const int xTiles = (size.width() + fW - 1) / fW,
|
|
yTiles = (size.height() + fH - 1) / fH;
|
|
SkMultiPictureDraw mpd(xTiles*yTiles);
|
|
SkTDArray<SkSurface*> surfaces;
|
|
surfaces.setReserve(xTiles*yTiles);
|
|
|
|
SkImageInfo info = canvas->imageInfo().makeWH(fW, fH);
|
|
for (int j = 0; j < yTiles; j++) {
|
|
for (int i = 0; i < xTiles; i++) {
|
|
// This lets our ultimate Sink determine the best kind of surface.
|
|
// E.g., if it's a GpuSink, the surfaces and images are textures.
|
|
SkSurface* s = canvas->newSurface(info);
|
|
if (!s) {
|
|
s = SkSurface::NewRaster(info); // Some canvases can't create surfaces.
|
|
}
|
|
surfaces.push(s);
|
|
SkCanvas* c = s->getCanvas();
|
|
c->translate(SkIntToScalar(-i * fW),
|
|
SkIntToScalar(-j * fH)); // Line up the canvas with this tile.
|
|
mpd.add(c, pic);
|
|
}
|
|
}
|
|
mpd.draw();
|
|
for (int j = 0; j < yTiles; j++) {
|
|
for (int i = 0; i < xTiles; i++) {
|
|
SkAutoTUnref<SkImage> image(surfaces[i+xTiles*j]->newImageSnapshot());
|
|
canvas->drawImage(image, SkIntToScalar(i*fW), SkIntToScalar(j*fH));
|
|
}
|
|
}
|
|
surfaces.unrefAll();
|
|
return "";
|
|
});
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
// Draw the Src into two pictures, then draw the second picture into the wrapped Sink.
|
|
// This tests that any shortcuts we may take while recording that second picture are legal.
|
|
Error ViaSecondPicture::draw(
|
|
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
auto size = src.size();
|
|
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
|
|
SkPictureRecorder recorder;
|
|
SkAutoTUnref<SkPicture> pic;
|
|
for (int i = 0; i < 2; i++) {
|
|
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
|
|
SkIntToScalar(size.height())));
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
pic.reset(recorder.endRecordingAsPicture());
|
|
}
|
|
canvas->drawPicture(pic);
|
|
return "";
|
|
});
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
// Draw the Src twice. This can help exercise caching.
|
|
Error ViaTwice::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) -> Error {
|
|
for (int i = 0; i < 2; i++) {
|
|
SkAutoCanvasRestore acr(canvas, true/*save now*/);
|
|
canvas->clear(SK_ColorTRANSPARENT);
|
|
Error err = src.draw(canvas);
|
|
if (err.isEmpty()) {
|
|
return err;
|
|
}
|
|
}
|
|
return "";
|
|
});
|
|
}
|
|
|
|
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
|
|
|
|
// This is like SkRecords::Draw, in that it plays back SkRecords ops into a Canvas.
|
|
// Unlike SkRecords::Draw, it builds a single-op sub-picture out of each Draw-type op.
|
|
// This is an only-slightly-exaggerated simluation of Blink's Slimming Paint pictures.
|
|
struct DrawsAsSingletonPictures {
|
|
SkCanvas* fCanvas;
|
|
const SkDrawableList& fDrawables;
|
|
|
|
SK_CREATE_MEMBER_DETECTOR(paint);
|
|
|
|
template <typename T>
|
|
void draw(const T& op, SkCanvas* canvas) {
|
|
// We must pass SkMatrix::I() as our initial matrix.
|
|
// By default SkRecords::Draw() uses the canvas' matrix as its initial matrix,
|
|
// which would have the funky effect of applying transforms over and over.
|
|
SkRecords::Draw d(canvas, nullptr, fDrawables.begin(), fDrawables.count(), &SkMatrix::I());
|
|
d(op);
|
|
}
|
|
|
|
// Most things that have paints are Draw-type ops. Create sub-pictures for each.
|
|
template <typename T>
|
|
SK_WHEN(HasMember_paint<T>, void) operator()(const T& op) {
|
|
SkPictureRecorder rec;
|
|
this->draw(op, rec.beginRecording(SkRect::MakeLargest()));
|
|
SkAutoTUnref<SkPicture> pic(rec.endRecordingAsPicture());
|
|
fCanvas->drawPicture(pic);
|
|
}
|
|
|
|
// If you don't have a paint or are a SaveLayer, you're not a Draw-type op.
|
|
// We cannot make subpictures out of these because they affect state. Draw them directly.
|
|
template <typename T>
|
|
SK_WHEN(!HasMember_paint<T>, void) operator()(const T& op) { this->draw(op, fCanvas); }
|
|
void operator()(const SkRecords::SaveLayer& op) { this->draw(op, fCanvas); }
|
|
};
|
|
|
|
// Record Src into a picture, then record it into a macro picture with a sub-picture for each draw.
|
|
// Then play back that macro picture into our wrapped sink.
|
|
Error ViaSingletonPictures::draw(
|
|
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
|
|
auto size = src.size();
|
|
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
|
|
// Use low-level (Skia-private) recording APIs so we can read the SkRecord.
|
|
SkRecord skr;
|
|
SkRecorder recorder(&skr, size.width(), size.height());
|
|
Error err = src.draw(&recorder);
|
|
if (!err.isEmpty()) {
|
|
return err;
|
|
}
|
|
|
|
// Record our macro-picture, with each draw op as its own sub-picture.
|
|
SkPictureRecorder macroRec;
|
|
SkCanvas* macroCanvas = macroRec.beginRecording(SkIntToScalar(size.width()),
|
|
SkIntToScalar(size.height()));
|
|
|
|
SkAutoTDelete<SkDrawableList> drawables(recorder.detachDrawableList());
|
|
const SkDrawableList empty;
|
|
|
|
DrawsAsSingletonPictures drawsAsSingletonPictures = {
|
|
macroCanvas,
|
|
drawables ? *drawables : empty,
|
|
};
|
|
for (int i = 0; i < skr.count(); i++) {
|
|
skr.visit<void>(i, drawsAsSingletonPictures);
|
|
}
|
|
SkAutoTUnref<SkPicture> macroPic(macroRec.endRecordingAsPicture());
|
|
|
|
canvas->drawPicture(macroPic);
|
|
return "";
|
|
});
|
|
}
|
|
|
|
} // namespace DM
|