skia2/tests/UtilsTest.cpp
Herb Derby 3f7af60e79 Respect the lifespan of initializer_list constants
initializer_list constants only have a scope until the next
sequence point.

Change-Id: I5c52310042fc4773a3ac0e5f9d23ae45bb7b1229
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/549574
Reviewed-by: Robert Phillips <robertphillips@google.com>
Commit-Queue: Herb Derby <herb@google.com>
2022-06-14 15:08:19 +00:00

678 lines
20 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkRefCnt.h"
#include "include/core/SkSpan.h"
#include "include/utils/SkRandom.h"
#include "src/core/SkEnumerate.h"
#include "src/core/SkTSearch.h"
#include "src/core/SkTSort.h"
#include "src/core/SkZip.h"
#include "tests/Test.h"
#include <array>
#include <initializer_list>
#include <tuple>
#include <vector>
class RefClass : public SkRefCnt {
public:
RefClass(int n) : fN(n) {}
int get() const { return fN; }
private:
int fN;
using INHERITED = SkRefCnt;
};
static void test_autounref(skiatest::Reporter* reporter) {
RefClass obj(0);
REPORTER_ASSERT(reporter, obj.unique());
sk_sp<RefClass> tmp(&obj);
REPORTER_ASSERT(reporter, &obj == tmp.get());
REPORTER_ASSERT(reporter, obj.unique());
REPORTER_ASSERT(reporter, &obj == tmp.release());
REPORTER_ASSERT(reporter, obj.unique());
REPORTER_ASSERT(reporter, nullptr == tmp.release());
REPORTER_ASSERT(reporter, nullptr == tmp.get());
obj.ref();
REPORTER_ASSERT(reporter, !obj.unique());
{
sk_sp<RefClass> tmp2(&obj);
}
REPORTER_ASSERT(reporter, obj.unique());
}
static void test_autostarray(skiatest::Reporter* reporter) {
RefClass obj0(0);
RefClass obj1(1);
REPORTER_ASSERT(reporter, obj0.unique());
REPORTER_ASSERT(reporter, obj1.unique());
{
SkAutoSTArray<2, sk_sp<RefClass> > tmp;
REPORTER_ASSERT(reporter, 0 == tmp.count());
tmp.reset(0); // test out reset(0) when already at 0
tmp.reset(4); // this should force a new allocation
REPORTER_ASSERT(reporter, 4 == tmp.count());
tmp[0].reset(SkRef(&obj0));
tmp[1].reset(SkRef(&obj1));
REPORTER_ASSERT(reporter, !obj0.unique());
REPORTER_ASSERT(reporter, !obj1.unique());
// test out reset with data in the array (and a new allocation)
tmp.reset(0);
REPORTER_ASSERT(reporter, 0 == tmp.count());
REPORTER_ASSERT(reporter, obj0.unique());
REPORTER_ASSERT(reporter, obj1.unique());
tmp.reset(2); // this should use the preexisting allocation
REPORTER_ASSERT(reporter, 2 == tmp.count());
tmp[0].reset(SkRef(&obj0));
tmp[1].reset(SkRef(&obj1));
}
// test out destructor with data in the array (and using existing allocation)
REPORTER_ASSERT(reporter, obj0.unique());
REPORTER_ASSERT(reporter, obj1.unique());
{
// test out allocating ctor (this should allocate new memory)
SkAutoSTArray<2, sk_sp<RefClass> > tmp(4);
REPORTER_ASSERT(reporter, 4 == tmp.count());
tmp[0].reset(SkRef(&obj0));
tmp[1].reset(SkRef(&obj1));
REPORTER_ASSERT(reporter, !obj0.unique());
REPORTER_ASSERT(reporter, !obj1.unique());
// Test out resut with data in the array and malloced storage
tmp.reset(0);
REPORTER_ASSERT(reporter, obj0.unique());
REPORTER_ASSERT(reporter, obj1.unique());
tmp.reset(2); // this should use the preexisting storage
tmp[0].reset(SkRef(&obj0));
tmp[1].reset(SkRef(&obj1));
REPORTER_ASSERT(reporter, !obj0.unique());
REPORTER_ASSERT(reporter, !obj1.unique());
tmp.reset(4); // this should force a new malloc
REPORTER_ASSERT(reporter, obj0.unique());
REPORTER_ASSERT(reporter, obj1.unique());
tmp[0].reset(SkRef(&obj0));
tmp[1].reset(SkRef(&obj1));
REPORTER_ASSERT(reporter, !obj0.unique());
REPORTER_ASSERT(reporter, !obj1.unique());
}
REPORTER_ASSERT(reporter, obj0.unique());
REPORTER_ASSERT(reporter, obj1.unique());
}
/////////////////////////////////////////////////////////////////////////////
#define kSEARCH_COUNT 91
static void test_search(skiatest::Reporter* reporter) {
int i, array[kSEARCH_COUNT];
SkRandom rand;
for (i = 0; i < kSEARCH_COUNT; i++) {
array[i] = rand.nextS();
}
SkTHeapSort<int>(array, kSEARCH_COUNT);
// make sure we got sorted properly
for (i = 1; i < kSEARCH_COUNT; i++) {
REPORTER_ASSERT(reporter, array[i-1] <= array[i]);
}
// make sure we can find all of our values
for (i = 0; i < kSEARCH_COUNT; i++) {
int index = SkTSearch<int>(array, kSEARCH_COUNT, array[i], sizeof(int));
REPORTER_ASSERT(reporter, index == i);
}
// make sure that random values are either found, or the correct
// insertion index is returned
for (i = 0; i < 10000; i++) {
int value = rand.nextS();
int index = SkTSearch<int>(array, kSEARCH_COUNT, value, sizeof(int));
if (index >= 0) {
REPORTER_ASSERT(reporter,
index < kSEARCH_COUNT && array[index] == value);
} else {
index = ~index;
REPORTER_ASSERT(reporter, index <= kSEARCH_COUNT);
if (index < kSEARCH_COUNT) {
REPORTER_ASSERT(reporter, value < array[index]);
if (index > 0) {
REPORTER_ASSERT(reporter, value > array[index - 1]);
}
} else {
// we should append the new value
REPORTER_ASSERT(reporter, value > array[kSEARCH_COUNT - 1]);
}
}
}
}
DEF_TEST(Utils, reporter) {
test_search(reporter);
test_autounref(reporter);
test_autostarray(reporter);
}
static bool test_function(SkSpan<const int> s) {
return s[0] == 1 && s[1] == 2 && s[2] == 3;
}
DEF_TEST(SkSpan, reporter) {
// Test constness preservation for SkMakeSpan.
{
std::vector<int> v = {{1, 2, 3, 4, 5}};
auto s = SkMakeSpan(v);
REPORTER_ASSERT(reporter, s[3] == 4);
s[3] = 100;
REPORTER_ASSERT(reporter, s[3] == 100);
}
{
std::vector<int> t = {{1, 2, 3, 4, 5}};
const std::vector<int>& v = t;
auto s = SkMakeSpan(v);
//s[3] = 100; // Should fail to compile
REPORTER_ASSERT(reporter, s[3] == 4);
REPORTER_ASSERT(reporter, t[3] == 4);
t[3] = 100;
REPORTER_ASSERT(reporter, s[3] == 100);
}
{
std::array<int, 5> v = {{1, 2, 3, 4, 5}};
auto s = SkMakeSpan(v); // {1, 2, 3, 4, 5}
REPORTER_ASSERT(reporter, s[3] == 4);
s[3] = 100; // {1, 2, 3, 100, 5}
REPORTER_ASSERT(reporter, s[3] == 100);
auto s1 = s.subspan(1,3); // {2, 3, 100}
REPORTER_ASSERT(reporter, s1.size() == 3);
REPORTER_ASSERT(reporter, s1.front() == 2);
REPORTER_ASSERT(reporter, s1.back() == 100);
auto s2 = s.subspan(2); // {3, 100, 5}
REPORTER_ASSERT(reporter, s2.size() == 3);
REPORTER_ASSERT(reporter, s2.front() == 3);
REPORTER_ASSERT(reporter, s2.back() == 5);
}
{
std::array<int, 5> t = {{1, 2, 3, 4, 5}};
const std::array<int, 5>& v = t;
auto s = SkMakeSpan(v);
//s[3] = 100; // Should fail to compile
REPORTER_ASSERT(reporter, s[3] == 4);
REPORTER_ASSERT(reporter, t[3] == 4);
t[3] = 100;
REPORTER_ASSERT(reporter, s[3] == 100);
}
{
std::vector<int> v;
auto s = SkMakeSpan(v);
REPORTER_ASSERT(reporter, s.empty());
}
{
// Uses ordinary SkMakeSpan(Container& c)
std::initializer_list<int> il = {1, 2, 3};
auto s = SkMakeSpan(il);
REPORTER_ASSERT(reporter, s[0] == 1);
REPORTER_ASSERT(reporter, s[1] == 2);
REPORTER_ASSERT(reporter, s[2] == 3);
}
{
// Uses SkMakeSpan(std::initializer_list<T> il)
REPORTER_ASSERT(reporter, test_function(SkMakeSpan({1, 2, 3})));
}
}
DEF_TEST(SkEnumerate, reporter) {
int A[] = {1, 2, 3, 4};
auto enumeration = SkMakeEnumerate(A);
size_t check = 0;
for (auto [i, v] : enumeration) {
REPORTER_ASSERT(reporter, i == check);
REPORTER_ASSERT(reporter, v == (int)check+1);
check++;
}
check = 0;
for (auto [i, v] : SkMakeEnumerate(A)) {
REPORTER_ASSERT(reporter, i == check);
REPORTER_ASSERT(reporter, v == (int)check+1);
check++;
}
check = 0;
std::vector<int> vec = {1, 2, 3, 4};
for (auto [i, v] : SkMakeEnumerate(vec)) {
REPORTER_ASSERT(reporter, i == check);
REPORTER_ASSERT(reporter, v == (int)check+1);
check++;
}
REPORTER_ASSERT(reporter, check == 4);
check = 0;
for (auto [i, v] : SkMakeEnumerate(SkMakeSpan(vec))) {
REPORTER_ASSERT(reporter, i == check);
REPORTER_ASSERT(reporter, v == (int)check+1);
check++;
}
{
auto e = SkMakeEnumerate(SkMakeSpan(vec)).first(2);
for (auto[i, v] : e) {
REPORTER_ASSERT(reporter, v == (int) i + 1);
}
REPORTER_ASSERT(reporter, e.size() == 2);
}
{
auto e = SkMakeEnumerate(SkMakeSpan(vec)).last(2);
for (auto[i, v] : e) {
REPORTER_ASSERT(reporter, v == (int) i + 1);
}
REPORTER_ASSERT(reporter, e.size() == 2);
}
{
auto e = SkMakeEnumerate(SkMakeSpan(vec)).subspan(1, 2);
for (auto[i, v] : e) {
REPORTER_ASSERT(reporter, v == (int) i + 1);
}
REPORTER_ASSERT(reporter, e.size() == 2);
}
{
struct I {
I() = default;
I(const I&) = default;
I(int v) : i{v} { }
~I() {}
int i;
};
I is[10];
auto s = SkMakeSpan(is);
for (auto [i, v] : SkMakeEnumerate(s)) {
new (&v) I(i);
}
for (size_t i = 0; i < s.size(); i++) {
REPORTER_ASSERT(reporter, s[i].i == (int)i);
REPORTER_ASSERT(reporter, is[i].i == (int)i);
}
}
{
std::unique_ptr<int> is[10];
std::unique_ptr<int> os[10];
auto s = SkMakeSpan(is);
for (auto [i, v] : SkMakeEnumerate(s)) {
v = std::make_unique<int>(i);
}
for (auto [i, v] : SkMakeEnumerate(SkMakeSpan(os))) {
v = std::move(s[i]);
}
for (size_t i = 0; i < s.size(); i++) {
REPORTER_ASSERT(reporter, *os[i] == (int)i);
REPORTER_ASSERT(reporter, is[i] == nullptr);
}
}
{
std::unique_ptr<int> is[10];
std::unique_ptr<int> os[10];
auto s = SkMakeSpan(is);
for (auto [i, v] : SkMakeEnumerate(s)) {
v = std::make_unique<int>(i);
}
for (auto [i, ov, iv] : SkMakeEnumerate(SkMakeZip(os, is))) {
ov = std::move(iv);
}
for (size_t i = 0; i < s.size(); i++) {
REPORTER_ASSERT(reporter, *os[i] == (int)i);
REPORTER_ASSERT(reporter, is[i] == nullptr);
}
}
}
DEF_TEST(SkZip, reporter) {
uint16_t A[] = {1, 2, 3, 4};
const float B[] = {10.f, 20.f, 30.f, 40.f};
std::vector<int> C = {{20, 30, 40, 50}};
std::array<int, 4> D = {{100, 200, 300, 400}};
SkSpan<int> S = SkMakeSpan(C);
// Check SkZip calls
SkZip<uint16_t, const float, int, int, int>
z{4, &A[0], &B[0], C.data(), D.data(), S.data()};
REPORTER_ASSERT(reporter, z.size() == 4);
REPORTER_ASSERT(reporter, !z.empty());
{
// Check front
auto t = z.front();
REPORTER_ASSERT(reporter, std::get<0>(t) == 1);
REPORTER_ASSERT(reporter, std::get<1>(t) == 10.f);
REPORTER_ASSERT(reporter, std::get<2>(t) == 20);
REPORTER_ASSERT(reporter, std::get<3>(t) == 100);
REPORTER_ASSERT(reporter, std::get<4>(t) == 20);
}
{
// Check back
auto t = z.back();
REPORTER_ASSERT(reporter, std::get<0>(t) == 4);
REPORTER_ASSERT(reporter, std::get<1>(t) == 40.f);
}
{
// Check ranged-for
int i = 0;
for (auto [a, b, c, d, s] : z) {
REPORTER_ASSERT(reporter, a == A[i]);
REPORTER_ASSERT(reporter, b == B[i]);
REPORTER_ASSERT(reporter, c == C[i]);
REPORTER_ASSERT(reporter, d == D[i]);
REPORTER_ASSERT(reporter, s == S[i]);
i++;
}
REPORTER_ASSERT(reporter, i = 4);
}
{
// Check first(n)
int i = 0;
for (auto [a, b, c, d, s] : z.first(2)) {
REPORTER_ASSERT(reporter, a == A[i]);
REPORTER_ASSERT(reporter, b == B[i]);
REPORTER_ASSERT(reporter, c == C[i]);
REPORTER_ASSERT(reporter, d == D[i]);
REPORTER_ASSERT(reporter, s == S[i]);
i++;
}
REPORTER_ASSERT(reporter, i = 2);
}
{
// Check last(n)
int i = 0;
for (auto t : z.last(2)) {
uint16_t a; float b; int c; int d; int s;
std::tie(a, b, c, d, s) = t;
REPORTER_ASSERT(reporter, a == A[i + 2]);
REPORTER_ASSERT(reporter, b == B[i + 2]);
REPORTER_ASSERT(reporter, c == C[i + 2]);
REPORTER_ASSERT(reporter, d == D[i + 2]);
REPORTER_ASSERT(reporter, s == S[i + 2]);
i++;
}
REPORTER_ASSERT(reporter, i = 2);
}
{
// Check subspan(offset, count)
int i = 0;
for (auto t : z.subspan(1, 2)) {
uint16_t a; float b; int c; int d; int s;
std::tie(a, b, c, d, s) = t;
REPORTER_ASSERT(reporter, a == A[i + 1]);
REPORTER_ASSERT(reporter, b == B[i + 1]);
REPORTER_ASSERT(reporter, c == C[i + 1]);
REPORTER_ASSERT(reporter, d == D[i + 1]);
REPORTER_ASSERT(reporter, s == S[i + 1]);
i++;
}
REPORTER_ASSERT(reporter, i = 2);
}
{
// Check copy.
auto zz{z};
int i = 0;
for (auto [a, b, c, d, s] : zz) {
REPORTER_ASSERT(reporter, a == A[i]);
REPORTER_ASSERT(reporter, b == B[i]);
REPORTER_ASSERT(reporter, c == C[i]);
REPORTER_ASSERT(reporter, d == D[i]);
REPORTER_ASSERT(reporter, s == S[i]);
i++;
}
REPORTER_ASSERT(reporter, i = 4);
}
{
// Check const restricting copy
SkZip<const uint16_t, const float, const int, int, int> cz = z;
int i = 0;
for (auto [a, b, c, d, s] : cz) {
REPORTER_ASSERT(reporter, a == A[i]);
REPORTER_ASSERT(reporter, b == B[i]);
REPORTER_ASSERT(reporter, c == C[i]);
REPORTER_ASSERT(reporter, d == D[i]);
REPORTER_ASSERT(reporter, s == S[i]);
i++;
}
REPORTER_ASSERT(reporter, i = 4);
}
{
// Check data() returns all the original pointers
auto ptrs = z.data();
REPORTER_ASSERT(reporter,
ptrs == std::make_tuple(&A[0], &B[0], C.data(), D.data(), S.data()));
}
{
// Check index getter
auto span = z.get<1>();
REPORTER_ASSERT(reporter, span[1] == 20.f);
}
// The following mutates the data.
{
// Check indexing
auto [a, b, c, d, e] = z[1];
REPORTER_ASSERT(reporter, a == 2);
REPORTER_ASSERT(reporter, b == 20.f);
REPORTER_ASSERT(reporter, c == 30);
REPORTER_ASSERT(reporter, d == 200);
REPORTER_ASSERT(reporter, e == 30);
// Check correct refs returned.
REPORTER_ASSERT(reporter, &a == &A[1]);
REPORTER_ASSERT(reporter, &b == &B[1]);
REPORTER_ASSERT(reporter, &c == &C[1]);
REPORTER_ASSERT(reporter, &d == &D[1]);
REPORTER_ASSERT(reporter, &e == &S[1]);
// Check assignment
a = 20;
// std::get<1>(t) = 300.f; // is const
c = 300;
d = 2000;
e = 300;
auto t1 = z[1];
REPORTER_ASSERT(reporter, std::get<0>(t1) == 20);
REPORTER_ASSERT(reporter, std::get<1>(t1) == 20.f);
REPORTER_ASSERT(reporter, std::get<2>(t1) == 300);
REPORTER_ASSERT(reporter, std::get<3>(t1) == 2000);
REPORTER_ASSERT(reporter, std::get<4>(t1) == 300);
}
}
DEF_TEST(SkMakeZip, reporter) {
uint16_t A[] = {1, 2, 3, 4};
const float B[] = {10.f, 20.f, 30.f, 40.f};
const std::vector<int> C = {{20, 30, 40, 50}};
std::array<int, 4> D = {{100, 200, 300, 400}};
SkSpan<const int> S = SkMakeSpan(C);
uint16_t* P = &A[0];
{
// Check make zip
auto zz = SkMakeZip(&A[0], B, C, D, S, P);
int i = 0;
for (auto [a, b, c, d, s, p] : zz) {
REPORTER_ASSERT(reporter, a == A[i]);
REPORTER_ASSERT(reporter, b == B[i]);
REPORTER_ASSERT(reporter, c == C[i]);
REPORTER_ASSERT(reporter, d == D[i]);
REPORTER_ASSERT(reporter, s == S[i]);
REPORTER_ASSERT(reporter, p == P[i]);
i++;
}
REPORTER_ASSERT(reporter, i = 4);
}
{
// Check SkMakeZip in ranged for check OneSize calc of B.
int i = 0;
for (auto [a, b, c, d, s] : SkMakeZip(&A[0], B, C, D, S)) {
REPORTER_ASSERT(reporter, a == A[i]);
REPORTER_ASSERT(reporter, b == B[i]);
REPORTER_ASSERT(reporter, c == C[i]);
REPORTER_ASSERT(reporter, d == D[i]);
REPORTER_ASSERT(reporter, s == S[i]);
i++;
}
REPORTER_ASSERT(reporter, i = 4);
}
{
// Check SkMakeZip in ranged for OneSize of C
int i = 0;
for (auto [a, b, c, d, s] : SkMakeZip(&A[0], &B[0], C, D, S)) {
REPORTER_ASSERT(reporter, a == A[i]);
REPORTER_ASSERT(reporter, b == B[i]);
REPORTER_ASSERT(reporter, c == C[i]);
REPORTER_ASSERT(reporter, d == D[i]);
REPORTER_ASSERT(reporter, s == S[i]);
i++;
}
REPORTER_ASSERT(reporter, i = 4);
}
{
// Check SkMakeZip in ranged for OneSize for S
int i = 0;
for (auto [s, a, b, c, d] : SkMakeZip(S, A, B, C, D)) {
REPORTER_ASSERT(reporter, a == A[i]);
REPORTER_ASSERT(reporter, b == B[i]);
REPORTER_ASSERT(reporter, c == C[i]);
REPORTER_ASSERT(reporter, d == D[i]);
REPORTER_ASSERT(reporter, s == S[i]);
i++;
}
REPORTER_ASSERT(reporter, i = 4);
}
{
// Check SkMakeZip in ranged for
int i = 0;
for (auto [c, s, a, b, d] : SkMakeZip(C, S, A, B, D)) {
REPORTER_ASSERT(reporter, a == A[i]);
REPORTER_ASSERT(reporter, b == B[i]);
REPORTER_ASSERT(reporter, c == C[i]);
REPORTER_ASSERT(reporter, d == D[i]);
REPORTER_ASSERT(reporter, s == S[i]);
i++;
}
REPORTER_ASSERT(reporter, i = 4);
}
{
// Check SkEnumerate and SkMakeZip in ranged for
auto zz = SkMakeZip(A, B, C, D, S);
for (auto [i, a, b, c, d, s] : SkMakeEnumerate(zz)) {
REPORTER_ASSERT(reporter, a == A[i]);
REPORTER_ASSERT(reporter, b == B[i]);
REPORTER_ASSERT(reporter, c == C[i]);
REPORTER_ASSERT(reporter, d == D[i]);
REPORTER_ASSERT(reporter, s == S[i]);
}
}
{
// Check SkEnumerate and SkMakeZip in ranged for
const auto& zz = SkMakeZip(A, B, C, D, S);
for (auto [i, a, b, c, d, s] : SkMakeEnumerate(zz)) {
REPORTER_ASSERT(reporter, a == A[i]);
REPORTER_ASSERT(reporter, b == B[i]);
REPORTER_ASSERT(reporter, c == C[i]);
REPORTER_ASSERT(reporter, d == D[i]);
REPORTER_ASSERT(reporter, s == S[i]);
}
}
{
// Check SkEnumerate and SkMakeZip in ranged for
for (auto [i, a, b, c, d, s] : SkMakeEnumerate(SkMakeZip(A, B, C, D, S))) {
REPORTER_ASSERT(reporter, a == A[i]);
REPORTER_ASSERT(reporter, b == B[i]);
REPORTER_ASSERT(reporter, c == C[i]);
REPORTER_ASSERT(reporter, d == D[i]);
REPORTER_ASSERT(reporter, s == S[i]);
}
}
{
std::vector<int>v;
auto z = SkMakeZip(v);
REPORTER_ASSERT(reporter, z.empty());
}
{
constexpr static uint16_t cA[] = {1, 2, 3, 4};
// Not constexpr in stdc++11 library.
//constexpr static std::array<int, 4> cD = {{100, 200, 300, 400}};
constexpr static const uint16_t* cP = &cA[0];
constexpr auto z = SkMakeZip(cA, cP);
REPORTER_ASSERT(reporter, !z.empty());
}
}