e127304700
GCC 10.2.1 gives the following warning as error in a release build ../../src/core/SkString.cpp:227:22: error: writing 1 byte into a region of size 0 [-Werror=stringop-overflow=] 227 | rec->data()[len] = 0; which is detecting that fBeginningOfData is a char and that this code cannot be reached with len == 0. Work around this by changing fBeginningOfData to be an array of one char containing the empty string by default. While making this change, also make fBeginningOfData and fRefCnt private. Change-Id: Ic254bac465fcd02707a06010e0d7501520f7271d Reviewed-on: https://skia-review.googlesource.com/c/skia/+/441136 Reviewed-by: Mike Reed <reed@google.com> Commit-Queue: Ben Wagner <bungeman@google.com>
303 lines
12 KiB
C++
303 lines
12 KiB
C++
/*
|
|
* Copyright 2006 The Android Open Source Project
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#ifndef SkString_DEFINED
|
|
#define SkString_DEFINED
|
|
|
|
#include "include/core/SkRefCnt.h"
|
|
#include "include/core/SkScalar.h"
|
|
#include "include/core/SkTypes.h"
|
|
#include "include/private/SkMalloc.h"
|
|
#include "include/private/SkTArray.h"
|
|
#include "include/private/SkTo.h"
|
|
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <atomic>
|
|
#include <string>
|
|
|
|
namespace skstd {
|
|
class string_view;
|
|
}
|
|
|
|
/* Some helper functions for C strings */
|
|
static inline bool SkStrStartsWith(const char string[], const char prefixStr[]) {
|
|
SkASSERT(string);
|
|
SkASSERT(prefixStr);
|
|
return !strncmp(string, prefixStr, strlen(prefixStr));
|
|
}
|
|
static inline bool SkStrStartsWith(const char string[], const char prefixChar) {
|
|
SkASSERT(string);
|
|
return (prefixChar == *string);
|
|
}
|
|
|
|
bool SkStrEndsWith(const char string[], const char suffixStr[]);
|
|
bool SkStrEndsWith(const char string[], const char suffixChar);
|
|
|
|
int SkStrStartsWithOneOf(const char string[], const char prefixes[]);
|
|
|
|
static inline int SkStrFind(const char string[], const char substring[]) {
|
|
const char *first = strstr(string, substring);
|
|
if (nullptr == first) return -1;
|
|
return SkToInt(first - &string[0]);
|
|
}
|
|
|
|
static inline int SkStrFindLastOf(const char string[], const char subchar) {
|
|
const char* last = strrchr(string, subchar);
|
|
if (nullptr == last) return -1;
|
|
return SkToInt(last - &string[0]);
|
|
}
|
|
|
|
static inline bool SkStrContains(const char string[], const char substring[]) {
|
|
SkASSERT(string);
|
|
SkASSERT(substring);
|
|
return (-1 != SkStrFind(string, substring));
|
|
}
|
|
static inline bool SkStrContains(const char string[], const char subchar) {
|
|
SkASSERT(string);
|
|
char tmp[2];
|
|
tmp[0] = subchar;
|
|
tmp[1] = '\0';
|
|
return (-1 != SkStrFind(string, tmp));
|
|
}
|
|
|
|
/*
|
|
* The SkStrAppend... methods will write into the provided buffer, assuming it is large enough.
|
|
* Each method has an associated const (e.g. kSkStrAppendU32_MaxSize) which will be the largest
|
|
* value needed for that method's buffer.
|
|
*
|
|
* char storage[kSkStrAppendU32_MaxSize];
|
|
* SkStrAppendU32(storage, value);
|
|
*
|
|
* Note : none of the SkStrAppend... methods write a terminating 0 to their buffers. Instead,
|
|
* the methods return the ptr to the end of the written part of the buffer. This can be used
|
|
* to compute the length, and/or know where to write a 0 if that is desired.
|
|
*
|
|
* char storage[kSkStrAppendU32_MaxSize + 1];
|
|
* char* stop = SkStrAppendU32(storage, value);
|
|
* size_t len = stop - storage;
|
|
* *stop = 0; // valid, since storage was 1 byte larger than the max.
|
|
*/
|
|
|
|
static constexpr int kSkStrAppendU32_MaxSize = 10;
|
|
char* SkStrAppendU32(char buffer[], uint32_t);
|
|
static constexpr int kSkStrAppendU64_MaxSize = 20;
|
|
char* SkStrAppendU64(char buffer[], uint64_t, int minDigits);
|
|
|
|
static constexpr int kSkStrAppendS32_MaxSize = kSkStrAppendU32_MaxSize + 1;
|
|
char* SkStrAppendS32(char buffer[], int32_t);
|
|
static constexpr int kSkStrAppendS64_MaxSize = kSkStrAppendU64_MaxSize + 1;
|
|
char* SkStrAppendS64(char buffer[], int64_t, int minDigits);
|
|
|
|
/**
|
|
* Floats have at most 8 significant digits, so we limit our %g to that.
|
|
* However, the total string could be 15 characters: -1.2345678e-005
|
|
*
|
|
* In theory we should only expect up to 2 digits for the exponent, but on
|
|
* some platforms we have seen 3 (as in the example above).
|
|
*/
|
|
static constexpr int kSkStrAppendScalar_MaxSize = 15;
|
|
|
|
/**
|
|
* Write the scalar in decimal format into buffer, and return a pointer to
|
|
* the next char after the last one written. Note: a terminating 0 is not
|
|
* written into buffer, which must be at least kSkStrAppendScalar_MaxSize.
|
|
* Thus if the caller wants to add a 0 at the end, buffer must be at least
|
|
* kSkStrAppendScalar_MaxSize + 1 bytes large.
|
|
*/
|
|
char* SkStrAppendScalar(char buffer[], SkScalar);
|
|
|
|
/** \class SkString
|
|
|
|
Light weight class for managing strings. Uses reference
|
|
counting to make string assignments and copies very fast
|
|
with no extra RAM cost. Assumes UTF8 encoding.
|
|
*/
|
|
class SK_API SkString {
|
|
public:
|
|
SkString();
|
|
explicit SkString(size_t len);
|
|
explicit SkString(const char text[]);
|
|
SkString(const char text[], size_t len);
|
|
SkString(const SkString&);
|
|
SkString(SkString&&);
|
|
explicit SkString(const std::string&);
|
|
explicit SkString(skstd::string_view);
|
|
~SkString();
|
|
|
|
bool isEmpty() const { return 0 == fRec->fLength; }
|
|
size_t size() const { return (size_t) fRec->fLength; }
|
|
const char* c_str() const { return fRec->data(); }
|
|
char operator[](size_t n) const { return this->c_str()[n]; }
|
|
|
|
bool equals(const SkString&) const;
|
|
bool equals(const char text[]) const;
|
|
bool equals(const char text[], size_t len) const;
|
|
|
|
bool startsWith(const char prefixStr[]) const {
|
|
return SkStrStartsWith(fRec->data(), prefixStr);
|
|
}
|
|
bool startsWith(const char prefixChar) const {
|
|
return SkStrStartsWith(fRec->data(), prefixChar);
|
|
}
|
|
bool endsWith(const char suffixStr[]) const {
|
|
return SkStrEndsWith(fRec->data(), suffixStr);
|
|
}
|
|
bool endsWith(const char suffixChar) const {
|
|
return SkStrEndsWith(fRec->data(), suffixChar);
|
|
}
|
|
bool contains(const char substring[]) const {
|
|
return SkStrContains(fRec->data(), substring);
|
|
}
|
|
bool contains(const char subchar) const {
|
|
return SkStrContains(fRec->data(), subchar);
|
|
}
|
|
int find(const char substring[]) const {
|
|
return SkStrFind(fRec->data(), substring);
|
|
}
|
|
int findLastOf(const char subchar) const {
|
|
return SkStrFindLastOf(fRec->data(), subchar);
|
|
}
|
|
|
|
friend bool operator==(const SkString& a, const SkString& b) {
|
|
return a.equals(b);
|
|
}
|
|
friend bool operator!=(const SkString& a, const SkString& b) {
|
|
return !a.equals(b);
|
|
}
|
|
|
|
// these methods edit the string
|
|
|
|
SkString& operator=(const SkString&);
|
|
SkString& operator=(SkString&&);
|
|
SkString& operator=(const char text[]);
|
|
|
|
char* writable_str();
|
|
char& operator[](size_t n) { return this->writable_str()[n]; }
|
|
|
|
void reset();
|
|
/** String contents are preserved on resize. (For destructive resize, `set(nullptr, length)`.)
|
|
* `resize` automatically reserves an extra byte at the end of the buffer for a null terminator.
|
|
*/
|
|
void resize(size_t len);
|
|
void set(const SkString& src) { *this = src; }
|
|
void set(const char text[]);
|
|
void set(const char text[], size_t len);
|
|
|
|
void insert(size_t offset, const SkString& src) { this->insert(offset, src.c_str(), src.size()); }
|
|
void insert(size_t offset, const char text[]);
|
|
void insert(size_t offset, const char text[], size_t len);
|
|
void insertUnichar(size_t offset, SkUnichar);
|
|
void insertS32(size_t offset, int32_t value);
|
|
void insertS64(size_t offset, int64_t value, int minDigits = 0);
|
|
void insertU32(size_t offset, uint32_t value);
|
|
void insertU64(size_t offset, uint64_t value, int minDigits = 0);
|
|
void insertHex(size_t offset, uint32_t value, int minDigits = 0);
|
|
void insertScalar(size_t offset, SkScalar);
|
|
|
|
void append(const SkString& str) { this->insert((size_t)-1, str); }
|
|
void append(const char text[]) { this->insert((size_t)-1, text); }
|
|
void append(const char text[], size_t len) { this->insert((size_t)-1, text, len); }
|
|
void appendUnichar(SkUnichar uni) { this->insertUnichar((size_t)-1, uni); }
|
|
void appendS32(int32_t value) { this->insertS32((size_t)-1, value); }
|
|
void appendS64(int64_t value, int minDigits = 0) { this->insertS64((size_t)-1, value, minDigits); }
|
|
void appendU32(uint32_t value) { this->insertU32((size_t)-1, value); }
|
|
void appendU64(uint64_t value, int minDigits = 0) { this->insertU64((size_t)-1, value, minDigits); }
|
|
void appendHex(uint32_t value, int minDigits = 0) { this->insertHex((size_t)-1, value, minDigits); }
|
|
void appendScalar(SkScalar value) { this->insertScalar((size_t)-1, value); }
|
|
|
|
void prepend(const SkString& str) { this->insert(0, str); }
|
|
void prepend(const char text[]) { this->insert(0, text); }
|
|
void prepend(const char text[], size_t len) { this->insert(0, text, len); }
|
|
void prependUnichar(SkUnichar uni) { this->insertUnichar(0, uni); }
|
|
void prependS32(int32_t value) { this->insertS32(0, value); }
|
|
void prependS64(int32_t value, int minDigits = 0) { this->insertS64(0, value, minDigits); }
|
|
void prependHex(uint32_t value, int minDigits = 0) { this->insertHex(0, value, minDigits); }
|
|
void prependScalar(SkScalar value) { this->insertScalar((size_t)-1, value); }
|
|
|
|
void printf(const char format[], ...) SK_PRINTF_LIKE(2, 3);
|
|
void printVAList(const char format[], va_list);
|
|
void appendf(const char format[], ...) SK_PRINTF_LIKE(2, 3);
|
|
void appendVAList(const char format[], va_list);
|
|
void prependf(const char format[], ...) SK_PRINTF_LIKE(2, 3);
|
|
void prependVAList(const char format[], va_list);
|
|
|
|
void remove(size_t offset, size_t length);
|
|
|
|
SkString& operator+=(const SkString& s) { this->append(s); return *this; }
|
|
SkString& operator+=(const char text[]) { this->append(text); return *this; }
|
|
SkString& operator+=(const char c) { this->append(&c, 1); return *this; }
|
|
|
|
/**
|
|
* Swap contents between this and other. This function is guaranteed
|
|
* to never fail or throw.
|
|
*/
|
|
void swap(SkString& other);
|
|
|
|
private:
|
|
struct Rec {
|
|
public:
|
|
constexpr Rec(uint32_t len, int32_t refCnt) : fLength(len), fRefCnt(refCnt) {}
|
|
static sk_sp<Rec> Make(const char text[], size_t len);
|
|
char* data() { return fBeginningOfData; }
|
|
const char* data() const { return fBeginningOfData; }
|
|
void ref() const;
|
|
void unref() const;
|
|
bool unique() const;
|
|
#ifdef SK_DEBUG
|
|
int32_t getRefCnt() const;
|
|
#endif
|
|
uint32_t fLength; // logically size_t, but we want it to stay 32 bits
|
|
|
|
private:
|
|
mutable std::atomic<int32_t> fRefCnt;
|
|
char fBeginningOfData[1] = {'\0'};
|
|
|
|
// Ensure the unsized delete is called.
|
|
void operator delete(void* p) { ::operator delete(p); }
|
|
};
|
|
sk_sp<Rec> fRec;
|
|
|
|
#ifdef SK_DEBUG
|
|
const SkString& validate() const;
|
|
#else
|
|
const SkString& validate() const { return *this; }
|
|
#endif
|
|
|
|
static const Rec gEmptyRec;
|
|
};
|
|
|
|
/// Creates a new string and writes into it using a printf()-style format.
|
|
SkString SkStringPrintf(const char* format, ...) SK_PRINTF_LIKE(1, 2);
|
|
/// This makes it easier to write a caller as a VAR_ARGS function where the format string is
|
|
/// optional.
|
|
static inline SkString SkStringPrintf() { return SkString(); }
|
|
|
|
static inline void swap(SkString& a, SkString& b) {
|
|
a.swap(b);
|
|
}
|
|
|
|
enum SkStrSplitMode {
|
|
// Strictly return all results. If the input is ",," and the separator is ',' this will return
|
|
// an array of three empty strings.
|
|
kStrict_SkStrSplitMode,
|
|
|
|
// Only nonempty results will be added to the results. Multiple separators will be
|
|
// coalesced. Separators at the beginning and end of the input will be ignored. If the input is
|
|
// ",," and the separator is ',', this will return an empty vector.
|
|
kCoalesce_SkStrSplitMode
|
|
};
|
|
|
|
// Split str on any characters in delimiters into out. (Think, strtok with a sane API.)
|
|
void SkStrSplit(const char* str, const char* delimiters, SkStrSplitMode splitMode,
|
|
SkTArray<SkString>* out);
|
|
inline void SkStrSplit(const char* str, const char* delimiters, SkTArray<SkString>* out) {
|
|
SkStrSplit(str, delimiters, kCoalesce_SkStrSplitMode, out);
|
|
}
|
|
|
|
#endif
|