skia2/tests/PathOpsExtendedTest.cpp
caryclark@google.com 16cfe40276 allow tests to optionally use multiple threads
modify threaded path ops tests to check

Background: this CL came out of a conversation with Eric where I learned that 10s of machines host 100s of bots. Since the bot hosting tests may be shared with many other tasks, it seems unwise for path ops to launch multiple test threads.

The change here is to make launching multiple threads "opt-in" and by default, bots can run path ops in a single thread.
Review URL: https://codereview.chromium.org/14002007

git-svn-id: http://skia.googlecode.com/svn/trunk@8750 2bbb7eff-a529-9590-31e7-b0007b416f81
2013-04-18 18:47:37 +00:00

609 lines
20 KiB
C++

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "PathOpsExtendedTest.h"
#include "PathOpsThreadedCommon.h"
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkMatrix.h"
#include "SkPaint.h"
#include "SkStream.h"
#ifdef SK_BUILD_FOR_MAC
#include <sys/sysctl.h>
#endif
static const char marker[] =
"</div>\n"
"\n"
"<script type=\"text/javascript\">\n"
"\n"
"var testDivs = [\n";
static const char* opStrs[] = {
"kDifference_PathOp",
"kIntersect_PathOp",
"kUnion_PathOp",
"kXor_PathOp",
};
static const char* opSuffixes[] = {
"d",
"i",
"u",
"o",
};
static bool gShowPath = false;
static bool gComparePaths = true;
static bool gComparePathsAssert = true;
static bool gPathStrAssert = true;
static void showPathContour(SkPath::Iter& iter) {
uint8_t verb;
SkPoint pts[4];
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
SkDebugf("path.moveTo(%1.9g,%1.9g);\n", pts[0].fX, pts[0].fY);
continue;
case SkPath::kLine_Verb:
SkDebugf("path.lineTo(%1.9g,%1.9g);\n", pts[1].fX, pts[1].fY);
break;
case SkPath::kQuad_Verb:
SkDebugf("path.quadTo(%1.9g,%1.9g, %1.9g,%1.9g);\n",
pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
break;
case SkPath::kCubic_Verb:
SkDebugf("path.cubicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g,%1.9g);\n",
pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY, pts[3].fX, pts[3].fY);
break;
case SkPath::kClose_Verb:
SkDebugf("path.close();\n");
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
}
}
void showPath(const SkPath& path, const char* str) {
SkDebugf("%s\n", !str ? "original:" : str);
showPath(path);
}
void showPath(const SkPath& path) {
SkPath::Iter iter(path, true);
#define SUPPORT_RECT_CONTOUR_DETECTION 0
#if SUPPORT_RECT_CONTOUR_DETECTION
int rectCount = path.isRectContours() ? path.rectContours(NULL, NULL) : 0;
if (rectCount > 0) {
SkTDArray<SkRect> rects;
SkTDArray<SkPath::Direction> directions;
rects.setCount(rectCount);
directions.setCount(rectCount);
path.rectContours(rects.begin(), directions.begin());
for (int contour = 0; contour < rectCount; ++contour) {
const SkRect& rect = rects[contour];
SkDebugf("path.addRect(%1.9g, %1.9g, %1.9g, %1.9g, %s);\n", rect.fLeft, rect.fTop,
rect.fRight, rect.fBottom, directions[contour] == SkPath::kCCW_Direction
? "SkPath::kCCW_Direction" : "SkPath::kCW_Direction");
}
return;
}
#endif
iter.setPath(path, true);
showPathContour(iter);
}
void showPathData(const SkPath& path) {
SkPath::Iter iter(path, true);
uint8_t verb;
SkPoint pts[4];
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
continue;
case SkPath::kLine_Verb:
SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", pts[0].fX, pts[0].fY,
pts[1].fX, pts[1].fY);
break;
case SkPath::kQuad_Verb:
SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
break;
case SkPath::kCubic_Verb:
SkDebugf("{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY,
pts[3].fX, pts[3].fY);
break;
case SkPath::kClose_Verb:
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
}
}
void showOp(const SkPathOp op) {
switch (op) {
case kDifference_PathOp:
SkDebugf("op difference\n");
break;
case kIntersect_PathOp:
SkDebugf("op intersect\n");
break;
case kUnion_PathOp:
SkDebugf("op union\n");
break;
case kXOR_PathOp:
SkDebugf("op xor\n");
break;
default:
SkASSERT(0);
}
}
static void showPath(const SkPath& path, const char* str, const SkMatrix& scale) {
SkPath scaled;
SkMatrix inverse;
bool success = scale.invert(&inverse);
if (!success) {
SkASSERT(0);
}
path.transform(inverse, &scaled);
showPath(scaled, str);
}
#if DEBUG_SHOW_TEST_NAME
static char hexorator(int x) {
if (x < 10) {
return x + '0';
}
x -= 10;
SkASSERT(x < 26);
return x + 'A';
}
#endif
void ShowTestName(PathOpsThreadState* state, int a, int b, int c, int d) {
#if DEBUG_SHOW_TEST_NAME
state->fSerialNo[0] = hexorator(state->fA);
state->fSerialNo[1] = hexorator(state->fB);
state->fSerialNo[2] = hexorator(state->fC);
state->fSerialNo[3] = hexorator(state->fD);
state->fSerialNo[4] = hexorator(a);
state->fSerialNo[5] = hexorator(b);
state->fSerialNo[6] = hexorator(c);
state->fSerialNo[7] = hexorator(d);
state->fSerialNo[8] = '\0';
SkDebugf("%s\n", state->fSerialNo);
if (strcmp(state->fSerialNo, state->fKey) == 0) {
SkDebugf("%s\n", state->fPathStr);
}
#endif
}
const int bitWidth = 64;
const int bitHeight = 64;
static void scaleMatrix(const SkPath& one, const SkPath& two, SkMatrix& scale) {
SkRect larger = one.getBounds();
larger.join(two.getBounds());
SkScalar largerWidth = larger.width();
if (largerWidth < 4) {
largerWidth = 4;
}
SkScalar largerHeight = larger.height();
if (largerHeight < 4) {
largerHeight = 4;
}
SkScalar hScale = (bitWidth - 2) / largerWidth;
SkScalar vScale = (bitHeight - 2) / largerHeight;
scale.reset();
scale.preScale(hScale, vScale);
}
static int pathsDrawTheSame(SkBitmap& bits, const SkPath& scaledOne, const SkPath& scaledTwo,
int& error2x2) {
if (bits.width() == 0) {
bits.setConfig(SkBitmap::kARGB_8888_Config, bitWidth * 2, bitHeight);
bits.allocPixels();
}
SkCanvas canvas(bits);
canvas.drawColor(SK_ColorWHITE);
SkPaint paint;
canvas.save();
const SkRect& bounds1 = scaledOne.getBounds();
canvas.translate(-bounds1.fLeft + 1, -bounds1.fTop + 1);
canvas.drawPath(scaledOne, paint);
canvas.restore();
canvas.save();
canvas.translate(-bounds1.fLeft + 1 + bitWidth, -bounds1.fTop + 1);
canvas.drawPath(scaledTwo, paint);
canvas.restore();
int errors2 = 0;
int errors = 0;
for (int y = 0; y < bitHeight - 1; ++y) {
uint32_t* addr1 = bits.getAddr32(0, y);
uint32_t* addr2 = bits.getAddr32(0, y + 1);
uint32_t* addr3 = bits.getAddr32(bitWidth, y);
uint32_t* addr4 = bits.getAddr32(bitWidth, y + 1);
for (int x = 0; x < bitWidth - 1; ++x) {
// count 2x2 blocks
bool err = addr1[x] != addr3[x];
if (err) {
errors2 += addr1[x + 1] != addr3[x + 1]
&& addr2[x] != addr4[x] && addr2[x + 1] != addr4[x + 1];
errors++;
}
}
}
if (errors2 >= 6 || errors > 160) {
SkDebugf("%s errors2=%d errors=%d\n", __FUNCTION__, errors2, errors);
}
error2x2 = errors2;
return errors;
}
static int pathsDrawTheSame(const SkPath& one, const SkPath& two, SkBitmap& bits, SkPath& scaledOne,
SkPath& scaledTwo, int& error2x2) {
SkMatrix scale;
scaleMatrix(one, two, scale);
one.transform(scale, &scaledOne);
two.transform(scale, &scaledTwo);
return pathsDrawTheSame(bits, scaledOne, scaledTwo, error2x2);
}
bool drawAsciiPaths(const SkPath& one, const SkPath& two, bool drawPaths) {
if (!drawPaths) {
return true;
}
const SkRect& bounds1 = one.getBounds();
const SkRect& bounds2 = two.getBounds();
SkRect larger = bounds1;
larger.join(bounds2);
SkBitmap bits;
char out[256];
int bitWidth = SkScalarCeil(larger.width()) + 2;
if (bitWidth * 2 + 1 >= (int) sizeof(out)) {
return false;
}
int bitHeight = SkScalarCeil(larger.height()) + 2;
if (bitHeight >= (int) sizeof(out)) {
return false;
}
bits.setConfig(SkBitmap::kARGB_8888_Config, bitWidth * 2, bitHeight);
bits.allocPixels();
SkCanvas canvas(bits);
canvas.drawColor(SK_ColorWHITE);
SkPaint paint;
canvas.save();
canvas.translate(-bounds1.fLeft + 1, -bounds1.fTop + 1);
canvas.drawPath(one, paint);
canvas.restore();
canvas.save();
canvas.translate(-bounds1.fLeft + 1 + bitWidth, -bounds1.fTop + 1);
canvas.drawPath(two, paint);
canvas.restore();
for (int y = 0; y < bitHeight; ++y) {
uint32_t* addr1 = bits.getAddr32(0, y);
int x;
char* outPtr = out;
for (x = 0; x < bitWidth; ++x) {
*outPtr++ = addr1[x] == (uint32_t) -1 ? '_' : 'x';
}
*outPtr++ = '|';
for (x = bitWidth; x < bitWidth * 2; ++x) {
*outPtr++ = addr1[x] == (uint32_t) -1 ? '_' : 'x';
}
*outPtr++ = '\0';
SkDebugf("%s\n", out);
}
return true;
}
static void showSimplifiedPath(const SkPath& one, const SkPath& two,
const SkPath& scaledOne, const SkPath& scaledTwo) {
showPath(one, "original:");
showPath(two, "simplified:");
drawAsciiPaths(scaledOne, scaledTwo, true);
}
static int comparePaths(skiatest::Reporter* reporter, const SkPath& one, const SkPath& two,
SkBitmap& bitmap) {
int errors2x2;
SkPath scaledOne, scaledTwo;
int errors = pathsDrawTheSame(one, two, bitmap, scaledOne, scaledTwo, errors2x2);
if (errors2x2 == 0) {
return 0;
}
const int MAX_ERRORS = 9;
if (errors2x2 == MAX_ERRORS || errors2x2 == MAX_ERRORS - 1) {
showSimplifiedPath(one, two, scaledOne, scaledTwo);
}
if (errors2x2 > MAX_ERRORS && gComparePathsAssert) {
SkDebugf("%s errors=%d\n", __FUNCTION__, errors);
showSimplifiedPath(one, two, scaledOne, scaledTwo);
REPORTER_ASSERT(reporter, 0);
}
return errors2x2 > MAX_ERRORS ? errors2x2 : 0;
}
static void showPathOpPath(const SkPath& one, const SkPath& two, const SkPath& a, const SkPath& b,
const SkPath& scaledOne, const SkPath& scaledTwo, const SkPathOp shapeOp,
const SkMatrix& scale) {
SkASSERT((unsigned) shapeOp < SK_ARRAY_COUNT(opStrs));
showPath(a, "minuend:");
SkDebugf("op: %s\n", opStrs[shapeOp]);
showPath(b, "subtrahend:");
// the region often isn't very helpful since it approximates curves with a lot of line-tos
if (0) showPath(scaledOne, "region:", scale);
showPath(two, "op result:");
drawAsciiPaths(scaledOne, scaledTwo, true);
}
static int comparePaths(skiatest::Reporter* reporter, const SkPath& one, const SkPath& scaledOne,
const SkPath& two, const SkPath& scaledTwo, SkBitmap& bitmap,
const SkPath& a, const SkPath& b, const SkPathOp shapeOp,
const SkMatrix& scale) {
int errors2x2;
int errors = pathsDrawTheSame(bitmap, scaledOne, scaledTwo, errors2x2);
if (errors2x2 == 0) {
return 0;
}
const int MAX_ERRORS = 8;
if (errors2x2 == MAX_ERRORS || errors2x2 == MAX_ERRORS - 1) {
showPathOpPath(one, two, a, b, scaledOne, scaledTwo, shapeOp, scale);
}
if (errors2x2 > MAX_ERRORS && gComparePathsAssert) {
SkDebugf("%s errors=%d\n", __FUNCTION__, errors);
showPathOpPath(one, two, a, b, scaledOne, scaledTwo, shapeOp, scale);
REPORTER_ASSERT(reporter, 0);
}
return errors2x2 > MAX_ERRORS ? errors2x2 : 0;
}
static int testNumber;
static const char* testName;
static void writeTestName(const char* nameSuffix, SkMemoryWStream& outFile) {
outFile.writeText(testName);
outFile.writeDecAsText(testNumber);
if (nameSuffix) {
outFile.writeText(nameSuffix);
}
}
static void outputToStream(const char* pathStr, const char* pathPrefix, const char* nameSuffix,
const char* testFunction, bool twoPaths, SkMemoryWStream& outFile) {
outFile.writeText("<div id=\"");
writeTestName(nameSuffix, outFile);
outFile.writeText("\">\n");
if (pathPrefix) {
outFile.writeText(pathPrefix);
}
outFile.writeText(pathStr);
outFile.writeText("</div>\n\n");
outFile.writeText(marker);
outFile.writeText(" ");
writeTestName(nameSuffix, outFile);
outFile.writeText(",\n\n\n");
outFile.writeText("static void ");
writeTestName(nameSuffix, outFile);
outFile.writeText("() {\n SkPath path");
if (twoPaths) {
outFile.writeText(", pathB");
}
outFile.writeText(";\n");
if (pathPrefix) {
outFile.writeText(pathPrefix);
}
outFile.writeText(pathStr);
outFile.writeText(" ");
outFile.writeText(testFunction);
outFile.writeText("\n}\n\n");
outFile.writeText("static void (*firstTest)() = ");
writeTestName(nameSuffix, outFile);
outFile.writeText(";\n\n");
outFile.writeText("static struct {\n");
outFile.writeText(" void (*fun)();\n");
outFile.writeText(" const char* str;\n");
outFile.writeText("} tests[] = {\n");
outFile.writeText(" TEST(");
writeTestName(nameSuffix, outFile);
outFile.writeText("),\n");
outFile.flush();
}
bool testSimplify(SkPath& path, bool useXor, SkPath& out, PathOpsThreadState& state,
const char* pathStr) {
SkPath::FillType fillType = useXor ? SkPath::kEvenOdd_FillType : SkPath::kWinding_FillType;
path.setFillType(fillType);
if (gShowPath) {
showPath(path);
}
Simplify(path, &out);
if (!gComparePaths) {
return true;
}
int result = comparePaths(state.fReporter, path, out, *state.fBitmap);
if (result && gPathStrAssert) {
char temp[8192];
sk_bzero(temp, sizeof(temp));
SkMemoryWStream stream(temp, sizeof(temp));
const char* pathPrefix = NULL;
const char* nameSuffix = NULL;
if (fillType == SkPath::kEvenOdd_FillType) {
pathPrefix = " path.setFillType(SkPath::kEvenOdd_FillType);\n";
nameSuffix = "x";
}
const char testFunction[] = "testSimplifyx(path);";
outputToStream(pathStr, pathPrefix, nameSuffix, testFunction, false, stream);
SkDebugf(temp);
REPORTER_ASSERT(state.fReporter, 0);
}
state.fReporter->bumpTestCount();
return result == 0;
}
bool testSimplify(skiatest::Reporter* reporter, const SkPath& path) {
#if FORCE_RELEASE == 0
showPathData(path);
#endif
SkPath out;
Simplify(path, &out);
SkBitmap bitmap;
int result = comparePaths(reporter, path, out, bitmap);
if (result && gPathStrAssert) {
REPORTER_ASSERT(reporter, 0);
}
reporter->bumpTestCount();
return result == 0;
}
bool testPathOp(skiatest::Reporter* reporter, const SkPath& a, const SkPath& b,
const SkPathOp shapeOp) {
#if FORCE_RELEASE == 0
showPathData(a);
showOp(shapeOp);
showPathData(b);
#endif
SkPath out;
Op(a, b, shapeOp, &out);
SkPath pathOut, scaledPathOut;
SkRegion rgnA, rgnB, openClip, rgnOut;
openClip.setRect(-16000, -16000, 16000, 16000);
rgnA.setPath(a, openClip);
rgnB.setPath(b, openClip);
rgnOut.op(rgnA, rgnB, (SkRegion::Op) shapeOp);
rgnOut.getBoundaryPath(&pathOut);
SkMatrix scale;
scaleMatrix(a, b, scale);
SkRegion scaledRgnA, scaledRgnB, scaledRgnOut;
SkPath scaledA, scaledB;
scaledA.addPath(a, scale);
scaledA.setFillType(a.getFillType());
scaledB.addPath(b, scale);
scaledB.setFillType(b.getFillType());
scaledRgnA.setPath(scaledA, openClip);
scaledRgnB.setPath(scaledB, openClip);
scaledRgnOut.op(scaledRgnA, scaledRgnB, (SkRegion::Op) shapeOp);
scaledRgnOut.getBoundaryPath(&scaledPathOut);
SkBitmap bitmap;
SkPath scaledOut;
scaledOut.addPath(out, scale);
scaledOut.setFillType(out.getFillType());
int result = comparePaths(reporter, pathOut, scaledPathOut, out, scaledOut, bitmap, a, b,
shapeOp, scale);
if (result && gPathStrAssert) {
REPORTER_ASSERT(reporter, 0);
}
reporter->bumpTestCount();
return result == 0;
}
const int maxThreadsAllocated = 64;
static int maxThreads = 1;
int initializeTests(skiatest::Reporter* reporter, const char* test) {
#ifdef SK_DEBUG
gDebugMaxWindSum = 4;
gDebugMaxWindValue = 4;
#endif
testName = test;
size_t testNameSize = strlen(test);
if (reporter->allowThreaded()) {
int threads = -1;
#ifdef SK_BUILD_FOR_MAC
size_t size = sizeof(threads);
sysctlbyname("hw.logicalcpu_max", &threads, &size, NULL, 0);
#endif
if (threads > 0) {
maxThreads = threads;
} else {
maxThreads = 16;
}
}
SkFILEStream inFile("../../experimental/Intersection/op.htm");
if (inFile.isValid()) {
SkTDArray<char> inData;
inData.setCount(inFile.getLength());
size_t inLen = inData.count();
inFile.read(inData.begin(), inLen);
inFile.setPath(NULL);
char* insert = strstr(inData.begin(), marker);
if (insert) {
insert += sizeof(marker) - 1;
const char* numLoc = insert + 4 /* indent spaces */ + testNameSize - 1;
testNumber = atoi(numLoc) + 1;
}
}
return maxThreads;
}
void outputProgress(char* ramStr, const char* pathStr, SkPath::FillType pathFillType) {
const char testFunction[] = "testSimplify(path);";
const char* pathPrefix = NULL;
const char* nameSuffix = NULL;
if (pathFillType == SkPath::kEvenOdd_FillType) {
pathPrefix = " path.setFillType(SkPath::kEvenOdd_FillType);\n";
nameSuffix = "x";
}
SkMemoryWStream rRamStream(ramStr, PATH_STR_SIZE);
outputToStream(pathStr, pathPrefix, nameSuffix, testFunction, false, rRamStream);
}
void outputProgress(char* ramStr, const char* pathStr, SkPathOp op) {
const char testFunction[] = "testOp(path);";
SkASSERT((size_t) op < SK_ARRAY_COUNT(opSuffixes));
const char* nameSuffix = opSuffixes[op];
SkMemoryWStream rRamStream(ramStr, PATH_STR_SIZE);
outputToStream(pathStr, NULL, nameSuffix, testFunction, true, rRamStream);
}
void RunTestSet(skiatest::Reporter* reporter, TestDesc tests[], size_t count,
void (*firstTest)(skiatest::Reporter* ),
void (*stopTest)(skiatest::Reporter* ), bool reverse) {
size_t index;
if (firstTest) {
index = count - 1;
while (index > 0 && tests[index].fun != firstTest) {
--index;
}
#if FORCE_RELEASE == 0
SkDebugf("<div id=\"%s\">\n", tests[index].str);
SkDebugf(" %s [%s]\n", __FUNCTION__, tests[index].str);
#endif
(*tests[index].fun)(reporter);
}
index = reverse ? count - 1 : 0;
size_t last = reverse ? 0 : count - 1;
do {
if (tests[index].fun != firstTest) {
#if FORCE_RELEASE == 0
SkDebugf("<div id=\"%s\">\n", tests[index].str);
SkDebugf(" %s [%s]\n", __FUNCTION__, tests[index].str);
#endif
(*tests[index].fun)(reporter);
}
if (tests[index].fun == stopTest) {
SkDebugf("lastTest\n");
}
if (index == last) {
break;
}
index += reverse ? -1 : 1;
} while (true);
}